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Preface


The 12th conference ITAT’12 Information Technologies – Application and Theory was held
at the hotel Magura located in Monková dolina, near Ždiar, Belianske Tatry, Slovakia in September
17-21th, 2012.


The conference is a traditional place of meetings for Czech and Slovak computer science communities.
The emphasis is on exchange of ideas and information as well as on consolidation of bounds between
the scientists of these two countries. Large space in the scientific and the social program is devoted to
discussions. Conference languages are Slovak and Czech.


All the 25 submitted papers were reviewed by two independent reviewers. The proceedings consists of
8 selected scientific papers and the extended abstract of the invited talk.


The conference was co-organized by
– Institute of Computer Science, P. J. Šafárik University in Košice
– Faculty of Mathematics and Physics, Charles University in Prague
– Institute of Computer Science of Academy of Sciences of the Czech Republic, Prague
– Slovak Society for Artificial Intelligence


I would like to thank to the authors of presented papers, the invited speaker Jiří Kléma and all the
reviewers for keeping the good scientific level of ITAT. Special thanks go to the organizing committee
led by Peter Gurský for the great job in organization of the conference.


The conference was partially supported by the grant VEGA 1/0832/12. Special thanks go to our


sponsor Profinit (http://www.profinit.eu/)


Tomáš Horváth


We recommend the use of Adobe Reader version 9.0 to view this pdf-file.
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Abstract. Bioinformatics is a field of study dealing with


methods for storing, retrieving and analyzing gene and pro-


tein oriented biological data. High-throughput technologies


like DNA sequencing or microarrays allow researchers to


obtain large volumes of heterogeneous and mutually in-


teracting data. Analysis and understanding of these data


provides a natural application field for machine learning


algorithms. At the same time, bioinformatics is a scien-


tific branch of such analytical complexity, data variety and


abundance that it motivates further development of special-


ized learning algorithms such as co-clustering or multiple


sequence alignment. This paper provides a brief overview of


the topics and works discussed during my talk on machine


learning applications in bioinformatics. The talk starts with


a preview of fundamental bioinformatics analytical tasks


solved by machine learning algorithms mentioning a few


success stories. The second part summarizes the recent bio-


informatics research carried out in my home research


group, the Intelligent Data Analysis group of Czech Tech-


nical University.


1 Analytical bioinformatics tasks


A complete overview of analytical bioinformatics tasks
solvable and being solved by machine learning (ML)
algorithms is out of scope of this short summary. [1] is
a textbook that provides an introduction to the most
important problems in computational biology and
a unified treatment of the ML methods for solving
these problems. The book is self-contained, its large
part focuses on the principles of fundamental
ML algorithms. A relevant concise review appeared
in [2], its updated recent modification was presented
in [3]. The reviews distinguish four principal classes
of tasks. Firstly, a large group of bioinformatics prob-
lems can be posed as classification tasks. Genome an-
notation including gene finding and searching for DNA
binding sites with proteins or gene function prediction
and protein secondary structure prediction make ex-
amples. Secondly, clustering can be used to learn func-
tional similarity from gene expression data or it can
form phylogenetic trees. Thirdly, probabilistic graphi-
cal models can serve for modelling of DNA sequences
in genomics or inference of genetic networks in sys-
tems biology. Last but not least, optimization algo-
rithms have been proposed to solve the multiple se-


quence alignment problem or they appear in simplified
models of protein folding.


1.1 Success stories and interactions


The bioinformatics tool with the largest impact is un-
doubtedly The Basic Alignment Search Tool (BLAST)
and its successors [4] for searching a large sequence
database against a query sequence. The NCBI server
that provides the service with heuristic methods for
sequence database searching handles more than half
a million queries a day, the paper [4] introducing the
improved PSI-BLAST has tens of thousands of cita-
tions. Another success story is an early case study on
predictive classification from gene expression data [5].
The study proved feasibility of cancer classification
based solely on gene expression monitoring. Although
other latter studies showed that this positive result
cannot be by means taken for granted, since
then molecular classification is an option in disease
diagnostics.


Bioinformatics directly motivates some cutting
edge ML projects such as automated hypotheses gen-
eration and learning of optimal workflows. [6] reports
the development of Robot Scientist “Adam”, which
autonomously generated functional genomics hypothe-
ses about the yeast Saccharomyces cerevisiae and ex-
perimentally tested these hypotheses by using labora-
tory automation. One of its main objectives of
the ongoing European ML and data mining project
e-LICO [7, 8] is to implement an intelligent data min-
ing assistant that takes in user specifications of the
learning task and the available data, plans a method-
ologically correct learning process, and suggests work-
flows that the user can execute to achieve the prespeci-
fied objectives. Bioinformatics is the major application
area.


2 IDA bioinformatics research topics


One of our main research topics is learning from gene
expression data driven by background knowledge [9].
Mining patterns from gene expression data represents
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an alternative way to clustering [10]. Clustering pro-
vides the most straightforward and traditional ap-
proach to obtain co-expressed genes. However, a typ-
ical group of genes shares an activation pattern only
under specific experimental conditions. Local meth-
ods such as pattern mining can identify exactly the
sets of genes displaying a specific expression charac-
teristic in a set of situations. The main bottleneck of
this type of analysis is twofold – computational costs
and an overwhelming number of candidate patterns
which can hardly be further exploited. A timely appli-
cation of background knowledge available in literature
databases, gene ontologies and other sources can help
to focus on the most plausible patterns only. Molecu-
lar classification of biological samples based on their
gene-expression profiles is a natural learning task with
immediate practical uses. Nevertheless, molecular clas-
sifiers based solely on gene expression in most cases
cannot be considered useful decision-making tools or
decision-supporting tools. Similarly to the domain of
pattern mining, recent efforts in the field of molec-
ular classification aim to employ background knowl-
edge. The idea is to extract features that correspond
to functionally related gene sets instead of the individ-
ual genes, respectively the probesets whose expression
is available in the original expression data [11, 12].


The previous paragraph employs the available
structural genomic knowledge to improve the analy-
sis of gene expression data. We also studied several
methods to create it from collections of free biomedical
texts, namely the research papers and their short sum-
maries [13]. [14] proposes a novel ball-histogram ap-
proach to DNA-binding propensity prediction of pro-
teins.


Last but not least, the IDA group cooperates with
several biological institutes and labs. To exemplify,
[15] shows an application of the set-level approach dis-
cussed above to the particular domain of respirable
ambient air particulate matter, the principal research
partner was the Department of Genetic Ecotoxicology
from Czech Academy of Sciences. [16] evaluates dif-
ferences in the intragraft transcriptome after success-
ful induction therapy using two rabbit antithymocyte
globulins, the partner was the Department of Nephrol-
ogy, Transplant Center, Institute for Clinical and Ex-
perimental Medicine.
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Abstract. Many today’s engineering tasks use approx-


imation of their expensive objective function. Surrogate


models, which are frequently used for this purpose, can save


significant costs by substituting some of the experimental


evaluations or simulations needed to achieve an optimal


or near-optimal solution. This paper presents a surrogate


model based on RBF networks. In contrast to the most of


the surrogate models in the current literature, it can be di-


rectly used for problems with mixed continuous and discrete


variables – clustering and generalized linear models are em-


ployed for dealing with discrete covariates. The model has


been tested on a benchmark optimization problem and its


approximation properties are presented on a real-world ap-


plication data.


1 Introduction


Optimization of different kinds of empirical objective
functions is included in many of todays engineering
or industrial applications – in situations where the
value of the objective function is obtained through
some measurement, experiment or simulation. High
costs or extensive time demands needed for evaluat-
ing such functions motivate engineers to reduce the
number of such evaluations.


Surrogate modelling [3, 6] is a popular approach
which substitutes an approximating model for some
of the original function evaluations. This concept is
widely used in connection with evolutionary algo-
rithms (EAs). Here, some of the individuals are as-
sessed with not necessary accurate, but much faster
model. This brings an important benefit: a notably
larger population can be evolved in parallel. Even
though the precise evaluation can be made only on
a limited number of individuals, the EA can explore
a larger part of the input space.


Lots of current literature covers optimization in
continuous, or in discrete domains. However, the area
of industrial optimization is often characterized by


⋆ This work was supported by the Grant Agency
of the Charles University (GA UK), grant number
278511/2011 (Lukáš Bajer), and by the Czech Science
Foundation (GA CR), grant number 201/08/0802 (Mar-
tin Holeňa).


both continuous and discrete variables [16, 7]. This
paper describes a particular surrogate model based
on radial basis function (RBF) networks and gener-
alized linear models (GLMs). Most of the exist-
ing works [22, 17, 9] deal with only continuous do-
mains or combination with integer variables, but the
works dealing with mixed-variables surrogate models
are rather few [21, 19].


In our model, multiple RBF networks are trained
and discrete variables are used either for focusing
training of the networks on the most appropriate data,
or generalized linear model is constructed on this part
of the data.


The paper is organized as follows: in the next sec-
tion, we recall principles of surrogate modelling, RBF
networks and GLMs. Section 3 describes our approach
to constructing a surrogate models and using it in op-
timization. Finally, Section 4 provides the results of
testing on a benchmark function and real-world data.


2 Problem description


For any given objective function f : S → IR,
we consider the mixed-variable optimization problem
(maximization) as finding the global optimum x⋆ =


(x
(C)
1 , . . . , x


(C)
n , x


(D)
1 , . . . , x


(D)
d ) ∈ S such that


f(x⋆) = max
x∈S


f(x). (1)


The search space S has of n continuous and d dis-
crete variables; forming corresponding subspaces S(C)


and S(D). In addition, we suppose that the value sets


Vs(X
(D)
i ), i = 1, . . . , d of the discrete variables are


finite and we do not distinguish between ordinal or
nominal categorical variables – we assume no ordering


on any of the Vs(X
(D)
i ).


2.1 Involved methods


Surrogate modelling. Approximation of the fitness
function with some regression model is a common cure
for tasks when empirical objective function has to be
used. These surrogate models simulate behaviour of
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the original function while being much cheaper and
much less time consuming to evaluate.


As a surrogate model, mainly nonlinear regression
models are used, for example gaussian processes [4]
or artificial neural networks. In connection with evo-
lutionary optimization, neural networks of the type
multilayer perceptrons [10] and networks with radial
basis functions [22, 17] have been particularly popular.
The last mentioned kind of neural networks underlies
also the model reported in this paper.


Combining of the original fitness function and
the surrogate model is determined by evolution con-
trol (EC). In the literature [10], individual and gener-
ation based approaches are distinguished. While the
individual-based EC chooses for evaluation by the
original fitness only part of an enlarged population,
the generation-based approach evaluates in different
generations the whole population by either the origi-
nal, or the model fitness.


RBF networks compute a mapping from the input
space (typically a subspace of IRn) to IR (for simplicity
we will focus on versions with scalar output) [5]. The
mapping can be expressed as


f(x) =


g∑


i=1


πifi(||x− ci||) (2)


where x ∈ IRn is the input, g ∈ IN the number of
components, fi : IR


n → IR are radial basis functions,
πi ∈ IR their weights, ci ∈ IRn radial functions’ cen-
tres, and ||.|| is a norm. As functions fi, Gaussian
functions with scalar width δi and euclidean norm
fi(x; ci, δi) = e−δi||x−ci||


2


are used most commonly.


Generalized linear models are a natural generalization
of classical linear regression models [13]. They con-
sist of three parts: (1) the random component – in-
dependent observed values Y following a distribution
from the exponential family with mean E(Y) = µ and
constant variance σ2, (2) the systematic component
which relates values of explanatory (input) variables
(x1,x2, . . . ,xd) through a linear model with parame-
ters β1, . . . , βd


η =
d∑


j=0


xjβj (3)


to a linear predictor η, and (3) a link function g that
connects the random and systematic components to-
gether: η = g(µ). The explanatory variables are usu-
ally supplemented with the constant vector of ones
corresponding to an intercept parameter β0.


GLMs are particularly useful for our work because
they are able to express a relation between discrete
(integer or after a transformation of values even nom-
inal) input variables and a continuous response.


3 Our strategy for using


surrogate-assisted genetic


optimization


Our version of the surrogate-assisted genetic algorithm
including a detailed pseudo-code has been introduced
in the previous article [1]. This section describes the
construction and using of surrogate models based on
RBF networks.


3.1 Model construction


RBF networks, which were defined in Section 2.1,
enable us to use only continuous variables for their
fitting. Construction of our first surrogate model [1]
starts with clustering of the available training data
according to their discrete values into several clus-
ters in order to focus the RBF networks training
on the most similar datapoints. Let us call this
model RBF/discrete clustering, or shortly RBF/DSCL
model. Subsequently, separate RBF networks are fit-
ted with the data of each such a cluster using the
datapoints’ continuous variables. The algorithm is the
same as described on the Fig. 1 except the omitted
steps (1)–(3), and the clustering which is made using
discrete values from the training database D in the
step (4).


This approach does not utilize relation between
values of the discrete input variables and the response
variable. As was stated in Section 2.1, such a rela-
tion can be expressed by generalized linear models,
and these models form an important part of our new
RBF/GLM surrogate model.


Training the RBF/GLM model starts with con-
struction of two auxiliary models: the first, global RBF
network f̂RBF : S(C) → IR is fitted on the continuous
input variables while the second, GLM f̂GLM :S(D)→IR
is built using the discrete variables. Both of them make
use of all the available training data and regress the
response-variable values.


Global RBF network. Training of the auxiliary
RBF network works similarly to the training of the
RBF networks in the previous RBF/DSCL model [1]
– the same starting values for centers and weights, and
cross-validation for choosing the best number of com-
ponents g is used. However, instead of clusters, all the
data in the database D are used at once.


GLM model. Generalized linear model is used in its
continuous-response form and responses are supposed
from normal distribution Y ∼ N(µ, σ2). Even though
the latter assumption generally does not hold, GLMs
still provide useful mean of regression expressed on the
basis of the discrete values.







RBF-based surrogate model for evolutionary . . . 5


Before using or fitting the GLM, the discrete values
must be converted to a proper representation. Since we
do not expect any ordering on the discrete values, we
have chosen dummy coding [13] which establishes one
binary indicating variable Iij ∈ {0, 1} for each nomi-


nal value from the value sets Vs(X
(D)
i ), i = 1, . . . , d,


j = 1, . . . , |Vs(X
(D)
i )| of the original discrete variables.


Assignment between the original discrete values and
the dummy coding


dummy : S(D) → {0, 1}|Vs(X1)|+...+|Vs(Xd)| (4)


has to be recorded for evaluation with the surrogate
model.


Final RBF clustered model. Having created the
global RBF network f̂RBF and the GLM model f̂GLM,
we can proceed with the construction of the final RBF
clustered surrogate model f̂ : S(C) → IR. The process
starts with clustering of the training data from the


database D = {x
(D)
i ,x


(C)
i , yi}


N
i=1 according to the dif-


ference between responses of the two auxiliary models
on the corresponding input variables (for i = 1, . . . , N)


diff i = f̂RBF(x
(C)
i )− f̂GLM(dummy(x


(D)
i )). (5)


The sizes of the clusters have to be at least smin


– the minimal number of data needed for fitting one
RBF network. This number is provided by the user
and its best value depends on a particular task. The
higher the smin is, the more components can each RBF


FitTheModel(smin, D, e)
Arguments: smin – min. size of clusters,


D – database, e – type of error estimate:
MSE, AIC, or BIC


Steps of the procedure:


(1) (f̂RBF, rbf GLOB
)← fit the global RBF


(2) (f̂GLM, glm)← fit the GLM


(3) {diff i}
N
i=1 ← differences (f̂RBF − f̂GLM) on D


(4) {Cj}
m
j=1 ← cluster D into clusters of size


at least smin according to {diff i}
N
i=1


(5) for each cluster Cj , j = 1, . . . ,m
(6) for gj = 1, . . . , gmax


j


(7) mse[j, gj ]← average MSECV from
fitting RBF with gj components


(8) g⋆j ← the number of components
of the best RBF


(9) rbf j ← retrained RBF network
with g⋆j components


(10) msej ← mse[j, g⋆j ]
Output: {rbf GLOB, glm, (rbf j ,msej , diff j)


m
j=1}


Fig. 1. Pseudo-code of the fitting procedure.


network have, but the more distinct discrete values are
usually grouped together in one cluster.


One separate RBF network rbf j is trained on the
data of each cluster Cj , j = 1, . . . ,m. The maxi-
mal number of components of each network is upper-
bounded by gmax


j = ⌊(k−1
k


|Cj |)/ρ⌋. Training these net-
works is analogous to training of the global RBF net-
work described in Section 3.1. The only difference is in
the training data: only the data of individual clusters
are used for each network.


3.2 Evaluation with the surrogate model


Once the surrogate model is built, it can be used
for evaluating individuals resulting from the evolu-
tion. The parameters of the model can be summa-
rized as {rbf GLOB, glm, (rbf j ,msej , diff j)


m
j=1}. Here,


rbf GLOB are global RBF network parameters, glm =
(β0, . . . , βr) are parameters of the GLM, rbf j global
RBF network parameters, msej are the MSECV ob-
tained from cross-validation, and diff j are the differ-
ence diff (5) averaged on the j-th cluster’s data.


Given a new individual (x̃(C), x̃(D)), evaluation
with the surrogate model starts with computing
the difference between responses of the global RBF
network and GLM with corresponding parameters
rbf GLOB and glm


d̃iff = f̂RBF(x̃
(C); rbf GLOB)


−f̂GLM(dummy(x̃(D)); glm). (6)


Based on this value, the index c of the cluster with
the average difference most similar to the individual’s
difference is obtained


c = arg min
j=1,...,m


|diff j − d̃iff |. (7)


Finally, the response of the c-th final RBF network is
used as a return value of the surrogate model


ỹ = f̂(x̃(C); rbfc) =


g⋆


c∑


i=1


πicfic(||x̃
(C) − cic||). (8)


If more than one cluster is at the same distance
from the individual, the RBF network with the lowest
MSECV is chosen.


4 Implementation and results of


testing


Our algorithms were implemented in the MATLAB
environment. We have been utilizing the Global Opti-
mization Toolbox which provided us with a platform
for testing the model on a benchmark optimization
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task. Similarly, our hierarchical clustering method
extends the cluster analysis from the Statistical Tool-
box which provide us with GLM fitting procedure, too,
and we employ a nonlinear curve-fitting from the
Optimization Toolbox for fitting RBF networks.


4.1 Model fitting


Our models have been tested on three different kinds
of data. The first two datasets (Valero and HCN) are
the same as in our last article [1], the third is the
building1 dataset from Proben1 [18] collection.


Valero’s [20] benchmark fitness function was con-
structed to resemble empirical fitness functions from
chemical engineering. The surrogate models have been
10-times trained on dataset with 2000 randomly
generated data. Using the same settings for fitting,
the average root of the MSE (RMSE) of the new
RBF/GLM model has been only slightly decreased.
(see Table 1 and the top graphs on Fig. 2).


Valero
RBF/GLM 14.046± 1.0435
RBF/DSCL 14.499± 1.518


HCN
RBF/GLM 10.340± 1.866
RBF/DSCL 15.620± 1.519


building1
RBF/GLM 0.06407± 0.00496
RBF/DSCL 0.13618± 0.00455


Table 1. Surrogate-models’ average regression RMSE on
Valero’s benchmark, HCN data and building1 dataset.


The second dataset is from a real application in
chemical engineering (cf. using RBF networks in this
application area e.g. in the work of Jun [11]): the op-
timization of chemical catalysts for Hydrocyanic acid
(HCN) synthesis [14]. Solutions of this task are com-
posed of two discrete and 11 continuous variables, the
whole dataset has 696 items. Fitting results are sub-
stantially different from the benchmark problem (con-
sidering the average response in the dataset ȳ = 31.17,
the measured RMSE’s are relatively much higher:
see middle row of graphs on Fig. 2). RMSE of the
new RBF/GLM model has been decreased by nearly
35 % comparing to the previous model’s error.


Prechelt’s Proben1 [18] is a popular collection of
datasets for data mining, originally intended for neural
networks benchmarking. We have tested our models on
the building1 dataset using the first response variable
indicating electrical energy consumption in a building;
multiple-trained on the first 3156 and tested on the
remaining 1052 data, as suggested by Prechelt. Aver-
age results from ten trainings show that the former
RBF/DSCL model is not able to sufficiently express
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Fig. 2. Scatter plots of the RBF/GLM (left column) and
RBF/DSCL model (right column) on testing data.


the relation between discrete variables and the out-
put. Conversely, the results of the RBF/GLM model
are at least comparable to the results reported
elsewhere [12, 2, 15].


4.2 Genetic algorithm performance on the


benchmark fitness


The benchmark fitness enabled us to test the model
with the GA [1]. As shown in Table 2, the GA with
the surrogate model reaches on this function the same
fitness values as the non-surrogate GA using only less
than 30 per cent of the original fitness function eval-
uations (generation-based EC), or it is able to find
1.1-times better solution with 80 per cent of the orig-
inal fitness evaluations (individual-based EC).
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EC settings of fitness of number of
the surrogate the best found orig. fitness
model individual evaluations


without model 486.38± 56.5 4130± 1546
individual-based 544.73± 3.9 3241± 926
generation-based 490.28± 44.9 1185± 358


Table 2. GA performance without surrogate model and
with the RBF/DSCL-based model; average results from
100 runs of the algorithm


5 Conclusion


Two kinds of surrogate models of expensive objective
functions for mixed-variable continuous and discrete
optimization were presented in this paper. Both of
them make use of RBF networks; the first model fo-
cuses training of the RBF networks using clustering on
the discrete part of the data while the second builds
GLM on the discrete input variables. Detailed algo-
rithms for training the models were provided. Results
of testing on three different datasets showed that espe-
cially the second model is a competitive kind of regres-
sion for costly objective functions. Using the model on
the benchmark fitness function resulted in saving up
to 70 per cent of the original evaluations or 10 per cent
increase of the final solution quality.


One of the most similar works dealing with surro-
gate models is the paper of Zhou [22]. He uses RBF
networks as a local surrogate model in combination
with a global model based on Gaussian processes.
Other literature employs polynomials [8], Gaussian
processes [4], or multilayer perceptron networks [10],
but most publications consider only continuous or con-
tinuous and integer optimization.
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Abstract. Database systems are constantly extending


their application area towards more general computing.


However, applications that combine database access and


general computing still suffer from the conceptual and tech-


nical gap between relational algebra and procedural pro-


gramming. In this paper, we show that procedural programs


may be effectively represented in a Datalog-like language


with functions and aggregates. Such a language may then


be used as a common representation for both relational and


procedural part of an application.


1 Introduction


As database systems were extending their application
area, their mainstay language, SQL, became no longer
sufficient to support all required applications of data-
bases. The database community reacted in two ways:
Implementing domain specific languages like XQuery,
SPARQL etc. and improving the interaction of data-
base engines with general procedural programming
languages. The second approach is certainly more gen-
eral but it is also more difficult due to deep differences
between the procedural and relational paradigms.


Many database systems offer a procedural lan-
guage with embedded SQL statements. The most com-
mon processing scenario is depicted at Fig. 1. The
procedural and relational parts are separated already
in the parser stage. The procedural part is converted
to a procedural intermediate representation while the
relational part is expressed using extended relational
algebra. The two parts are processed almost indepen-
dently in the following stages. When entering run time,
the procedural part is usually expressed by a procedu-
ral bytecode which is designed for easy interpretation;
the relational part is represented by a physical plan,
i.e. an expression over a physical algebra.


Database-related optimizations are performed only
on the relational side; individual SQL statements
extracted from the source code are usually optimized
independently. The most important optimization step
is the strategy of physical plan generation, tradition-
ally called cost-based optimization. Here, the logical
relational algebra operators are converted to physical


⋆ The work was supported by the GACR project
202/10/0761 and by the GAUK grant SVV-2011-
263312.
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Fig. 1. Typical processing path of embedded-SQL pro-
grams


operators selected from a library and the selection is
guided by database statistics and physical operator
metadata (cost etc.).


The procedural part meets with its relational ele-
ments only at run time – the procedural machine ex-
ecutes the procedural code containing calls to a data-
base interface which in turn invokes the plan inter-
preter. The interpreter schedules and dispatches calls
to procedures implementing individual physical oper-
ators of a plan. Although the individual SQL state-
ments extracted from the source program often access
the same data, their plans usually interact only at the
lowest levels of physical data access; thus, they often
repeat the same operations on the same data.
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The most important reason for the separation of
procedural and relational parts is probably the his-
tory – the relational (SQL) query engines were usu-
ally implemented well before the procedural add-on
was considered and the software-engineering cost of
reimplementing the query engine was considered too
high.


Nevertheless, there is another reason for the sep-
aration – the nature of procedural code is so distant
from the algebraic nature of SQL that it is very dif-
ficult to create a meaningful common representation
for the two parts.


1.1 Goals


In this paper, we suggest using a Datalog-like language
as the common intermediate representation for proce-
dural and relational code. This idea is natural, consid-
ering the close relationship between Datalog and rela-
tional algebra on one side and the computing power
of logic programming and recursion on the other side.
However, there are still many obstacles in the inte-
gration effort. In particular, there is a risk of loss of
efficiency since the procedural code is not evaluated
directly but transformed to logic-programming repre-
sentation and then evaluated by a procedural hard-
ware.


In our approach, we strive to improve the efficiency
of logic-programming representation by minimizing
the size of the models – we show that a procedural code
can be encoded in a logic program in such a manner
that the size of the (minimal) model is proportional
to the execution time of the original program on the
same data. Thanks to this proportionality, the logic
program may be evaluated completely in bottom-up
manner.


Due to the focus on bottom-up evaluation, we pre-
fer calling our approach Datalog-like over the term
logic programming, although we certainly must use
a language stronger than Datalog to achieve gener-
ality.


Besides function symbols which are necessary to
simulate general procedural programming, our langua-
ge needs negation and aggregation for the emulation
of both procedural constructs and the embedded re-
lational language. Both negation and aggregation re-
quire special handling to ensure well-defined semantics
and there are several approaches to the semantics of
negation in Datalog and logic programming in general.


Thus, defining a particular approach to semantics
is a part of our effort – we reuse the concepts of lo-
cal stratification [13] and rule progressivity [10] that
together well reflect the nature of the original proce-
dural code.


1.2 Architecture


The architecture of the proposed system is shown at
Fig. 2. Instead of separating the procedural and re-
lational part, the parser converts the source code into
a Datalog-like intermediate representation. This inter-
mediate language and the conversion of procedural
code into it form the main subject of this paper. On
the other hand, conversion of relational queries to
Datalog is a well-known subject; thus, it is not neces-
sary to describe the handling of embedded SQL state-
ments.


The processing continues with rewriting step which
optimizes the Datalog-like representation – this phase
corresponds to query rewriting and it may also be in-
fluenced by database statistics. Moreover, several op-
timization algorithms known from compiler construc-
tion like loop unrolling or variable renaming [17] have
their equivalents in the transformation of logic pro-
grams, so this phase covers also the optimization of
procedural code.


The most important feature of this architecture is
the ability to apply rewriting optimization step across
the boundary between procedural and relational code.
For instance, repeated invocations of a SQL statement
may be glued together, offering, for instance, the pos-
sibility to cache their partial results.


The plan generator phase tries to cover the Data-
log-like representation using a predefined set of pat-
terns. Each pattern corresponds to a component which
has several inputs and several outputs, each corre-
sponding to a predicate. A simplest component cover
one Datalog rule – in this case, the head of the rule
corresponds to the output and each atom of the body
corresponds to an input of the component. More so-
phisticated components correspond to a pattern cov-
ering more than one rule, including recursively depen-
dent rules.


Some of the components correspond to physical
operators of a relational engine; for instance, a Data-
log rule with two body atoms may be implemented
by a hash-join operator. Other components are imple-
mented with simple procedural code snippets – these
components ensure that the procedural parts of the
source code are reverted back to procedural code. Of
course, parts of the source code may be changed during
the rewriting phase; consequently, procedural source
code may be eventually covered by relational operators
and, conversely, portions of the embedded relational
statements may be converted to procedural snippets.


The implementation of physical relational opera-
tors is boxed in procedural packages which are con-
nected together similarly to classical query plans. On
the other hand, the procedural snippets are so small
that individual packaging would be ineffective. There-
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fore, the snippets are combined together to larger pro-
cedural code fragments by the bytecode generator.


This paper deals with the design of the intermedi-
ate representation and the translation from procedu-
ral code to it. The subsequent steps – Datalog-based
rewriting and plan generator – are subject of our cur-
rent research. The run-time portion of the system at
Fig. 2 was already implemented for a SPARQL com-
piler [4] whose compile time used a relational interme-
diate code and an algebra-based plan generator.
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Fig. 2. Proposed processing path of embedded-SQL pro-
grams.


The rest of the paper is organized as follows: In the
Section 2, we briefly review the related work on the
interaction between procedural and relational code as
well as Datalog-related definitions important for our
approach. The following section uses a sample pro-
cedural code to illustrate several approaches to the
modelling of procedural code in Datalog style. After
reviewing the required extensions to Datalog in Sec-
tion 3.5, a particular strategy to the minimization of
model size is presented in Section 3.6.


2 Background and related work


Interaction of procedural and relational code was re-
cognized as an important topic a long time ago; never-
theless, practical applications of the results are very
scarce. In [7], a successful optimization of the interac-
tion cost was shown in the case of calling procedurally-
implemented functions from relational queries. Our
approach also applies to this case; nevertheless, we fo-
cused on the opposite problem – repeated calling of
relational queries from procedural code.


Nested relational algebra [14] may well reflect the
use of structured and relation-valued variables in
a procedural program; however, the overall comput-
ing strength of nested relational algebra is insufficient
to express while loops. While loops may be added as
an additional second-order construct atop of relational
algebra, or represented by transitive closure in power-
set algebra [9]. In Sec. 3.3, we will show a logical-
programming equivalent of nested relational algebra
together with the drawbacks of such an approach.


Flattening nested relations is an important step
towards effective evaluation of nested algebra and it is
also present in the core of our approach. The original
flattening principle described in [16] was designed to
flatten an isolated nested-relational algebra expression
and it was based on the finite height of the expression
tree. Since a while loop may generate a calculation
of unlimited length, this flattening technique may not
be applied for procedural programs. Instead, we had
to use a numbering technique (see Sec. 3.4) and to
solve some unwanted consequences of the numbering
approach.


Datalog and its extensions, besides their natural
applications in many areas of database theory, was
already successfully used in areas related to procedural
programming.


A language derived from logical programming was
designed for programming in distributed environ-
ment [5]. The opposite problem, generating effective
procedural implementations from Datalog programs,
was studied in [11]. These recent publications suggest
that the potential of Datalog was not exhausted in
the first decades of its life and it may experience a re-
vival fueled by the renewed interest in non-traditional
database architectures.


There were attempts to improve the expressive po-
wer of Datalog towards procedural programming by
non-traditional extensions of its semantics [8]. Extend-
ing Datalog towards complex data structures known
from procedural programming was described in [6].
These powerful extensions relied on significant intru-
sions to the traditional Datalog semantics; consequent-
ly, their use in an intermediate language for a rela-
tional platform would be doubtful.
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Datalog with temporal features was used to model
sequences of data-manipulation statements [10] or in
the analysis of procedural programs [15]. Our number-
ing technique shown in Sec. 3.4 is similar to temporal
techniques although used for a different purpose.


Among the sheer number of approaches to Datalog
extensions, semantics and evaluation strategies, local
and, in particular, temporal stratification [12] has mo-
tivated our approach. In addition, we also make use of
the progressivity [10] of rules in the scheduling strategy
used in plan execution.


3 Modeling procedural code in


Datalog style


Algorithm 1 Example: A procedural algorithm with
embedded SQL statements


Require: Relation M(A,B)
1: S := z


2: while exists(M) do
3: X := select min(A) from M


where A not in (select B from M)
4: S := f(S,X)
5: delete from M where A = X


6: end while


7: return S


Algorithm 1 is an example of code written in a pro-
cedural language with SQL embedded. It consumes
a relation M with schema (A,B) representing edges
of a directed graph and traverses it in a topological
ordering. In the loop, a node X is selected that has
no incoming edge in M . The min aggregate is neces-
sary to select from multiple candidates. Later in the
loop, all outgoing edges of X are removed from M .
The output of the loop is the variable S which aggre-
gates the selected values of X using the constant z


and the function f(S,X) (e.g. concatenation). If the
graph is acyclic, the algorithm terminates after at
most |M | iterations; otherwise, it eventually fails to
find any A in the statement 3 and, depending on the
subtle details of the statement semantics, either causes
an exception or loops indefinitely.


Modeling of a while-loop requires an extension to
relational algebra and transitive closure is the most
obvious candidate. Each iteration of the loop changes
the state of the program – the variables M and S


– thus, there is a relation B which models the loop-
body behavior using tuples 〈M,S,M ′, S′〉. Together
with the while-head condition H , the transitive clo-
sure L = σM ′=∅(σM 6=∅B)∗ models the loop. Unfortu-
nately, it requires nested relational algebra to repre-
sent the relation-valued attribute M ; although nested


relational algebra can be simulated with plain rela-
tional algebra [16], this is not the case with transitive
closure. Thus, representing the example code in the
algebraic world requires transitive closure over nested
relational algebra, which includes expensive atomic
operations like equality test over sets and it is diffi-
cult to reduce it to implementable physical operators.


A natural response to the problems of algebraic
representation is switching to Datalog where the while
loop may be handled easily using recursion. However,
the Algorithm 1 demonstrates several obstacles in the
Datalog approach.


3.1 Näıve approach


The following rule forms a näıve Datalog implementa-
tion of the loop body:


state(M ′, S′)← state(M,S), stmt3(X,M),
stmt4(S′, S,X), stmt5(M ′,M,X).


The predicates stmt3, stmt4, and stmt5 imple-
ment the behavior of the statements 3, 4, and 5 of
Algorithm 1. This approach creates extremely ineffi-
cient representation because any model of this pro-
gram contains ground atoms for stmt3, stmt4, and
stmt5 representing all satisfiable variable assignments
for the statements regardless of its reachability dur-
ing an execution. In addition, statement clauses (not
shown here) violate safety rules as some of the vari-
ables are bound only by functional symbols. Conse-
quently, this approach is not suitable for bottom-up
evaluation in Datalog style.


3.2 Using function symbols for relational


algebra


The following, improved representation may be de-
rived from the previous one using the Magic-sets trans-
formation [1]:


state1(M)← m0(M).
state2(M, z)← state1(M).
state3(M,S)← state2(M,S),M 6= ∅.
state3(M,S)← state6(M,S),M 6= ∅.
state4(M,S,X)← state3(M,S),
X = πmin(A)(πAM \ πBM).


state5(M,S′, X)← state4(M,S,X), S′ = f(S,X).
state6(M ′, S)← state5(M,S,X),
M ′ = M \ σA=XM.


state7(S)← state2(M,S),M = ∅.
state7(S)← state6(M,S),M = ∅.


The predicate statei indicate the reachability of
a particular variable assignment in the beginning of
statement i of Algorithm 1. The relational statements
are represented as equality statements containing
function symbols from relational algebra. The rules
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implement a state machine simulating the execution of
the original program; the model expansion and safety
problems mentioned above disappeared.


The relational statements are implemented using
a non-Datalog mechanism; thus, this approach is far
from being a suitable intermediate representation for
mixed code.


3.3 Nesting and unnesting relational


variables


In this section, the relational algebra was hoisted to
Datalog level using the unnest predicate and the nest
aggregate. This approach is equivalent to nested re-
lational algebra. The predicate unnest(M,A,B) per-
forms the membership test 〈A,B〉 ∈ M ; the general-
ized aggregate nest(A,B) collects all 〈A,B〉 pairs and
combine them into a set (see [3] for exact definiton of
semantics of aggregates in Datalog):


state1(M)← m0(M).
state2(M, z)← state1(M).
cond2(M)← state2(M,S), unnest(M,A,B).
state3(M,S)← state2(M,S), cond2(M).
state3(M,S)← state6(M,S), cond2(M).
cond3(M,B)← state3(M,S), unnest(M,A,B).
state4(M,S,min(A))← state3(M,S),
unnest(M,A,B),¬cond3(M,A).


state5(M,S′, X)← state4(M,S,X), S′ = f(S,X).
state6(nest(A,B), S)← state5(M,S,X),
unnest(M,A,B), A 6= X.


state7(S)← state2(M,S),¬cond2(M).
state7(S)← state6(M,S),¬cond2(M).


This approach unifies the means used for proce-
dural and relational fragments. Nevertheless, it suffers
from the stratification required by the nest aggregate
and the need to incorporate all live variables into single
statei atom.


3.4 Numbering iterations


The following code illustrates the approach we finally
used. The argument T representing time (more exact-
ly, the number of iteration) was introduced to almost
all rules. It allowed dissolution of the original statei
predicates: statei(T ) indicates reachability of the sta-
tement i at time T .


m2(1, A,B)← m0(A,B).
s2(1, z).
state2(1).
state2(T + 1)← branch23(T ).
cond2(T )← state2(T ),m2(T,A,B).
branch23(T )← state2(T ), cond2(T ).
cond3(T,B)← branch23(T ),m2(T,A,B).
x4(T,min(A))← branch23(T ),
m2(T,A,B),¬cond3(T,A).


s2(T + 1, f(S,X))← branch23(T ),
s2(T, S), x4(T,X).


m2(T + 1, A,B)← branch23(T ),
m2(T,A,B), x4(T,X), A 6= X.


branch27(T )← state2(T ),¬cond2(T ).
return(S)← branch27(T ), s2(T, S).


Variable values are represented independently:
xi(T, V ) determines the value V of the variable X be-
fore entering statement i at time T . In the case of
relational-valued variable M , the relation is unnested
and its tuples are represented by individual instances
of the atom mi(T,A,B).


Relational (and in general, complex-valued) Data-
log variables and terms are no longer needed – every
term is an atomic value.


Note that the dissolution of statei predicates
created an opportunity for optimization: Every atomic
statement modifies only one variable; therefore, only
one clause is required for each statement, specifying
the new variable value. For a variable, it is sufficient
to have the value specified only at reference points
(for S and M , it is the beginning of the statement 2),
provided that at least one reference point lies on any
path from any definition to any usage of this variable.
In our case, the value for the reference point 2 is spec-
ified twice because there are two control paths leading
to this point.


The execution of rules implementing statements is
guarded by trigger predicates branchi,j which signal-
ize passing from the statement i to the statement j.
These predicates are controlled by conditions and their
negations; in our case, the predicate cond2.


3.5 Requirements on the logic language


In our example Algorithm 1, there is a loop-carried
dependence from the variable M through X to the
next M value which involves negation and aggrega-
tion. This is reflected in the presence of negation and
aggregation in the mutual recursion between the pred-
icates x4 and s2. Our representation is therefore un-
stratifiable; the unstratifiability is inherent to Algo-
rithm 1 since the length of the chain of negations
generated by the loop is unlimited. Consequently, no
stratification may exist for any Datalog-like represen-
tation of this example.


This forces us to use the concept of local stratifica-
tion. Note that in pure Datalog without function sym-
bols, local stratification is almost equivalent to strat-
ification [2]. However, our system does use function
symbols to generate the time values T and to imple-
ment built-in operators and functions of the procedu-
ral language and of SQL.
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3.6 Long-range variable passing


In our example Algorithm 1, each iteration of the loop
modifies each variable. However, a loop body may con-
tain conditional statements; thus, a variable may be-
come unmodified in some iterations. In this case, there
must be a mechanism to pass the unmmodified vari-
able value through the loop body. A simple implemen-
tation of such mechanism is the following clause:


valueV (T + 1, X)← valueV (T,X), cond(T ).


For every scalar variable V and for every itera-
tion T , a ground atom valueV (T,X) is present in the
model indicating the value X of the variable. Con-
sequently, the model is of the size Ω(τυ) where τ is
the execution time of the procedural program and υ


is the number of variables in the program. For non-
scalar variables the cost is even larger, because the
argument X (or more arguments) encodes an individ-
ual element of a relation or an array, therefore there
are as many ground atoms as the size of the variable.
Evaluating the complete model is thus unacceptably
costly.


Fortunately, the cost of unmodified variable pass-
ing may be lowered to O(τ log(υ)). The principle is de-
picted in Fig. 3 – instead of copying the variable value
on every iteration, there are several layers of preferred
points in time and copying is performed at these pre-
ferred points. Preferred points of layer k occur at the
distance of 2k iterations and copying is allowed either
to a point of higher preference or to a point of access
to the variable. The thick lines in Fig. 3 show how
a variable is passed when it is accessed in the three
points marked at the time axis.


The number of copies done between two accesses
is O(log∆) where ∆ is the time distance between the
accesses, i.e. the length of the passing range. Since an
atomic statement may access only a limited number
of variables, the number n of passing ranges is propor-
tional to the execution time, i.e. n = c ∗ τ . Since the
ranges may not intersect for the same variable, their
sum across of all variables is


∑n
i=1 ∆i ≤ τυ. Conse-


quently, the total cost of copying is proportional to


n∑


i=1


log(∆i) ≤ n log


∑n
i=1 ∆i


n
≤ n log(


τυ


n
) = τc log


υ


c


4 Conclusion


We have proposed a promising approach to mixed pro-
cedural and relational code whose key element is
a novel intermediate representation based on logic pro-
gramming. With respect to the assumed bottom-up
evaluation strategy, the intermediate language falls to
the Datalog family. Special care was taken for effective


Fig. 3. Long-range variable passing


evaluation of the intermediate language – our results
show only O(log υ) degradation with respect to the
native procedural evaluation of a code with υ vari-
ables.


In this paper, we presented the principles of the
proposed language and its use for the representation
of procedural code. For the sake of clarity, we omitted
many technical details and tricks that were necessary
to achieve the reported effectiveness of the represen-
tation.


Whether our approach is viable, it can be shown
only by successful implementation of the whole pro-
cessing chain from Fig. 2. The design of the interme-
diate representation was only a necessary prerequisite
before attempting the implementation.


Our approach was motivated by the lessons learned
from the implementation of a parallel SPARQL en-
gine [4] for the Semantic Web. When using a relational
repository, many Semantic Web algorithms are most
easily expressed as simple procedural algorithms over
relational queries.


Thus, using a combined relational/procedural in-
termediate language may save the tedious and error-
prone work associated with reformulating such algo-
rithms in either purely relational (if ever possible) or
purely procedural way. In addition, the mixed repre-
sentation offers new opportunities for optimization.


If successful, the new architecture may become im-
portant for areas where database access is tightly cou-
pled with non-trivial computing, including the Seman-
tic Web, computational linguistics or some areas of
e-science.
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Abstract. This paper is concerned with predictive regions
in regression models, especially neural networks. We use
the concept of conformal prediction (CP) to construct re-
gions which satisfy given confidence level. Conformal pre-
diction outputs regions, which are automatically valid, but
their width and therefore usefulness depends on the used
nonconformity measure. A nonconformity measure should
tell us how different a given example is with respect to
other examples. We define nonconformity measures based
on some reliability estimates such as variance of a bagged
model or local modeling of prediction error. We also present
results of testing CP based on different nonconformity mea-
sures showing their usefulness and comparing them to tra-
ditional confidence intervals.


1 Introduction


This paper is concerned with predictive regions for re-
gression models, especially neural networks. We often
want to know not only the label y of a new object, but
also how accurate the prediction is. Could the real la-
bel be very far from our prediction or is our prediction
very accurate? It is possible to use traditional confi-
dence intervals to answer this question but they do not
work very well with highly nonlinear regression models
such as neural networks. We use conformal prediction
to solve this problem and construct some accurate and
useful prediction regions.


We introduce conformal prediction (CP) in chap-
ter 2. Conformal prediction does not output single la-
bel but a set of labels Γ ε. The size of the prediction
set depends on a significance level ε which we want
to achieve. Significance level is under some conditions
the probability that our prediction lies outside the set.
The set is smaller for larger ε. If we have some predic-
tion rule, we will call it simple predictor and we can
use it to construct conformal predictor. We introduce
transductive conformal predictors where the predic-
tion rule is updated after a new example arrives. But


? This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS12/157/OHK4/2T/14 and the Czech Science Foun-
dation grant 201/08/0802.


these predictors are not suitable for neural network
regression, therefore, we also introduce inductive con-
formal predictors where the prediction rule is updated
only after a given number of new examples has arrived
and a calibration set is used.


In order to define a conformal predictor we need
a suitable nonconformity measure. A nonconformity
measure should tell us how different a given example
is with respect to other examples. In chapter 3, we in-
troduce two reliability estimates: variance of a bagged
model and local modeling of prediction error. We use
these reliability estimates in chapter 4 to define nor-
malized nonconformity measures. Some other reliabil-
ity estimates could be used, e.g. sensitivity analysis or
density based reliability estimate.


In chapter 5, we use CP, based on nonconformity
measures defined in chapter 4, on testing data to com-
pare our conformal regions with traditional confidence
intervals and with conformal intervals where these tra-
ditional confidence intervals are used to construct the
nonconformity measure.


2 Conformal prediction


We assume that we have an infinite sequence of pairs


(x1, y1), (x2, y2), . . . , (1)


called examples. Each example (xi, yi) consists of an
object xi and its label yi. The objects are elements of
a measurable space X called the object space and the
labels are elements of a measurable space Y called the
label space. Moreover, we assume that X is non-empty
and that the σ-algebra on Y is different from {∅,Y}.
We denote zi := (xi, yi) and we set


Z := X×Y (2)


and call Z the example space. Thus the infinite data se-
quence (??) is an element of the measurable space Z∞.


Our standard assumption is that the examples are
chosen independently from some probability distribu-
tion Q on Z, i.e. the infinite data sequence (??) is
drawn from the power probability distribution Q∞ on
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Z∞. Usually we need only slightly weaker assumption
that the infinite data sequence (??) is drawn from a
distribution P on Z∞ that is exchangeable, that means
that every n ∈ IN, every permutation π of {1, . . . , n},
and every measurable set E ⊆ Z∞ fulfill


P{(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E} =


P{(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E}


We denote Z∗ the set of all finite sequences of ele-
ments of Z, Zn the set of all sequences of elements of Z
of length n. The order in which old examples appear
should not make any difference. In order to formalize
this point we need the concept of a bag. A bag of size
n ∈ IN is a collection of n elements some of which may
be identical. To identify a bag we must say what ele-
ments it contains and how many times each of these
elements is repeated. We write \z1, . . . , zn/ for the bag
consisting of elements z1, . . . , zn, some of which may
be identical with each other. We write Z(n) for the
set of all bags of size n of elements of a measurable
space Z. We write Z(∗) for the set of all bags of ele-
ments of Z.


2.1 Confidence predictors


We assume that at the nth trial we have firstly only
the object xn and only later we get the label yn. If we
want to predict yn, we need a simple predictor


D : Z∗ ×X→ Y . (3)


For any sequence of old examples x1, y1, . . . , xn−1,
yn−1 ∈ Z∗ and any new object xn, it gives
D(x1, y1, . . . , xn−1, yn−1, xn) ∈ Y as its prediction for
the new label yn.


Instead of merely choosing a single element of Y
as our prediction for yn, we want to give subsets of Y
large enough that we can be confident that yn will fall
in them, while also giving smaller subsets in which we
are less confident. An algorithm that predicts in this
sense requires additional input ε ∈ (0, 1), which we
call significance level, the complementary value 1 − ε
is called confidence level. Given all these inputs


x1, y1, . . . , xn−1, yn−1, xn, ε (4)


an algorithm Γ that interests us outputs a subset


Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (5)


of Y. We require this subset to shrink as ε is increased
that means it holds


Γ ε1(x1, y1, . . . , xn−1, yn−1, xn) ⊆
Γ ε2(x1, y1, . . . , xn−1, yn−1, xn) (6)


whenever ε1 ≥ ε2.


Formally, a confidence predictor is a measurable
function


Γ : Z∗ ×X× (0, 1)→ 2Y (7)


that satisfies (??) for all n ∈ IN, all incomplete data se-
quences x1, y1, . . . , xn−1, yn−1, xn and all significance
levels ε1 ≥ ε2.


Whether Γ makes an error on the nth trial of the
data sequence ω = (x1, y1, x2, y2, . . .) at significance
level ε can be represented by a number that is one in
case of an error and zero in case of no error


errεn(Γ, ω) :=



1 if yn /∈ Γ ε(x1, y1, . . . ,


xn−1, yn−1, xn) ,
0 otherwise ,


(8)


and the number of errors during the first n trials is


Errεn(Γ, ω) :=


n∑
i=1


errεi (Γ, ω) . (9)


If ω is drawn from an exchangeable probability
distribution P , the number errεn(Γ, ω) is the realized
value of a random variable, which we may designate
errεn(Γ, P ). We say that confidence predictor Γ is con-
servatively valid if for any exchangeable probability
distribution P on Z∞ there exist two families


(ξ(ε)n : ε ∈ (0, 1), n = 1, 2, . . .) (10)


and
(η(ε)n : ε ∈ (0, 1), n = 1, 2, . . .) (11)


of {0, 1}-valued variables such that


– for a fixed ε, ξ
(ε)
1 , ξ


(ε)
2 , . . . is a sequence of indepen-


dent Bernoulli random variables with parameter
ε;


– for all n and ε, η
(ε)
n ≤ ξ(ε)n ;


– the joint distribution of errεn(Γ, P ), ε ∈ (0, 1), n =
1, 2, . . ., coincides with the joint distribution of


η
(ε)
n , ε ∈ (0, 1), n = 1, 2, . . ..


2.2 Transductive conformal predictors


A nonconformity measure is a measurable mapping


A : Z(∗) × Z→ IR . (12)


To each possible bag of old examples and each possible
new example, A assigns a numerical score indicating
how different the new example is from the old ones.
It is sometimes convenient to consider separately how
a nonconformity measure deals with bags of different
sizes. If A is a nonconformity measure, for each n =
1, 2, . . . we define a function


An : Z(n−1) × Z→ IR (13)
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as the restriction of A to Z(n−1) × Z. The sequence
(An : n ∈ IN), which we abbreviate to (An) will also
be called a nonconformity measure.


Given a nonconformity measure (An) and a bag
\z1, . . . , zn/ we can compute the nonconformity score


αi := An(\z1, . . . , zi−1, zi+1, . . . zn/, zi) (14)


for each example zi in the bag. Because a nonconfor-
mity measure (An) may be scaled however we like, the
numerical value of αi does not, by itself, tell us how
unusual (An) finds zi to be. For that we define p-value
for zi as


p :=
|{j = 1, . . . , n : αj ≥ αi}|


n
. (15)


We define transductive conformal predictor (TCP)
by a nonconformity measure (An) as a confidence pre-
dictor Γ obtained by setting


Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (16)


equal to the set of all labels y ∈ Y such that


|{i = 1, . . . , n : αi(y) ≥ αn(y)}|
n


> ε , (17)


where


αi(y) := An(\(x1, y1), . . . , (xi−1, yi−1),


(xi+1, yi+1), . . . , (xn−1, yn−1), (xn, y)/,


(xi, yi)) , ∀i = 1, . . . , n− 1 ,


αn(y) := An(\(x1, y1), . . . , (xn−1, yn−1)/, (xn, y)) .


We now remind an important property of TCP.
The proof of the following theorem can be found in [?].


Theorem 1. All conformal predictors are conserva-
tively valid.


If we are given a simple predictor (??) whose out-
put does not depend on the order in which the old
examples are presented, than the simple predictor D
defines a prediction rule D\z1,...,zn/ : X → Y by the
formula


D\z1,...,zn/(x) := D(z1, . . . , zn, x) . (18)


A natural measure of nonconformity of zi is the devi-
ation of the predicted label


ŷi := D\z1,...,zn/(xi) (19)


from the true label yi. We can also use the deleted
prediction defined as


ŷ(i) := D\z1,...,zi−1,zi+1,...,zn/(xi) . (20)


A discrepancy measure is a measurable function


∆ : Y ×Y → IR . (21)


Given a simple predictor D and a discrepancy mea-
sure ∆ we define functions (An) as follows: for any
((x1, y1), . . . , (xn, yn)) ∈ Z∗, the values


αi = An(\(x1, y1), . . . , (xi−1, yi−1),


(xi+1, yi+1), . . . , (xn, yn)/, (xi, yi)) (22)


are defined according to (??) and (??) by the formula


αi := ∆(yi, D\z1,...,zn/(xi)) (23)


and the formula


αi := ∆(yi, D\z1,...,zi−1,zi+1,...,zn/(xi)) , (24)


respectively. It can be easily checked that in both
cases (An) form a nonconformity measure.


2.3 Inductive conformal predictors


In TCP, we need to compute the p-value (??) for all
labels y ∈ Y to determine the set Γ ε. In the case of
regression, we have Y = IR and it is not possible to
try each y ∈ Y. Sometimes it is possible to generally
solve equations αi(y) ≥ αn(y) with respect to y, and
therefore determine the set Γ ε. But if we use neural
networks as simple predictor, we do not know the gen-
eral form of the simple predictor, i.e. we do not know
a functional relationship between the training set and
the trained network, because random influences en-
ter the training algorithm. Hence, we cannot solve the
equations αi(y) ≥ αn(y), and it is not possible to use
TCP. Even if the equations can be solved, it can be
very computationally inefficient.


To avoid this problem we can use inductive confor-
mal predictor (ICP). To define ICP from a nonconfor-
mity measure (An) we fix a finite or infinite increasing
sequence of positive integers m1,m2, . . . (called update
trials). If the sequence is finite we add one more mem-
ber equal to infinity at the end of the sequence. We
need more than m1 training examples. Then we find
k such that mk < n ≤ mk+1. The ICP is determined
by (An) and the sequence m1,m2, . . . of update trials
is defined to be the confidence predictor Γ such that
the prediction set


Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (25)


is equal to the set of all labels y ∈ Y such that


|{j = mk + 1, . . . , n : αj ≥ αn(y)}|
n−mk


> ε , (26)
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where the nonconformity scores are defined by


αj := Amk+1(\(x1, y1), . . . , (xmk
, ymk


)/, (xj , yj)) ,


for j = mk + 1, . . . , n− 1 (27)


αn := Amk+1(\(x1, y1), . . . , (xmk
, ymk


)/,


(xn, y)) . (28)


The proof of the following theorem can be found
in [?].


Theorem 2. All ICPs are conservatively valid.


For ICP combining (??) with (??) and (??) we get


Al+1( \(x1, y1), . . . , (xl, yl)/, (x, y))


= ∆(y,D\(x1,y1),...,(xl,yl),(x,y)/(x)) (29)


and


Al+1( \(x1, y1), . . . , (xl, yl)/, (x, y))


= ∆(y,D\(x1,y1),...,(xl,yl)/(x)) , (30)


respectively. When we define A by (??), we can see
that the ICP requires recomputing the prediction rule
only at the update trials m1,m2, . . .. We will use the
simplest case, where there is only one update trial m1,
therefore, we compute the prediction rule only once.


3 Reliability estimates


In this chapter we are interested in different ap-
proaches to estimate the reliability of individual pre-
dictions in regression.


3.1 Variance of a bagged model


We are given a learning set L = {(x1, y1), . . . , (xn, yn)}
and take repeated bootstrap samples L(i), i = 1, . . . ,m
of size d from the learning set, i.e. for i = 1, . . . ,m
we randomly choose d points from the original learn-
ing set L with the return and put them in L(i). The
number of points d can be chosen arbitrary. We in-
duce a new model on each of these bootstrap sam-
ples L(i). Each of the models yields a prediction Ki(x),
i = 1, . . . ,m for a considered input x. The label of the
example x is predicted by averaging the individual pre-
dictions


K(x) :=


∑m
i=1Ki(x)


m
. (31)


We call this procedure bootstrap aggregating or bag-
ging. The reliability estimate of a bagged model is de-
fined as the prediction variance


BAGV(x) :=
1


m


m∑
i=1


(Ki(x)−K(x))2 . (32)


3.2 Local modeling of prediction error


We find k nearest neighbors of an unlabeled exam-
ple x in the training set, therefore, we have a set
N = {(x1, y1), . . . , (xk, yk)} of nearest neighbors. We
define the estimate denoted CNK for an unlabeled ex-
ample x as the difference between the average label of
the nearest neighbors and the example’s prediction y
(using the model that was generated on all learning
examples)


CNK(x) :=


∑k
i=1 yi
k


− y . (33)


The dependence on x on the right hand side of the
previous equation is implicit, but both the prediction y
and the selection of nearest neighbors depends on x.


4 Normalized nonconformity
measures


We will follow a similar approach as is used in the
article [?], but we will incorporate the reliability es-
timates from previous chapter and use it for neural
network regression.


We will use ICP with only one update trial. Let us
have training set of size l, where l > m1. We will split
it into two sets, the proper training set T of size m1


(we will further write m) and the calibration set C of
size q = l − m. We will use the proper training set
for creating the simple predictor D\(x1,y1),...,(xm,ym)/.
The calibration set is used for calculating the p-value
of new test examples. It is good to first normalize the
data (i.e. subtract the mean and divide data by sample
variance).


We will denote ri any of the previously defined re-
liability estimates in the point xi with given simple
predictor D. We compute ri for all points in the cali-
bration set and define Ri for any given point xi as


Ri :=
ri


median{rj : rj ∈ C}
. (34)


We define a discrepancy measure (??) as


∆(y1, y2) :=


∣∣∣∣y1 − y2γ +Ri


∣∣∣∣ , (35)


where parameter γ ≥ 0 controls the sensitivity to
changes of Ri. Then, we get the nonconformity score


αi(y) =


∣∣∣∣ y − ŷiγ +Ri


∣∣∣∣ . (36)


We sort nonconformity scores of the calibration ex-
amples in descending order


α(m+1) ≥ . . . ≥ α(m+q) , (37)


and denote
s = bε(q + 1)c . (38)
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Proposition 1. The prediction set Γ ε of the new test
example xl+g (where xl+g is from the infinite se-
quence (??)) given the nonconformity score (??) is
equal to the interval


〈ŷl+g − α(m+s)(γ +Rl+g), ŷl+g + α(m+s)(γ +Rl+g)〉 .
(39)


Proof. To compute the prediction set Γ ε of the new
test example xl+g we need to find all y ∈ Y such that
for the p-value it holds


p(y) =


|{i = m+ 1, . . . ,m+ q, l + g : αi ≥ αl+g(y)}|
q + 1


> ε . (40)


We multiply the inequality by q + 1 and then it is
equivalent to


|{i = m+ 1, . . . ,m+ q, l + g : αi ≥ αl+g(y)}| >
bε(q + 1)c (41)


and this inequality holds if and only if


α(m+s) ≥ αl+g(y) =


∣∣∣∣ y − ŷl+gγ +Rl+g


∣∣∣∣ . (42)


From (??) follows the assertion of the proposition.


5 Simulation


We carried out a simulation to test the normalized
nonconformity measures based on different reliability
estimates. We used neural networks with radial ba-
sis functions (RBF networks) as our regression models
with Gaussian used as the basis function. Therefore,
the output of the RBF network f : IRn → IR has the
form


f(x) =


N∑
i=1


πi exp
{
−βi||x− ci||2


}
, (43)


where N is the number of neurons in the hidden layer,
ci is the center vector for neuron i, βi determines the
width of the ith neuron and πi are the weights of the
linear output neuron. RBF networks are universal ap-
proximators on a compact subset of IRn. This means
that a RBF network with enough hidden neurons can
approximate any continuous function with arbitrary
precision.


We used a benchmark function similar to some em-
pirical functions encountered in chemistry to carry out
our experiment. This function was introduced in [?].


The value of this function ϑ in the point (x1, x2, x3,
x4, x5) can be expressed as


ϑ(x1, x2, x3, x4, x5) = −A(x1, x2)


−B(x2, x3)C(x3, x4, x5) , (44)


where


A(x1, x2) = 0.6g(x1 − 0.35, x2 − 0.35)


+0.75g(x1 − 0.1, x2 − 0.1)


+g(x1 − 0.35, x2 − 0.1)


B(x2, x3) = 0.4g(x2 − 0.1, x3 − 0.3)


C(x3, x4, x5) = 5 + 25[1− {1 + (x3 − 0.3)2


+(x4 − 0.15)2 + (x5 − 0.1)2}1/2]


g(a, b) = 100−
√


(100a)2 + (100b)2


+50
sin
√


(100a)2 + (100b)2√
(100a)2 + (100b)2 + (0.01)2


.


Moreover, the input vectors must satisfy following con-
ditions


5∑
i=1


xi = 1 and xi ∈ [0, 1], for i = 1, . . . , 5 . (45)


We repeated the following procedure five times for
region with significance level 0.1 and five times for
region with significance level 0.05.


– Randomly generate 600 points satisfying the con-
ditions (??).


– Compute the function values of function ϑ in these
points.


– Normalize data (i.e. subtract the mean and divide
data by sample variance)


– Split this set of points into a training set of
500 points and a testing set of 100 points.


– Split the training set into a proper training set of
401 points and a calibration set of 99 points (then,
we divide the p-value in (??) by 100).


– Split the proper training set on training set for fit-
ting the RBF network and the validation set. Fit
the RBF network with 1, 2, 3, 4 and 5 hidden neu-
rons ten times using the Matlab function lsqcurve-
fit.


– Choose the RBF network with the smallest error
on the validation set for each number of hidden
neurons.


– Compute the prediction sets for each of the
100 testing points for each number of hidden neu-
rons.


– Transform data and predictive regions back to the
original size (i.e. multiply by the original sample
variance and add the original mean)


– Determine if the original point lies in our predic-
tion sets.
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The initial values of parameters πi were set as mean of
the response vector, initial values of βi were set as the
mean of the standard deviation of the components of
training data points. The centers ci were set randomly.


We also computed confidence intervals using Mat-
lab function nlpredci (denoted Conf Int). The Jaco-
bian can be computed exactly, because the form of the
RBF network is known and differentiable. Therefore,
we supply the function nlpredci with this Jacobian. We
also use the width of this interval as another reliability
estimate for our normalized nonconformity measure.


We compare normalized nonconformity measures
based on the following reliability estimates: the local
modeling of prediction errors using nearest neighbors
(CNK), the variance of a bagged model (BAGV) and
the width of confidence intervals (CONF).


The variance of a bagged model was computed for
number of different models m = 10 and the bootstrap
samples were as big as the original sample.


The CNK estimates were computed for number of
neighbors k = 2, 5, 10.


We present the results of testing CP based on dif-
ferent nonconformity measures in Figures ??, ?? and
??. There is a boxplot of all labels in Figure ?? to com-
pare the range of all labels with the width of different
predictive regions. Figures ?? and ?? show boxplots of
the width of prediction regions for significance levels
ε = 0.1 and ε = 0.05, respectively. It is not only in-
teresting whether the intervals are small enough, but
they should also be valid. The percentage of labels in-
side the predictive regions are in Tables ?? and ?? for
significance levels ε = 0.1 and ε = 0.05, respectively.


The results for traditional confidence inter-
vals computed by Matlab function nlpredci are not
shown in the figures, because these results are very
different from the others. The median width for these
intervals lies between 1010 and 1014 for all counts of
neurons. This is probably because of the highly non-
linear character of neural nets, while nlpredci is based
on linearization. Moreover, during the computation of
these intervals a Jacobian matrix must be inverted but
this matrix was very often ill conditioned, therefore,
the results for confidence intervals are not too reliable.


Despite what was said in the previous paragraph,
the predictive regions based on the width of confidence
intervals produce sensible results. But these prediction
regions show highest inconsistency between different
neuron counts and have highest number of very large
intervals. These regions produce sometimes very good
results, but they are probably very dependent on the
actual fit of the neural network and their results are
not as consistent as the results of the other methods.
However, we can see in Tables ?? and ?? that these
intervals are valid as the percentage of labels inside


predictive regions is always slightly higher than the
confidence level.


Results for predictive regions based on the local
modeling of prediction errors depend a little bit on the
count of nearest neighbors. These intervals are valid
for all numbers of neighbors, but the tightest inter-
vals were achieved for two neighbors. The difference
between using five or ten neighbors is not too big but
lower number of neighbors works better in our model.
This is probably caused by our data and it seems that
only a few neighbors are relevant to our prediction.
These regions are also the easiest and fastest to com-
pute.


The best results among all predictive regions are
achieved by those based on a variance of a bagged
model. These regions are the tightest of all tested and
they do not vary as much as those based on confidence
intervals. These regions also maintain the validity. The
drawback of these regions is that we need to fit a lot of
additional models which takes a lot of time in the case
of neural network regression. But if time and compu-
tational efficiency is not a problem then this method
produces best regions.
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Fig. 1. Boxplot of all labels.


Neurons CNK2 CNK5 CNK10 BAGV CONF


2 91.0 91.2 90.0 91.4 92.4
3 92.6 92.4 92.6 94.0 93.6
4 92.2 90.4 90.0 90.4 90.2
5 94.6 92.6 90.0 90.2 90.8
6 92.8 89.8 91.8 91.6 91.8


Table 1. Percentage of labels inside predictive regions for
ε = 0.1.
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Fig. 2. Interval widths for ε = 0.1.
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Fig. 3. Interval widths for ε = 0.05.
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Neurons CNK2 CNK5 CNK10 BAGV CONF


2 95.8 96.8 96.8 96.2 95.6
3 97.2 96.8 96.8 97.8 95.6
4 96.2 96.4 96.6 97.4 97.0
5 97.2 97.6 96.4 96.4 97.6
6 97.2 98.0 96.4 97.4 96.8


Table 2. Percentage of labels inside predictive regions for
ε = 0.05.


6 Conclusion


We presented several methods for computing predic-
tive regions in neural network regressions. These meth-
ods are based on the inductive conformal prediction
with novel nonconformity measures proposed in this
paper. Those measures use reliability estimates to de-
termine how different a given example is with respect
to other examples. We compared our new predictive
regions with traditional confidence intervals on test-
ing data. The confidence intervals did not perform
very well, the intervals were too large, it was probably
caused by the high nonlinearity of radial basis neu-
ral networks. Predictive regions which used the width
of confidence intervals as the nonconformity measure
gave much better results. But those results were not as
consistent as the results of the other methods. Predic-
tive regions based on the local modeling of prediction
errors gave us good results and the computation of the
regions was very fast. A smaller number of neighbors
gave better results for these regions. The best results
were achieved by the regions based on the variance of
a bagged model. The only drawback of this method is
that a lot of models must be fitted and it is, therefore,
computationally very inefficient.
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Abstract. The paper deals with the aggregation of clas-
sification rules by means of fuzzy integrals, in particular
with the fuzzy measures employed in that aggregation. It
points out that the kinds of fuzzy measures commonly en-
countered in this context do not take into account the di-
versity of classification rules. As a remedy, a new kind of
fuzzy measures is proposed, called similarity-aware mea-
sures, and several useful properties of such measures are
proven. Finally, results of extensive experiments on a num-
ber of benchmark datasets are reported, in which a particu-
lar similarity-aware measure was applied to a combination
of Choquet or Sugeno integrals with three different ways
of creating ensembles of classification rules. In the experi-
ments, the new measure was compared with the traditional
Sugeno λ-measure, to which it was clearly superior.


1 Introduction


Logical formulas of specific kinds, usually called rules,
are a traditional way of formally representing knowl-
edge. Therefore, it is not surprising that they are also
the most frequent representation of the knowledge dis-
covered in data mining.


The most natural base for differentiating between
existing rules extraction methods is the syntax and
semantics of the extracted rules [10]. Syntactical dif-
ferences between them are, however, not very deep be-
cause, principally, any rule r from a ruleset R has one
of the forms Sr ∼ S′


r, or Ar → Cr, where Sr, S′
r, Ar


and Cr are formulas of the considered logic, and ∼, →
are symbols of the language of that logic. The differ-
ence between both forms concerns semantic properties
of the symbols ∼ and →: Sr ∼ S′


r is symmetric with
respect to Sr, S


′
r in the sense that its validity always


coincides with that of S′
r ∼ Sr whereas Ar → Cr is


not symmetric with respect to Ar , Cr in that sense. In
the case of a propositional logic, ∼ and → are the con-
nectives equivalence (≡) and implication, respectively,
whereas in the case of a predicate logic, they are gener-
alized quantifiers. To distinguish the formulas involved
in the asymmetric case, Ar is called antecedent and Cr


consequent of r.


⋆ The research reported in this paper has been sup-
ported by the Czech Science Foundation (GA ČR) grant
P202/11/1368.


More important is the semantic of the rules (cf. [5]),
especially the difference between rules of the Boolean
logic and rules of a fuzzy logic. Due to the semantics of
Boolean and fuzzy formulas, the former are valid for
crisp sets of objects, whereas the validity of the latter
is a fuzzy set on the universe of all considered objects.
Boolean rulesets are extracted more frequently, espe-
cially some specific types of them, such as classification
rulesets [6, 9]. Those are sets of implications such that
{Ar}r∈R and {Cr}r∈R partition the set O of consid-
ered objects, where {·}r∈R stands for the set of distinct
formulas in (·)r∈R. Abandoning the requirement that
{Ar}r∈R partitions O (at least in the sense of a crisp
partitioning) allows to generalize those rulesets also to
fuzzy antecedents [15]. For Boolean antecedents, how-
ever, this requirement entails a natural definition of
the validity of a whole classification ruleset R for an
object x. Assuming that all information about x con-
veyed by R is conveyed by the single rule r covering x


(i.e., with Ar valid for x), the validity of R for x can
be defined to coincide with the validity of Ar → Cr for
that r, which in turn equals the validity of Cr for x.


It is also possible to combine several existing classi-
fication rules into a new one. Such aggregation can be
either static, i.e., the result is the same for all inputs,
or dynamic, where it is adapted to the currently classi-
fied input [11, 19]. In the aggregation of classification
rules, we usually try to create a team of rules that
are not similar. This property is called diversity [14].
There are many methods for building a diverse team
of classifiers [2, 3, 16].


One of popular aggregation operators is the fuzzy
integral [7, 12, 13, 17]. It aggregates the outputs of the
individual classification rules with respect to a fuzzy
measure. The role of fuzzy measures in the aggrega-
tion of classification rules, in particular their role with
respect to the diversity of the rules, was the subject
of the research reported in this paper.


The following section recalls the fuzzy integrals and
fuzzy measures encountered in the aggregation of clas-
sification rules. In Section 3, which is the key section
of the paper, a new fuzzy measure, called similarity-
aware measure, is introduced and its theoretical prop-
erties are studied. Finally, in Section 4, results of ex-
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tensive experiments and comparison with the tradi-
tional Sugeno λ-measure are reported.


2 Fuzzy integrals and measures in


classification rules aggregation


Several definitions of a fuzzy integral exists in the lit-
erature – among them, the Choquet integral and the
Sugeno integral are used most often. The role played in
usual integration by additive measures (such as prob-
ability or Lebesgue measure) is in fuzzy integration
played by fuzzy measures. In this section, basic con-
cepts pertaining to different kinds of fuzzy measures
will be recalled, as well as the definitions of Choquet
and Sugeno integrals. Due to the intended context of
aggregation of classification rules, we restrict attention
to [0, 1]-valued functions on finite sets.


Definition 1. A fuzzy measure µ on a finite set U =
{u1, . . . , ur} is a function on the power set of U ,


µ : P(U) → [0, 1] (1)


fulfilling:


1. the boundary conditions


µ(∅) = 0, µ(U) = 1 (2)


2. the monotonicity


A ⊆ B ⇒ µ(A) ≤ µ(B) (3)


The values µ(u1), . . . , µ(ur) are called fuzzy densities.


Definition 2. The Choquet integral of a function f :
U → [0, 1], f(ui) = fi, i = 1, . . . , r, with respect to
a fuzzy measure µ is defined as:


(Ch)


∫


fdµ =


r
∑


i=1


(f<i> − f<i−1>)µ(A<i>), (4)


where < · > indicates that the indices have been per-
muted, such that 0 = f<0> ≤ f<1> ≤ · · · ≤ f<r> ≤ 1.
A<i> = {u<i>, . . . , u<r>} denotes the set of of ele-
ments of U corresponding to the (r − i + 1) highest
values of f .


Definition 3. The Sugeno integral of a function f :
U → [0, 1], f(ui) = fi, i = 1, . . . , r, with respect to
a fuzzy measure µ is defined as:


(Su)


∫


fdµ =
r


max
i=1


min(f<i>, µ(A<i>)). (5)


To define a general fuzzy measure in the discrete
case, we need to define all its 2r values, which is usually
very complicated. To overcome this weakness, mea-
sures which do not need all the 2r values have been
developed [7, 17]:


Definition 4. A fuzzy measure µ on U is called sym-
metric if


|A| = |B| ⇒ µ(A) = µ(B) (6)


for A,B ⊆ U , (7)


where | · | denotes the cardinality of a set.


Consequently, the value of a symmetric measure de-
pends only on the cardinality of its argument. If a sym-
metric measure is used in Choquet integral, the inte-
gral reduces to the ordered weighted average opera-
tor [17]. However, symmetric measures assume that
all elements of U have the same importance, thus they
do not take into account the diversity of elements.


Definition 5. Let ⊥ be a t-conorm. A fuzzy measure
µ is called ⊥-decomposable if


µ(A ∪B) = µ(A) ⊥ µ(B)


for disjoint A,B ⊆ U (8)


Hence, ⊥-decomposable measures need only the r fuzzy
densities, whereas all the other values are computed
using the formula (8). Particular cases of this kind of
fuzzy measures are additive measures, including prob-
abilistic measures (⊥ being the bounded sum), and the
Sugeno λ-measure.


Definition 6. Sugeno λ-measure [7, 17] on a finite
set U = {u1, . . . , ur} is defined


µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B), (9)


for disjoint A,B ∈ U , and some fixed λ > −1. The
value of λ is:


a) computed as the unique non-zero root greater
than −1 of the equation


λ + 1 =
∏


i=1,...,r


(1 + λµ({ui})) (10)


if the densities do not sum up to 1;
b) λ = 0 else.


If the densities sum up to 1, the fuzzy measure is addi-
tive. Sugeno λ measure is a ⊥-decomposable measure
for the t-norm


x ⊥ y = min(1, x + y + λxy). (11)


A serious weakness of any ⊥-decomposable mea-
sure is that the fuzzy measure of a set of two (or
more) classification rules is fully determined by the
formula (8) for a fixed ⊥. Therefore, if interactions
between elements are to be taken into account, then
they have to be incorporated directly into the fuzzy
measure. That fact motivated our attempt to elabo-
rate the concept of similarity-aware fuzzy measures.
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3 Similarity-aware measures and


their properties


Before introducing similarity-aware measures, let us
first recall the notion of similarity [8].


Definition 7. Let ∧ be a t-norm and let ∼: U ×U →
[0, 1] be a fuzzy relation. ∼ is called a similarity on U
with respect to ∧ if the following holds for a, b, c ∈ U :


∼ (a, a) = 1 (reflexivity), (12)


∼ (a, b) =∼ (b, a) (symmetry), (13)


∼ (a, b)∧ ∼ (b, c) ≤∼ (a, c) (transitivity w.r.t. ∧ ).
(14)


In the context of aggregation of crisp classification
rules, we will work with an empirically defined rela-
tion, which, for rules φk, φl, is defined as the propor-
tion of equal consequents on some validation set of
patterns V ⊂ O,


∼ (φk, φl) =


∑


x∈V


I(Cφk
(x) = Cφl


(x))


|V|
. (15)


It is easily seen that the relation (15) is a similarity
with respect to the  Lukasiewicz t-norm


∧L(a, b) = max(a + b− 1, 0), (16)


but it is not a similarity with respect to the standard
(minimum, Gödel) t-norm


∧S(a, b) = min(a, b), (17)


or the product t-norm


∧P (a, b) = ab. (18)


Fuzzy integral represents a convenient tool to work
with the diversity of classification rules: As we are
computing the fuzzy measure values µ(A<i>), we are
considering a single rule φ<i> at each step i, and there-
fore we can influence the increase of the fuzzy measure
based on the similarity of φ<i> to the set of rules
already involved in the integration, i.e., A<i+1> =
{φ<i+1>, . . . , φ<r>}. If φ<i> is similar to the classifiers
in A<i+1>, the increase in the fuzzy measure should
be small (since the importance of the set A<i> should
be similar to the importance of the set A<i+1>), and
if φ<i> is not similar to the classifiers in A<i+1>, the
increase of the fuzzy measure should be large. These
ideas motivated the following definition:


Definition 8. Let U = {u1, . . . , ur} be a set, let ∼ be
a similarity w.r.t. a t-norm ∧, and let S be a an r× r


matrix such that:


S = (si,j)
r
i,j=1 with si,j =∼ (ui, uj). (19)


Let further κi ∈ [0, 1], i = 1, . . . , r denote some kind
of weight (confidence, importance) of ui, and let [·]
denote index ordering according to κ, such that 0 ≤
κ[1] ≤ · · · ≤ κ[r] ≤ 1. Finally, let


µ̃(S) : P(U) → [0,∞) (20)


be a mapping such that for X ⊆ U ,


µ̃(S)(X) =


r
∑


i=1


I(u[i] ∈ X)κ[i](1 −
r


max
j=i+1


s[i],[j]), (21)


where we define maxr
j=r+1 s[r],[j] = 0, and I denotes


the indicator of thruth value, i.e.,


I(true) = 1, I(false) = 0. (22)


Then the mapping


µ(S) : P(U) → [0, 1], defined (23)


µ(S)(X) =
µ̃(S)(X)


µ̃(S)(U)
, (24)


is called a similarity-aware measure based on S.


Proposition 1. µ(S) is a fuzzy measure on U .


Proof. The boundary conditions follow directly from
the definition of µ(S). For the monotonicity, let A ⊆ B;
then


µ̃(S)(A) =


r
∑


i=1


I(u[i] ∈ A)κ[i](1 −
r


max
j=i+1


s[i],[j]) ≤


≤
r


∑


i=1


I(u[i] ∈ B)κ[i](1 −
r


max
j=i+1


s[i],[j]) =


= µ̃(S)(B), (25)


due to I(u[i] ∈ A) = 1 ⇒ I(u[i] ∈ B) = 1.


Proposition 2. For any of the 2r subsets X ⊂ U ,
the value µ(X) can be expressed simply as the sum of
values of µ on singletons


µ(S)(X) =
∑


ui∈X


µ(S)(ui). (26)


Proof. According to (21) and (23), the value of µ on
the singletosn ui, i = 1, . . . , r is


µ(S)(ui) =
1


µ̃(S)(U)
κ[i](1 −


r
max
j=i+1


s[i],[j]). (27)


Then (26) follows directly from (21).


The following propositions show that if for some
i, the i-th classification rule is totally similar to some
other rule in A<i+1>, then µ(S) does not increase, and
if it is totally unsimilar to all classifiers in A<i+1>, the
increase in µ(S) is maximal.
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Proposition 3. Let f : U → [0, 1], and let the ma-
trix S in (19) fulfills


si,j = 1 for i 6= j. (28)


Then:


1. (∀X ⊆ U) u[r] ∈ X ⇒ µ(S) = 1,


2. (∀X ⊆ U) u[r] 6∈ X ⇒ µ(S) = 0,


3. (Ch)
∫


fdµ(S) = (Su)
∫


fdµ(S) = f[r].


Proof. 1. and 2. follow directly from the fact that


r
max
j=i+1


s[i],[j] =


{


0 for i = r,


1 for i < r.
(29)


and therefore


µ̃(S) = I(u[r] ∈ X)κ[r]. (30)


We will prove 3. only for the Choquet integral, the
case of Sugeno integral is analogous. Let j ∈ {1, . . . , r}
such that < j >= [r]; then (∀i > j) u[r] 6∈ A<i>, and


therefore µ(S)(A<i>) = 0; (∀i ≤ j) u[r] ∈ A<i>, and


therefore µ(S) = 1. Using this in the definition of the
Choquet integral, we obtain


(Ch)


∫


fdµ(S) =


=


r
∑


i=1


(f<i> − f<i−1>)µ(S)(A<i>) =


=


j
∑


i=1


(f<i> − f<i−1>) =


= f<j> = f[r]. (31)


Proposition 4. Let f : U → [0, 1], and let the ma-
trix S in (19) fulfills si,j = 0 for i 6= j. Then:


1. (∀X ⊆ U) µ(S) =


∑
i:u[i]∈X


κ[i]
∑


r
i=1 κi


,


2. (Ch)
∫


fdµ(S)µ(S) =
∑r


i=1 κifi∑
r
i=1 κi


,


3. (Su)
∫


fdµ(S) = maxr
k=1(f<k>,


∑
r
i=k κ<i>∑


r
i=1 κi


).


Proof. 1. follows directly from the definition of simi-
larity-aware measure, and 2. and 3. are applications
of 1. to the definition of the Choquet/Sugeno integral.


4 Experimental testing


We have experimentally compared the performance of
the proposed measure with the Sugeno λ-measure for
the aggregation of classification rules by fuzzy inte-
grals (Choquet, Sugeno). The ensembles have been
created as random forests from rules obtained with


classification trees [3], by bagging [2] from rules ob-
tained with k-NN classifiers, and by the multiple fea-
ture subset method [1] from rules obtained with quad-
ratic discriminant analysis.


In this section, we present results of comparing the
measures using 10-fold crossvalidation on 5 artificial
and 11 real-world datasets (the properties of the da-
tasets are shown in Table 1). For the random forests,
the number of trees was set to r = 20, the number
of features to explore in each node varied between 2
and 5 (depending on the dimensionality of the par-
ticular dataset), the maximal size of a leaf was set
to 10 (see [3] for description of the parameters). For
the QDA and k-NN based ensembles, their size was
set also to r = 20, and we used k = 5 as the num-
ber of neighbors for k-NN classifiers. As the weights
κ1, . . . , κr of the classification rules, we used


κi(φ) =


∑


x∈V(Aφ)


I(C′
φ(x) = Cφ(x))


|V(Aφ)|
, (32)


where V(Aφ) ⊆ V is the set of validation patterns
belonging to some kind of neighborhood of Aφ. For
example, if Aφ concerns values of vectors in an Eu-
clidean space, then V(Aφ) is the set of k nearest neigh-
bors under Euclidean metric of the set where the an-
tecedent Aφ is valid. The number of neighbors was set
to 5, 10, or 20, depending on the size of the dataset.


Table 2 shows the results of the performed compar-
isons. We also measured the statistical significance of
the pairwse improvements (using the analysis of vari-
ance on the 5% confidence level by the Tukey-Kramer
method).


We interpret the results presented in Table 2 as
a confirmation of the usefulness of similarity-aware
fuzzy measures proposed in Definition 8.


5 Conclusion


In this paper, we have studied the application of the
fuzzy integral as an aggregation operator for classifica-
tion rules in the context of their similarities. We have
shown that traditionally used symmetric, or additive
and other ⊥-decomposable measures are not a good
choice for combining classification rules by fuzzy inte-
gral and we have defined similarity-aware measures,
which take into account both the confidence / im-
portance and the similarities of the aggregated rules.
We have shown some basic theoretical properties and
special cases of the measures, including the fact that
apart the singletons, the 2r values of µ are obtained us-
ing only summation. In addition, we have experimen-
tally compared the performance of the measures to the
Sugeno λ-measure using Choquet and Sugeno fuzzy in-
tegrals on 16 benchmark datasets for 3 different ways







Fuzzy classification rules based on similarity 29


dataset nr. of patterns nr. of classes dimension


Artificial


clouds [4] 5000 2 2


concentric [4] 2500 2 2


gauss 3D [4] 5000 2 3


ringnorm [18] 3000 2 20


waveform [18] 5000 3 21


Real-world


glass [18] 214 7 9


letters [18] 20000 26 16


pendigits [18] 10992 10 16


phoneme [4] 5427 2 5


pima [18] 768 2 8


poker [18] 4828 3 10


satimage [4] 6435 6 4


transfusion [18] 748 2 4


vowel [18] 990 11 10


wine [18] 178 3 13


yeast [18] 1484 4 8


Table 1. Datasets used in the experiments.


of obtaining ensembles of classification rules. The ex-
perimental comparison clearly supports our theoreti-
cal conjecture that similarity-aware measures are more
suitable for the aggregation of classification rules than
traditionally used additive and ⊥-decomposable fuzzy
measures.
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dataset Choquet integral Sugeno integral


λ-measure µS λ-measure µS


random forests


clouds 12.40 ± 1.81 12.25± 1.85 12.80 ± 1.64 12.33 ± 1.47


concentric 4.32± 1.25 2.82± 1.30 3.24 ± 1.37 2.98± 1.50


gauss-3D 23.92 ± 2.97 22.76± 1.59 24.60 ± 1.36 23.28 ± 1.58


glass 21.3± 10.3 14.1± 3.5 24.1 ± 7.0 17.5 ± 9.4


letters 7.1± 0.6 7.3± 0.2 8.0 ± 0.6 7.9± 0.8


pendigits 3.1± 0.5 2.7± 0.5 3.2 ± 0.4 3.8± 0.7


phoneme 12.4± 1.2 13.2 ± 1.9 12.7 ± 0.8 13.3 ± 1.6


pima 26.0 ± 4.8 23.8± 2.0 25.0 ± 2.2 23.9 ± 3.6


poker 46.5 ± 3.0 44.4± 1.3 46.5 ± 1.5 45.1 ± 1.9


ringnorm 13.27 ± 2.11 7.69 ± 2.06 12.74 ± 2.08 7.46 ± 1.79


satimage 14.7 ± 1.4 14.3± 1.3 14.9 ± 0.9 14.8 ± 1.4


transfusion 4.8± 1.1 2.3± 0.7 4.9 ± 1.0 2.6± 0.7


vowel 14.5 ± 3.0 13.1± 3.5 17.0 ± 5.3 13.4 ± 3.8


waveform 18.56 ± 2.42 17.93± 1.89 18.24 ± 3.04 18.23 ± 1.58


wine 5.6± 6.0 3.3± 5.5 3.4 ± 4.0 6.6± 5.8


yeast 38.2 ± 4.1 34.8± 2.6 38.5 ± 3.7 36.3 ± 3.4


k-NN classifiers


clouds 11.93 ± 2.29 12.12 ± 1.57 12.64 ± 2.48 12.96 ± 2.26


concentric 1.39± 0.77 1.72 ± 0.57 1.30± 0.80 1.56± 0.64


gauss-3D 26.71 ± 2.55 26.00± 2.88 27.68 ± 3.66 26.28 ± 2.74


glass 22.4 ± 9.8 20.7 ± 10.3 21.7 ± 11.1 19.3± 6.5


letters 17.7 ± 2.7 17.6± 2.9 19.3 ± 3.1 19.1 ± 2.7


pendigits 1.3± 0.8 1.4± 0.8 1.3 ± 0.5 1.3± 0.7


phoneme 14.6 ± 0.9 14.2± 2.4 14.4 ± 1.8 14.5 ± 1.7


pima 29.1± 5.1 30.2 ± 7.2 29.5 ± 4.4 30.3 ± 6.6


poker 45.3 ± 2.4 43.5± 2.3 47.2 ± 2.7 43.9 ± 1.4


ringnorm 36.20 ± 4.41 34.28± 2.59 33.56 ± 3.34 33.48 ± 2.94


satimage 16.5 ± 2.0 15.5± 1.7 16.8 ± 2.4 16.2 ± 2.3


transfusion 24.0 ± 4.0 23.4± 4.7 25.2 ± 3.5 24.0 ± 4.7


vowel 4.8± 2.2 4.0± 1.9 5.6 ± 2.1 7.0± 1.8


waveform 19.40 ± 2.10 18.28± 2.85 19.57 ± 2.20 19.04 ± 2.99


wine 30.0± 10.3 28.6± 14.8 31.2 ± 6.7 33.4± 16.0


yeast 41.8 ± 4.7 40.5± 2.6 42.6 ± 3.7 40.7 ± 3.6
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QDA with multiple subsets


clouds 26.00 ± 2.70 23.14 ± 2.49 25.74 ± 1.92 22.66 ± 1.10


concentric 4.36 ± 1.96 3.68± 1.68 5.72± 1.84 3.40± 0.98


gauss-3D 23.87 ± 1.86 22.06 ± 2.10 23.96 ± 2.03 22.36 ± 2.12


glass 42.3 ± 10.9 38.5± 12.0 43.2± 14.9 32.4± 12.5


letters 17.1 ± 0.7 14.7 ± 0.7 17.2 ± 0.7 14.7 ± 0.8


pendigits 2.8 ± 0.5 2.2± 0.2 2.7± 0.5 2.7± 0.6


phoneme 25.4 ± 2.4 20.8 ± 1.4 24.7 ± 1.0 20.2 ± 2.2


pima 27.9 ± 4.7 25.5± 4.2 28.3 ± 3.3 26.1± 5.1


poker 66.1 ± 2.1 55.1 ± 2.3 66.3 ± 3.9 55.1 ± 2.1


ringnorm 1.94 ± 0.96 2.53± 1.01 1.68± 0.60 3.66± 1.31


satimage 17.0 ± 1.3 15.7± 1.1 17.2 ± 2.0 16.2± 1.3


transfusion 29.6 ± 8.6 22.3± 4.5 29.2 ± 7.1 23.4± 3.4


vowel 16.7 ± 5.4 14.0± 3.8 18.1 ± 4.1 15.6± 3.3


waveform 15.73 ± 2.07 14.52 ± 1.59 15.33 ± 1.72 14.54 ± 1.80


wine 1.2 ± 2.5 2.8± 3.9 0.6± 1.9 3.3± 2.9


yeast 49.0 ± 4.3 39.8 ± 4.3 49.5 ± 4.9 39.1 ± 3.8


Table 2. Mean error rates ± standard deviation of the error rate [%], based on 10-fold crossvalidation. The best result
for each dataset is displayed in boldface, statistically significant improvements (measured by the analysis of variance
using the Tukey-Kramer method at the 5% level) are displayed in italics








Evolutionary optimization with active learning of surrogate models
and fixed evaluation batch size?


Viktor Charypar1 and Martin Holeňa2
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Abstract. Evolutionary optimization is often applied to
problems, where simulations or experiments used as the fit-
ness function are expensive to run. In such cases, surro-
gate models are used to reduce the number of fitness eval-
uations. Some of the problems also require a fixed size
batch of solutions to be evaluated at a time. Traditional
methods of selecting individuals for true evaluation to im-
prove the surrogate model either require individual points
to be evaluated, or couple the batch size with the EA gener-
ation size. We propose a queue based method for individual
selection based on active learning of a kriging model. Indi-
viduals are selected using the confidence intervals predicted
by the model, added to a queue and evaluated once the
queue length reaches the batch size. The method was tested
on several standard benchmark problems. Results show that
the proposed algorithm is able to achieve a solution using
significantly less evaluations of the true fitness function.
The effect of the batch size as well as other parameters is
discussed.


1 Introduction


Evolutionary optimization algorithms are a popular
class of optimization techniques suitable for various
optimization problems. One of their main advantages
is the ability to find optima of black-box functions –
functions that are not explicitly defined and only their
input/output behavior is known from previous evalu-
ations of a finite number of points in the input space.
This is typical for applications in engineering, chem-
istry or biology, where the evaluation is performed in
a form of computer simulation or physical experiment.


The main disadvantage for such applications is the
very high number of evaluations of the objective func-
tion (called fitness function in the evolutionary op-
timization context) needed for an evolutionary algo-
rithm (EA) to reach the optimum. Even if the simu-


? This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS12/196/OHK3/3T/14 as well as the Czech Science
Foundation grant 201/08/0802.


lation used as the objective function takes minutes to
finish, the traditional approach becomes impractical.
When the objective function is evaluated using a phys-
ical experiment, in the evolutionary optimization of
catalytic materials [1] for example, an evaluation for
one generation of the algorithm takes between several
days and several weeks and costs thousands of euros.


The typical solution to this problem is perform-
ing only a part of all evaluations using the true fit-
ness function and using a response-surface model as
its replacement for the rest. This approach is called
surrogate modeling. When using a surrogate model,
only a small portion of all the points that need to be
evaluated is evaluated using the true objective func-
tion (simulation or experiment) and for the rest, the
model prediction is assigned as the fitness value. The
model is built using the information from the true fit-
ness evaluations.


Since the fitness function is assumed to be highly
non-linear the modeling methods used are non-linear
as well. Some of the commonly used methods include
artificial neural networks, radial basis functions, re-
gression trees, support vector machines or Gaussian
processes [3].


Furthermore, some experiments require a fixed
number of samples to be processed at one time. This
presents its own set of challenges for adaptive sampling
and is the main concern of this paper. We present an
evolutionary optimization method assisted by a vari-
ant of a Gaussian-process-based interpolating model
called kriging. In order to best use the evaluation bud-
get, our approach uses active learning methods in se-
lecting individuals to evaluate using the true fitness
function. A key feature of the approach is support
for online and offline batch evaluation with arbitrary
batch size independent of the generation size of
the EA.


The rest of the paper is organized as follows: in the
following section we introduce the kriging surrogate
model and its properties, in section 2 the methods of
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coupling a model to the evolutionary optimization are
discussed, section 4 provides details of the proposed
method and finally, the results of testing the method
are presented and discussed in section 5.


2 Model-assisted evolutionary
optimization


Since the surrogate model used as a replacement for
the fitness function in the EA is built using the re-
sults of the true fitness function evaluations, there are
two competing objectives. First, we need to get the
most information about the underlying relations in the
data, in order to build a precise model of the fitness
function. If the model does not capture the features of
the fitness function correctly, the optimization can get
stuck in a fake optimum or generally fail to converge to
a global one. Second, we have a limited budget for the
true fitness function evaluations. Using many points
from the input space to build a perfect model can re-
quire more true fitness evaluations than not employing
a model at all.


In the general use of surrogate modeling, such as
design space exploration, the process of select-
ing points from the input space to evaluate and build
the model upon is called sampling [3]. Traditionally,
the points to sample are selected upfront. Upfront
sampling schemes are based on the theory of design
of experiments (DoE), e.g. a Latin hypercube design.
When we don’t know anything about the function we
are trying to model, it is better to use a small set of
points as a base for an initial model, which is then it-
eratively improved using new samples, selected based
on the information from previous function evaluations
and the model itself. This approach is called adaptive
sampling [3].


Using the surrogate model in an evolutionary op-
timization algorithm, the adaptive sampling decisions
change from selecting which points of the input space
to evaluate in order to improve the model to whether
to evaluate a given point (selected by the EA) with
the true fitness function or not. There are two gen-
eral approaches to this choice: the generation-based
approach and the individual-based approach. We will
discuss both, with emphasis on the latter, a variant of
which is used in the method we propose in section 4.


2.1 Generation-based approach


In the generation-based approach the decision whether
to evaluate an individual point with the true fitness
function is made for the whole generation of the evo-
lutionary algorithm. The optimization takes the fol-
lowing steps.


1. An initial Ni generations of the EA is performed,
yielding sets G1, . . . ,GNi


of individuals (x, ft(x)),
ft being the true fitness function.


2. The model M is trained on the individuals
(x, ft(x)) ∈


⋃Ni


i=1 Gi.
3. The fitness function ft is replaced by a model pre-


diction fM .
4. T generations are performed evaluating fM as the


fitness function.
5. One generation is performed using ft yielding


a set Gj of individuals. (initially j = Ni + 1)
6. The model is retrained on the individuals


(x, ft(x)) ∈
⋃j


i=1 Gi
7. Steps 4–6 are repeated until the optimum is


reached.


The amount of true fitness evaluations in this ap-
proach is dependent on the population size of the EA
and the frequency of control generations T , which can
be fixed or adaptively changed during the course of
the optimization [6]. For problems requiring batched
evaluation this approach has the advantage of evalu-
ating the whole generation, the size of which can be
set to the size of the evaluation batch. The main dis-
advantage of the generation-based strategy is that not
all individuals in the control generation are necessarily
beneficial to the model quality and the expensive true
fitness evaluations are wasted.


2.2 Individual-based approach


As opposed to the generation-based approach, in the
individual-based strategy, the decision whether to
evaluate a given point using the true fitness function
or the surrogate model is made for each individual
separately.


In model-based optimization in general, there are
several possible approaches to individual-based sam-
pling. The most used approach in the evolutionary
optimization is pre-selection. In each generation of the
EA, number of points, which is a multiple of the popu-
lation size, is generated and evaluated using the model
prediction. The best of these individuals form the next
generation of the algorithm. The optimization is per-
formed as follows.


1. An initial set of points S is chosen and evaluated
using the true fitness function ft.


2. Model M is trained using the pairs (x, ft(x)) ∈ S
3. A generation of the EA is run with the fitness


function replaced by the model prediction fM and
a population Oi of size qp is generated and eval-
uated with fM , where p is the desired population
size for the EA and q is the pre-screening ratio.
Initially, i = 1.
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4. A subset P ⊂ O is selected according to a selection
criterion.


5. Individuals from P are evaluated using the true
fitness function ft.


6. The model M is retrained using S ∪ P, the set S
is replaced with S ∪ P, and the EA resumes from
step 3.


Another possibility, called the best strategy [5], is
to replace S with S ∪ O instead of just P in step 6
after re-evaluating the set O \ P with fM (after the
model M has been re-trained). This also means using
the population size qp in the EA.


The key piece of this approach is the selection crite-
rion (or criteria) used to determine which individuals
from set O should be used in the following generation
of the algorithm. There are a number of possibilities,
let us discuss the most common.


An obvious choice is selecting the best individuals
based on the fitness value. This results in the region of
the optimum being sampled thoroughly, which helps
finding the true optimum. On the other hand, the re-
gions far from the current optimum are neglected and
a possible better optimum can be missed. To sample
the areas of the fitness landscape that were not ex-
plored yet, space-filling criteria are used, either alone
or in combination with the best fitness selection or
other criteria.


All the previous criteria have the fact that they
are concerned with the optimization itself in common.
A different approach is to use the information about
the model, most importantly its accuracy, to decide
which points of the input space to evaluate with the
true fitness function in order to most improve it. This
approach is sometimes called active learning.


2.3 Active learning


Active learning is an approach that tries to maxi-
mize the amount of insight about the modeled function
gained from its evaluation while minimizing the num-
ber of evaluations necessary. The methods are used
in the general field of surrogate modeling as an ef-
ficient adaptive sampling strategy. The terms adap-
tive sampling and active learning are often used inter-
changeably. We will use the term active learning for
the methods based on the characteristics of the sur-
rogate model itself, such as accuracy, with the goal of
minimizing the model prediction error either globally
or, more importantly, in the area of the input space
the EA is exploring.


The active learning methods are most often based
on the local model prediction error, such as cross-
validation error. Although some methods are inde-
pendent of the model, for example the LOLA-Voronoi


method [2], most of them depend on the model used.
The kriging model used in our proposed method offers
a good estimate of the local model accuracy by giv-
ing an error estimate of its prediction. It is possible
to use the estimate itself as a measure of the model’s
confidence in the prediction, or base a more complex
measure on the variance estimate. The measures that
were tested for use in our method will be described in
detail in section 4.1.


3 Kriging meta-models


The kriging method is an interpolation method origi-
nating in geostatistics [9], based on modeling the func-
tion as a realization of a stochastic process [11].


In the ordinary kriging, which we use, the function
is modeled as a realization of a stochastic process


Y (x) = µ0 + Z(x) (1)


where Z(x) is a stochastic process with mean 0 and
covariance function σ2ψ given by


cov{Y (x + h), Y (x)} = σ2ψ(h), (2)


where σ2 is the process variance for all x. The corre-
lation function ψ(h) is then assumed to have the form


ψ(h) = exp


[
−


d∑
l=1


θl|hl|pl


]
, (3)


where θl, l = 1, . . . , d, where d is the number of dimen-
sions, are the correlation parameters. The correlation
function depends on the difference of the two points
and has the intuitive property of being equal to 1 if
h = 0 and tending to 0 when h →∞. The θl param-
eters determine how fast the correlation tends to zero
in each coordinate direction and the pl determines the
smoothness of the function.


The ordinary kriging predictor based on n sample
points {x1, . . . ,xn} with values y = (y1, . . . , yn)′ is
then given by


ŷ(x) = µ̂0 + ψ(x)′Ψ−1(y − µ̂01), (4)


where ψ(x)′ = (ψ(x − x1), . . . , ψ(x − xn)), Ψ is an
n× n matrix with elements ψ(xi − xj), and


µ̂0 =
1′Ψ−1y


1′Ψ−11
. (5)


An important feature of the kriging model is that
apart from the prediction value it can estimate the
prediction error as well. The kriging predictor error in
point x is given by


s2(x) = σ̂2


[
1− ψ′Ψ−1ψ +


(1− ψ′Ψ−1ψ)2


1′Ψ−11


]
(6)







36 Viktor Charypar, Martin Holeňa


where the kriging variance is estimated as


σ̂2 =
(y − µ̂01)Ψ−1(y − µ̂01)


n
. (7)


The parameters θl and pl can be estimated by maxi-
mizing the likelihood function of the observed data.


For the derivation of the equations 4 - 7 as well as
the MLE estimation of the parameters the reader may
consult a standard stochastic process based derivation
by Sacks et al. in [11] or a different approach given by
Jones in [7].


4 Method description


In this section we will describe the proposed method
for kriging-model-assisted evolutionary optimization
with batch fitness evaluation. Our main goal was to
decouple the true fitness function sampling from the
EA iterations based on an assumption that requiring
a specific number of true fitness evaluations in every
generations of the EA forces unnecessary sampling.


In the generation-based approach, some of the
points may be unnecessary to evaluate, as they will
not bring any new information to the surrogate model.
The individual-based approach is better suited for the
task, as it chooses those points from each generation,
which are estimated to be the most valuable for the
model. There is still the problem of performing a given
number of evaluations in every generation, although
there might not be enough valuable points to select
from.


The method we propose achieves the desired de-
coupling by introducing an evaluation queue. The evo-
lutionary algorithm uses the model prediction at all
times and when a point, in which the model’s con-
fidence in its prediction is low, is encountered, it is
added to the evaluation queue. Once there are enough
points in the queue, all the points in it are evaluated
and the model is re-trained using the results. The op-
timization takes the following course.


1. Initial set S of b samples is selected using a chosen
initial design strategy and evaluated using the true
fitness function ft.


2. An initial kriging model M is trained using pairs
(x, ft(x)) ∈ S.


3. The evolutionary algorithm is started, with the
model prediction fM as the fitness function.


4. For every prediction fM (x) = ŷM (x), an estimated
improvement measure c(s2M (x)) is computed from
the error estimate s2M (x). If c(s2M (x)) > t, an im-
provement threshold, the point is added to the
evaluation queue Q.


5. If the queue size |Q| ≥ b, the batch size, all points
x ∈ Q are evaluated, the set S is replaced by S ∪
{(x, ft(x)} and the EA is resumed.


6. Steps 4 and 5 are repeated until the goal is
reached, or a stall condition is fulfilled.


The b and t parameters, as well as the func-
tion c(s2), are chosen before running the optimization.
Note that the evaluation in step 5 can be performed
either immediately, i.e. online, or offline. In offline eval-
uation, after filling the evaluation queue, the EA is
stopped when the current iteration is finished and the
control is returned to the user. After obtaining the fit-
ness values for the samples in the sample queue (e.g.
by performing an experiment), the user can manually
add the samples and resume the EA from the last gen-
eration.


While the choice of the parameters will be dis-
cussed in section 5, let us introduce three different
measures of estimated improvement in the model pre-
diction c(s2(x)) which we tested – the standard devia-
tion, the probability of improvement and the expected
improvement.


4.1 Measures of estimated improvement


To estimate the improvement, which evaluation of
a given point will bring, we can use several measures.
The three measures introduced here are all based on
the prediction error estimate of the kriging model. The
goal of these measures is to prefer the points that help
improve the model in regions explored by the EA.


Each of the measure’s results for a given point are
compared with a threshold and when the estimated
improvement is above the threshold, the point is eval-
uated using the true fitness function.


Standard deviation (STD) is the simplest measure we
tested. It is computed directly from the error as its
square root


STD(x) =


√
ˆs2M (x). (8)


The STD captures only the model’s estimate of the
error of its own prediction (based on the distance from
the known samples). As such, it does not take into
account the value of the prediction itself and can be
considered a measure of the model accuracy.


Probability of improvement (POI) [7] uses the fact,
that the kriging prediction is a Gaussian process and
the prediction in a single point is therefore a normally
distributed random variable Y (x) with a mean and
variance given by the kriging predictor. If we choose a
target T (based on the goal of the optimization), we
can estimate the probability that a given point will
have a value y(x) ≤ T as a probability that Y (x) ≤ T .
The probability of improvement is therefore defined as


POI(x) = Φ


(
T − ŷM (x)


s2M (x)


)
, (9)
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where Φ is the cumulative distribution function of
the standard normal distribution. As opposed to the
STD, the POI takes into account the prediction mean
(value) as well as its variance (error estimate). The
area of the current optimum is therefore preferred over
the rest of the input space. When the area of the
current optimum is sampled enough, the variance be-


comes very small and the term T−ŷM (x)
s2
M


(x)
becomes ex-


tremely negative, encouraging the sampling of less ex-
plored areas.


Expected improvement (EI) [7, 8] is based on estimat-
ing, as the name suggests, the improvement we expect
to achieve over the current minimum fmin, if a given
point is evaluated. As before, we assume the model
prediction in point x to be a normally distributed ran-
dom variable Y (x) with a mean and variance given by
the kriging predictor. We achieve an improvement I
over fmin if Y (x) = fmin − I. As shown in [7] the ex-
pected value of I can be obtained using the likelihood
of achieving the improvement


1√
2πs2M (x)


∫ I=∞


I=0


exp


[
− (fmin − I − ŷM (x)2


2s2M (x)


]
(10)


Expected improvement is the expected value of the
improvement found by integrating over this density.
The resulting measure EI is defined as


EI(x) = E(I) = s2M (x)[uΦ(u) + φ(u)], φ(u)], (11)


where


u =
fmin − ŷM (x)


s2M (x)
(12)


and Φ and φ are the cumulative distribution function
and the probability distribution functions of the nor-
mal distribution respectively. The expected improve-
ment has an important advantage over the POI: it does
not require a preset target T , which can be detrimen-
tal to the POI’s successful sample selection when set
too high or too low.


All three measures have an important weakness of
being based on the model prediction. If the modeled
function is deceptive, the model can be very inaccu-
rate while estimating a low variance. A good initial
sampling of the fitness function is therefore very im-
portant. The success of the whole method is dependent
on the model’s ability to capture the response surface
correctly and thus on the function itself.


5 Results and discussion


The proposed method was tested using simulations on
three standard benchmark functions. We studied the
model evolution during the course of the optimization,


the effect of the parameters and also investigated the
optimal choice of batch size for problems where an
upfront choice is possible. In this section we discuss
the tests performed and their results.


For testing, we used the genetic algorithm imple-
mentation from the global optimization toolbox for the
Matlab environment and the implementation of an or-
dinary kriging model from the SUMO Toolbox [4]. The
parameters of the supporting methods, e.g. the genetic
algorithm itself, were kept on their default values pro-
vided by the implementation.


Because the EA itself is not deterministic, each test
was performed 20 times and the results we present are
statistical measures of this sample. As a performance
measure we use the number of true fitness evaluations
used to reach a set goal in all tests. The main reason to
use this measure is that in model-assisted optimization
the computational cost of everything except the true
fitness evaluation is minimal in comparison. We also
track the proportion of the 20 runs that reached the
goal before various limits (time, stall, etc.) took effect.


5.1 Benchmark functions


Since the evolutionary algorithms and optimization
heuristics in general are often used on black-box opti-
mization, where the properties of the objective func-
tion are unknown, it is not straightforward to asses
their quality on real world problems. It has therefore
become a standard practice to test optimization algo-
rithms and their modifications on specially designed
testing problems.


These benchmark functions are explicitly defined
and their properties and optima are known. They are
often designed to exploit typical weaknesses of opti-
mization algorithms in finding the global optimum.
We used three functions found in literature [10]. Al-
though we performed our tests in two dimensions we
give general multi-dimensional definitions of the func-
tions.


First of the functions used is the De Jong’s func-
tion. It is one of the simplest benchmarks, it is contin-
uous, convex and unimodal and is defined as


f(x) =


n∑
i=1


x2i (13)


The domain is restricted to a hypercube −10 ≤ xi ≤
10, i = 1, . . . , n. The function has one global optimum
f(x) = 0 in point x = 0. The De Jong’s function was
primarily used as a proof of concept test.


As a second benchmark, we used the Rosenbrock’s
function, also called Rosenbrock’s valley. The global
optimum is inside a long parabolic shaped valley,
which is easy to find. Finding the global optimum in
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that valley however is difficult [10]. The function has
the following definition


f(x) =


n∑
i=1


[100(xi+1 + x2i )2 + (1− xi)2] (14)


The domain of the function is restricted to a hyper-
cube −2 ≤ xi ≤ 2, i = 1, . . . , n. It has one global
optimum f(x) = 0 in x = 1.


Finally, the third function used as a benchmark is
the Rastrigin’s function. It is based on the De Jong’s
function with addition of cosine modulation, which
produces a high number of regularly distributed local
minima and makes the function highly multimodal.
The function is defined as


f(x) = 10n+


n∑
i=1


[x2i − 10 cos(2πxi)] (15)


The domain is restricted to −5 ≤ xi ≤ −5, i =
1, . . . , n. The global optimum f(x) = 0 is in x = 1.


5.2 Model evolution


As the basic illustration of how the model evolves dur-
ing the course of the EA, let us consider an example
test run using the Rosenbrock’s function. For this ex-
periment we set the batch size of 15, used the STD
measure of estimated improvement with a threshold
of 0.001 and set the target fitness value of 0.001 as well.
The target was reached at the point (0.9909, 0.9824)
using 90 true fitness evaluations. A genetic algorithm
without a surrogate model needed approximately
3000 evaluations to reach the goal in several test runs.


The model evolution is shown in figure 1. The true
fitness function is shown on the left, the initial model
is in the middle and the final model on the right. The
points where the true fitness function was sampled are
denoted with circles an the optimum is marked with
a star.


function ev (1q) ev (med) ev (3q) goal reached


De Jong 60 60 120 0.01 1


Rosenbrock 60 125 310 0.1 1


Rastrigin 260 370 580 0.1 0.85


Table 1. GA performance on benchmark functions with-
out a model.


5.3 Measures of estimated improvement
comparison


In order to compare the measures of estimated im-
provement, we performed simulations on each bench-
mark using each improvement estimate measure with
different values of the threshold. The batch size was
set to 40 – generally found to be the ideal batch size
– for these experiments. For comparison, we also per-
formed tests with the standard genetic algorithm with-
out a model. Results of these simulations are shown in
the table 1.


The De Jong’s function proved to be simple to op-
timize and the threshold setting did not have almost
any effect. Only when using the standard deviation,
setting the threshold too low lead to an increase in the
number of evaluations, as too many points were eval-
uated, although the model prediction in those points
was accurate enough.


The same is true for the STD measure used on the
Rosenbrock’s function, where setting the threshold too
low leads to a big increase in variance of the results.
Interestingly, setting the threshold too high leads to
a decrease in the number of evaluations, but also in
the success rate of reaching the goal. The POI and EI
are more stable in terms of true fitness evaluations,
but have worse overall success rate. The results are
shown in figure 2


The Rastrigin’s function proved difficult to opti-
mize. This is probably due to the locality of the krig-
ing model and the high number of local minima of the
function. Overall the STD measure is the most suc-
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median value interquartile range goal reached


Fig. 2. STD measure on the Rosenbrock’s function - true
fitness evaluations and proportion of runs reaching goal.


cessful. POI and EI lead to bad sampling of the model
and failure to reach the optimum.


An interesting general result is that the more com-
plex measures of estimated improvement perform
worse than the simple standard deviation estimate.
This indicates that the goal of active learning selec-
tion criteria in the evolutionary optimization should
be the best possible sampling for overall model accu-
racy, as opposed to trying to improve the accuracy in
the best regions of the input space. Both the POI and
EI are design to select next best points to reach the
optimum. Since in our case, this is handled by the EA
itself, the measures bring an unnecessary noise to the
estimate of the model accuracy. The results also show
that the best measure selection is dependent on the
optimized function.


5.4 Batch size


In order to study the batch size effect on the opti-
mization, a number of experiments were performed
with different batch sizes. The only option to achieve
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Fig. 3. Batch size effect on Rosenbrock’s function opti-
mization - true fitness evaluations and proportion of runs
raching the goal.


a given batch size is to set the population size in a stan-
dard GA, in our method however, the settings are in-
dependent so a population size of 30, which proved
efficient, was used in all of the tests.


The results on the De Jong’s functions show that
apart from small batch sizes (up to 10), the opti-
mization is successful in all runs. Our method helps
stabilize the EA for small batch sizes and for batch
sizes above 15 the algorithm finds the optimum using
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a single batch. For a standard GA this strong depen-
dence arises for batch sizes above 40 and the algorithm
reaches the goal in the second generation, evaluating
twice as many points.


For the Rosenbrock’s function we get the intuitive
result that setting the batch size too low leads to more
evaluations or a failure to reach the goal, while large
batch size do not improve the results and waste true
fitness evaluations. For this function the POI proved
to be the most efficient measure. The comparison is
shown in figure 3. Overall the method reduces the
number of true evaluations from hundreds to tens for
the Rosenbrock’s function, while slightly reducing the
success rate of the computation.


The Rastrigin’s function proved difficult to opti-
mize even without a surrogate model. With the model,
the STD achieved the best results reducing the number
of true fitness evaluations approximately three times
in the area of the highest success rate with batch size
of 70. The other two measures were ineffective. We at-
tribute the method’s difficulty optimizing the Rastri-
gin’s function to the fact that the kriging model is local
and thus it requires a large number of samples to cap-
ture the function’s complicated behavior in the whole
input space. When the initial sampling is misleading,
which is more likely for the Rastrigin’s function, both
the model prediction and estimated improvement are
wrong.


The results suggest that best batch size and best
estimated improvement measure are highly problem-
dependent. The proposed method is also very sensi-
tive to good initial sample selection, which is the most
usual reason for it to fail to find the optimum. The ex-
perimental results support the intuition that batches
too small are bad for the initial sampling of the model
and batches too large slow down the model improve-
ment by evaluating points that it would not be nec-
essary to evaluate with smaller batches. This suggests
using a larger initial sample and a small batch for the
rest of the optimization.


6 Conclusions


In this paper we presented a method for model-assisted
evolutionary optimization with a fixed batch size re-
quirement. To decouple the sampling from the EA iter-
ations and support an individual-based approach while
keeping a fixed evaluation batch size, the method uses
an evaluation queue. The candidates for true fitness
evaluations are selected by an active learning method
using a measure of estimated improvement of the
model quality based on the model prediction error es-
timate.


The results suggest using simple methods for im-
provement estimate in active learning, which only cap-


ture information about the model accuracy improve-
ment expected by sampling a given point. In the ex-
periments with the batch size we found that small
batch sizes perform better when the objective function
is simple, while causing bad initial sampling of more
complex functions, suggesting using a larger initial
sample. The future development of this work should
include experiments using different batch sizes for ini-
tial sampling and comparison of the method with other
ways of employing a surrogate model in the optimiza-
tion as well as other model-assisted optimization
methods.


The method brings promising results, reducing the
number of true fitness evaluations to a large degree
for some of the benchmark functions. On the other
hand, its success is highly dependent on the optimized
function and its initial sampling.
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5. L. Gräning, Y. Jin, B. Sendhoff: Efficient evolutionary
optimization using individual-based evolution control
and neural networks: A comparative study. In ESANN,
2005, 273–278.


6. Y. Jin, M. Olhofer, B. Sendhoff: Managing approxi-
mate models in evolutionary aerodynamic design op-
timization. In Evolutionary Computation, 2001. Pro-
ceedings of the 2001 Congress on, vol. 1, IEEE, 2001,
592–599.


7. D.R. Jones. A taxonomy of global optimization meth-
ods based on response surfaces. Journal of Global Op-
timization, 21:345–383, 2001.


8. D. R. Jones, M. Schonlau, W.J. Welch: Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization 13, 1998, 455–492.


9. G. Matheron: Principles of geostatistics. Economic
Geology 58(8), 1963, 1246–1266.


10. M. Molga, C. Smutnicki: Test functions for optimiza-
tion needs. Test Functions for Optimization Needs,
2005.


11. J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn: De-
sign and analysis of computer experiments. Statistical
Science 4(4), 1989, 409–423.








Aligning sequences with repetitive motifs?
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Abstract. Pairwise sequence alignment is among the
most intensively studied problems in computational biology.
We present a method for alignment of two sequences con-
taining repetitive motifs. This is motivated by biological
studies of proteins with zinc finger domain, an important
group of regulatory proteins. Due to their evolutionary his-
tory, sequences of these proteins contain a variable number
of different zinc fingers (short subsequences with specific
symbols at each position).
Our algorithm uses two types of hidden Markov models
(HMM): pair HMMs and profile HMMs. Profile HMMs
describe the structure of sequence motifs. Pair HMMs as-
sign a probability to alignment of two motifs. Combination
of the these two types of models yields an algorithm that
uses different score when aligning conserved vs. variable
motif residues. The dynamic programming algorithm that
computes the motif alignments is based on the well known
Viterbi algorithm. We evaluated our model on sequences of
zinc finger proteins and compared it with existing alterna-
tives.


1 Introduction


Pairwise sequence alignment is one of the most stud-
ied problems in bioinformatics. We will concentrate on
alignment of protein sequences, where a protein can
be represented as a string over the alphabet of 20 dif-
ferent amino acids. During the evolution, particular
amino acids in a protein can be substituted by an-
other amino acid, or even get inserted or deleted. The
goal of sequence alignment is to compare two proteins,
quantify their sequence similarity, and to identify pairs
of amino acids that have likely evolved from the same
amino acid in the common ancestor. Over the years,
multitude of variations of this problem have been in-
troduced and many practical software tools were de-
veloped.


Our work is motivated by the study of zinc finger
proteins. These proteins contain a variable number of
up to 40 zinc finger domains [18]. Zinc finger domain is
a stretch of approximately 28 amino acids, the purpose
of which is to bind DNA at specific places. Comparison
of zinc fingers form different proteins reveals that some


? This work was supported by the European Com-
munity FP7 Marie Curie grants IRG-224885 to TV
and IRG-231025 to BB, and by a grant from VEGA
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Fig. 1. The structure of a zinc-finger. Highly variable sites
are marked with black color. The most conserved amino
acids are the four involved in binding the zinc ion [14].


positions are very conserved due to their importance
in assuming desired function, while other positions are
highly variable, since they distinguish specific DNA se-
quences where individual zinc fingers bind (Figure 1).


We will focus our attention on the KRAB-ZNF
proteins that have a region encoding one or more
Krüppel-associated box domains (KRAB, [2]) followed
by a zinc finger region (Fig. 2). The human genome en-
codes more that 600 of proteins from this family, and
a lot of effort is dedicated to building and maintaining
their catalogues [9], [11], [3]. Complicated repetitive
structure of these genes is a result of a dynamic evo-
lutionary history, full of sequence duplications [7, 12],
and many mutations which help to gain new functions
for duplicated copies.


The repetitive nature of zinc finger protein
sequences complicates their sequence alignment. Tra-
ditional alignment methods based purely on sequence
similarity frequently misalign individual zinc fingers,
or even align a single zinc finger in one sequence to
parts of several different zinc fingers in the other se-
quence. Consequently, many studies of these proteins
limit their analyses and infer conclusions based only
on the the KRAB domains or sequences before the zinc
finger region (e.g. [14], [7]), or dispute the relevance of
standard methods applied to genes with high variance
in the number of fingers [16].


In this work, we develop a new method for aligning
sequences with repetitive motifs, such as zinc finger
proteins. To overcome the problems outlined above, we
combine the strength of profile hidden Markov models
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KRAB A


KRAB A KRAB B


Fig. 2. Domain structure of typical KRAB-ZNF genes.
The protein contains one or more KRAB domains and an
array of 3 to cca. 40 zinc fingers. [18]


which are used to characterize the properties of these
repetitive motifs, and pair hidden Markov models as
a model of sequence alignments. We compare our work
to MotifAligner that was previously used to align zinc
finger proteins [11], and we find our new method to
produce more accurate alignments on our testing set.


In the rest of this section, we introduce nec-
essary background and notation and describe the
MotifAligner approach to repetitive sequence align-
ment in more detail. In Section 2, we describe our
new profile-profile-pair alignment method (PPP). We
present the results of experimental comparison of PPP
and MotifAligner in Section 3.


1.1 Background and notation


In this paper, we rely on several standard tools from
computational biology, namely alignments, pair hid-
den Markov models, and profile hidden Markov mod-
els, which we briefly explain in this section.


We start by defining hidden Markov models
(HMMs). An HMM is a probabilistic finite state au-
tomaton. We can use it to generate a random sequence
over some alphabet as follows. We start in a desig-
nated start state B. In each step, we sample a charac-
ter of the sequence from the emission probability dis-
tribution associated with the current state and then
randomly change the state according to the transition
probability distribution. The process ends when we
reach the designated final state E.


The sequence of states visited in the individual
steps is called a state path. We will denote the proba-
bility of emitting x in state v as ev(x) and the proba-
bility of transition from state v to w as tv,w. The joint
probability of emitting a sequence x = x1 . . . xn along
the state path s = s1 . . . sn in a given HMM is


P (x, s) = es1(x1)


n∏
i=2


tsi−1siesi(xi).


A typical task solved with HMMs is to find the most
probable state path that could generate a given se-
quence, i.e. to find s∗ = arg maxs P (x, s). This task
is solved by the Viterbi algorithm based on dynamic
programming [19].


The second important notion is sequence align-
ment. Given a set of related protein sequences, we can


align them by inserting dashes to individual sequences
so that they all have the same length and when we ar-
range them in a table, as in Figure 3, many columns
contain the same or similar amino acids. Several con-
secutive dashes form a gap in the alignment, indicat-
ing that a part of the sequence was deleted or inserted
during the evolution. The sequence alignment prob-
lem can be formulated as an optimization problem and
solved by existing algorithms. For two sequences, the
problem can be solved easily by Needleman-Wunsch
dynamic programming algorithm [10], for multiple se-
quences it is NP-hard [6]. The scoring function for
pairwise alignment is typically based on a substitution
matrix scoring all pairs of aligned amino acids and on
parameters for scoring gaps: gap opening penalty g for
the first dash in a gap and gap extension penalty e for
each additional gap.


ZNF626_4799/12 YKC--EECGKAF-NQSSILTTHERIILERN-


ZNF727_4861/2 YKC--EECGKDC--RLSDFTIQKRIHTADRS


ZXDB_644/5 YQCAFSGCKKTF-ITVSALFSHNRAHFREQE


LLNL1236_4814/2 SMC--PECSKTSATDSSCLLMHQRSHTGKRP


ZNF23_141/15 FQC--KECGKAF-HVNAHLIRHQRSHTGEKP


Fig. 3. Alignment of five sequences of zinc finger motifs
from human proteins.


One way of systematically deriving a scoring func-
tion for pairwise alignments is to use pair HMMs [4].
These models emit two sequences simultaneously. In
one step, the HMM can emit a single character in one
of the sequences or in both. The later case corresponds
to two symbols aligned to each other, the former to
a symbol aligned to a dash. Figure 4 shows the pair
HMM used in our work. The match state M emits
pairs of aligned characters, state X emits characters
only in the first sequence, and state Y emits charac-
ters only in the second sequence. Given two sequences,
we can find the most probable state path that could
generate them and this will give us an alignment of
these two sequences.


To represent a typical sequence of a motif, we will
use another kind of HMMs, called profile HMMs [4].
A profile HMM is typically constructed based on an
alignment of several motif instances, such as the one
in Figure 3. Each position of the motif is represented
by one state with emission probabilities set to the ob-
served frequencies of amino acids in the corresponding
alignment column (possibly with some pseudocounts
added to avoid zero probabilities). These so called
match states are arranged in a chain (see Figure 5).
These states used alone would generate sequences of
the same length. However, real sequences may have
various insertions and deletions compared to the con-
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Fig. 4. A pair HMM for global alignment. Transition prob-
abilities are defined by three parameters δ, ε, τ , emission
probabilities by matrices p and q.


Fig. 5. Example of a profile HMM. States Mk are match
states, Ik are insert states and Dk are delete states. States
B, E, and D1 . . . D3 are silent, which means that they do
not generate any characters.


sensus motif; these are modeled by additional insert
and delete states. Given a profile HMM and a se-
quence, we can again find the most probable state
path, which in this case gives us an alignment of the
sequence to the motif represented by the profile HMM.
Note, however, that the profile HMM emits only a sin-
gle sequence; the motif itself is represented directly in
the structure and parameters of the model.


1.2 MotifAligner approach


To obtain high quality alignments even on sequences
with highly variable number of zinc finger motifs, Now-
ick et al. developed a pairwise alignment tool called
MotifAligner [11]. To our knowledge, it is the only se-
quence alignment method designed specifically to align
sequences with variable number of repetitive motifs.
Part of our work was inspired by this algorithm.


MotifAligner first uses a profile HMM tool
HMMER [5] and finds all canonical motif occurrences
with statistically significant scores in both input se-
quences. Let T = (t1, . . . , ta) and U = (u1, . . . , ub)
be the sequences of all motif occurrences found by


HMMER in the original input sequences x and y, re-
spectively. In the second step, MotifAligner computes
scores of all gapless pairwise alignments of motifs
tk, u`, for all 1 ≤ k ≤ a, 1 ≤ ` ≤ b:


s[tk, u`] =


L∑
i=1


S[tki
, u`i ], (1)


where S[xi, yj ] is the score of aligning amino acids xi
and yj (they use a standard BLOSUM85 substitution
matrix [8]; motif occurrences are padded to have the
same length).


In this way we obtain a similarity score between
each pair of motif occurrences. Next MotifAligner ap-
plies the Needleman-Wunsch algorithm [10] to T
and U , treating motifs as sequence symbols and using
matrix s as the substitution matrix. In this way we
obtain pairs of aligned zinc fingers between the two
proteins.


2 Profile-profile-pair alignment


In this section, we present a new approach to align-
ment of sequences with repetitive motifs. We adopt an
approach similar to MotifAligner, however, we change
the alignment algorithm and the scoring scheme to
take into account the structure of the repeated motif.


For example, the zinc-finger motif (Fig. 2) contains
several highly conserved positions, among them the
four amino-acids binding the zinc ion (positions 3, 7,
20, 24). These four amino acids are crucial to the func-
tion of the motif and as such should be used to anchor
the whole alignment. However, the fact that these po-
sitions match in the two aligned sequences should not
be very surprising and should not by itself contribute
much to the resulting score. On the other hand, there
are several variable positions, and the differences at
these positions will be very informative of the evolu-
tionary distance.


To take these issues into account, we have devel-
oped a new profile-profile-pair method (PPP) for


Fig. 6. The profile HMM of random 2000 human zinc fin-
gers from the complete dataset, viewed as a HMM logo [15].
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alignment of individual motifs. The method uses
a combination of two profile HMMs and a pair HMM
for sequence alignment and aligns the two sequences
by finding the best possible path through all three
models simultaneously. To align the complete protein
sequences containing these repeating motifs, we first
align each possible pair of motifs through PPP, com-
pute their similarity score, and use a modification of
a traditional global alignment algorithm, now oper-
ating on individual motif occurrences as a unit. We
describe the details of the method in the remainder of
this section.


2.1 Pairwise alignment of individual motifs


The input to PPP consists of two instances of the re-
peating motif x = x1 . . . xLx


and y = y1 . . . yLy
, a pro-


file HMM encoding the same motif, and a pair HMM
characterizing the properties of a typical alignment.
Our goal is to align both x and y to a separate copy of
profile HMM and at the same time, use the pair HMM
as a glue.


In particular, we are simultaneously seeking the
three paths through the three HMMs that satisfy the
following constraints:


Constraint 1 (Profile match states constraint)
If xi and yj are emitted by the same match state Mk


in their profile models then the pair model has emit xi
and yj together in the match state M .


Constraint 2 (Pair match state constraint) If
the pair model emits xi and yj together in the match
state M then both profile models emit xi and yj in the
same match state Mk or in the same insert state Ik.


In other words, if the pair model is in the state X
or Y (which is interpreted as a gap in one of the se-
quences), the two profile models should not be in the
same match state: symbols belonging to the same con-
sensus column should be aligned. However, if both
profile models are in the same insert state they can
either be evolutionarily related, in which case they
should be aligned using M state of the pair model,
or they could have been inserted in the sequence inde-
pendently, which would correspond to using X and Y
states of the pair model. Constraint 2 also implies, that
if the profile models are neither in the same match
state Mk nor in the same insert state Ik (i.e. either
are in completely different columns or in the same col-
umn k, but different states Mk and Ik), which means
that the symbols being emitted are unrelated, then
the pair model should not be in the match state. These
constraints thus ensure that the sequence and the pro-
file alignment can be interpreted in a consistent man-
ner.


Thus our goal is to compute three paths s∗p, s
∗
x, s


∗
y


through the pair HMM and the two profile HMMs
that would satisfy our constraints and the product of
joint probabilities implied by all three models would
be maximized:


(s∗p, s
∗
x, s


∗
y) = arg max


valid
sp,sx,sy


score(x, y, sp, sx, sy), (2)


where score(x, y, sp, sx, sy) = Ppair(x, y, sp)·
Pprofile(x, sx) · Pprofile(y, sy), where Ppair(x, y, s) is the
joint probability of the state path s aligning
sequences x and y in the pair HMM and Pprofile(x, s) is
the joint probability of the state path s and sequence x
in the profile HMM.


We obtain an optimal solution using dynamic pro-
gramming similar to the Viterbi algorithm used to
compute the most probable state paths in individual
HMMs. Let S = (Sp, Sx, Sy) be the triplet of states
of pair and x-profile and y-profile models satisfying
our conditions. We denote V [Sp, Sx, Sy, i, j] the score
of the highest scoring state path combination ending
with the triplet S and covering the prefixes x1 . . . xi,
y1 . . . yj of the two sequences.


The computation of V [Sp, Sx, Sy, i, j] depends on
the types of states Sp, Sx, Sy. For example, if Sp is the
match state M of the pair HMM and Sx is the match
state Mk of the profile HMM, then according to our
constraints Sy must be the same match state Mk and
we have the following recurrence:


V [M,Mk,Mk, i, j] = eM (xi, yj)eMk
(xi)eMk


(yj)·


max





tMM tM`Mk
tM`Mk


· V [M,M`,M`, i− 1, j − 1]
for 0 ≤ ` < k


tMM tIk−1Mk
tIk−1Mk


·V [M, Ik−1, Ik−1,i−1, j−1]
tXM tM`Mk


tMnMk
· V [X,M`,Mn, i− 1, j − 1]


for 0 ≤ `, n < k, n 6= `
tXM tM`Mk


tIk−1Mk
· V [X,M`, Ik−1, i−1, j−1]


for 0 ≤ ` < k
tXM tIk−1Mk


tM`Mk
· V [X, Ik−1,M`, i−1, j−1]


for 0 ≤ ` < k
tXM tIk−1Mk


tIk−1Mk
·V [X, Ik−1,Ik−1, i−1, j−1]


tYM tM`Mk
tMnMk


· V [Y,M`,Mn, i− 1, j − 1]
for 0 ≤ `, n < k, n 6= `


tYM tM`Mk
tIk−1Mk


· V [Y,M`, Ik−1, i− 1, j − 1]
for 0 ≤ ` < k


tYM tIk−1Mk
tM`Mk


· V [Y, Ik−1,M`, i−1, j−1]
for 0 ≤ ` < k


tYM tIk−1Mk
tIk−1Mk


·V [Y, Ik−1,Ik−1, i−1, j−1]


The value at V [M,Mk,Mk, i, j] has to include the
emission probabilities of xi and yj in all three models.
Then we take a maximum over all choices of previous
cells from which the current cell value could be com-
puted. Every value considered in the maximum is the
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product of the value of the predecessor cell and tran-
sition probabilities in all three models. All the other
cases can be derived analogously; we omit the deriva-
tions due to the space constraints.


Every time we compute a value for any cell, we keep
a pointer to the cell from which the value was derived.
We use those pointers later to trace back the resulting
state paths. Of particular importance is the path in the
pair model, since it defines the alignment of x and y.
For each of the resulting state path, we also compute
its joint probability its respective model, obtaining val-
ues Ppair(x, y, s


∗
p), Pprofile(x, s∗x), and Pprofile(y, s∗y).


2.2 Alignment of complete motif arrays


We use the same procedure as MotifAligner for align-
ment of complete motif arrays. We compute all pair-
wise alignments of individual motifs, where the score
of a pairwise motif alignment is based on joint proba-
bilities of motif sequences and state paths in all three
models as described below. Since we perform the mo-
tif alignment for all pairs of motifs and assign a score
to each such alignment, we get a scoring system simi-
lar to a scoring matrix. Treating motifs as symbols and
using this scoring matrix, we obtain the full alignment
of input motif arrays using Needleman-Wunsch algo-
rithm.


More formally, for motif arrays Ax = (x1, . . . , xn)
and Ay = (y1, . . . ym), we calculate n × m matrix S,
where


S(xi, yj) = ln
Ppair(xi, yj , s


∗
p,i,j)


Pprofile(xi, s∗x,i,j)Pprofile(yj , s∗y,i,j)
, (3)


where s∗p,i,j , s
∗
x,i,j and s∗y,i,j are the three state paths


computed when aligning motifs xi, yj by PPP. This
score compares the hypothesis that the two motif se-
quences are related (given by probability from the pair
HMM) to the hypothesis that these are simply two
independent sequences following the same profile (as
determined by scores from the two profile HMMs).


2.3 Algorithm complexity


The time complexity of the PPP algorithm on two
motif arrays with O(n) motifs, each of length O(m)
is O(n2m6). There are O(n2) individual motif align-
ments. The time needed to compute one such align-
ment is O(LxLyL


4), where Lx, Ly are the lengths of
motifs and L is the number of columns in the pro-
file HMM. This follows from the observation that in
the recurrent step of individual motif alignment we
fill 3× L× L× Lx × Ly matrix, and time required to
compute each cell is at most O(L2), the upper bound
on the number of values considered in the recurrence.
Typically, the number of columns in the profile HMM


Number of Finger Motifs
Genome Genes Variants Total Average Median


hg19 612 1071 13363 12.48 12
mm9 302 513 5226 10.19 10
canFam2 477 828 9259 11.18 11
rheMac2 578 1010 12143 12.02 12


Table 1. The complete dataset, based on genes from the
whole human genome. One gene can have multiple variants
that differ in organization of zinc fingers.


and the length of motifs is almost the same, so we
can say that Lx, Ly, L = O(m) and hence the time re-
quired to compute the alignment of one motif pair is
O(m6). From the same observation, one can easily see
that the space complexity is O(n2 +m4). The running
time and memory is practical, since values of n and m
tend to be small in real proteins (for zinc-finger arrays,
both n and m are less than 30).


3 Experiments and evaluation


Gold standard data set. We evaluated our approach
on human zinc-finger genes and their counterparts in
related species macaque, mouse, and dog. We down-
loaded the set of annotations of KRAB zinc finger
genes from the Human KZNF Catalog [9] and
remapped the annotation to the current hu-
man genome assembly hg19 using liftOver tool. To
obtain the sequences of these zinc finger genes in other
species, we used the whole genome alignments from
the UCSC genome browser [17] as a mapping between
the human (hg19) and the macaque (rheMac2),
mouse (mm9), and dog (canFam2) genomes.


The resulting genomic sequences were translated
into amino acid sequences and cleaned for apparent
artifacts. In particular, we removed genes that con-
tained fingers shorter than 10 amino acids. Summary
statistics of the resulting dataset is shown in Table 1.
Because of relatively high time complexity of the PPP
algorithm, alignment of genes with high number of fin-
gers takes a lot of time. For that reason, we prepared
a subset of the complete dataset, omitting genes from
human chromosome 19 and their putative orthologs in
other genomes. These genes contain the highest num-
bers of repeating motifs (30 or more). Summary statis-
tics for this restricted dataset are shown in the Table 2.


Model parameters. The emission probabilities of the
pair HMM used in our experiments were based on the
BLOSUM85 substitution matrix. This particular ma-
trix was chosen in order to compare our results to Mo-
tifAligner [11]. In particular, we used the probability
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Number of Finger Motifs
Genome Genes Variants Total Average Median


hg19 323 510 5249 10.29 9
mm9 201 314 2818 8.97 8
canFam2 257 406 3710 9.14 8
rheMac2 305 484 4766 9.85 9


Table 2. The restricted dataset, omitting genes from hu-
man chromosome 19 and their orthologs.


distributions p and q from which the matrix was de-
rived, as supplied in EMBOSS software package [13].
The transition probability parameters (see Figure 4)
were set as follows: τ = 0.0345, so that the expected
length of an alignment is 28, which is the length of
a typical human C2H2 zinc finger motif; δ = 0.05185
so that the expected length of a match region is 13.45,
because the most variable region of a zinc finger motif
spans positions 12-15; ε = 0.4769 so that the expected
length of a gap is 1.1.


The complete parameter set of the profile model
was acquired from the Pfam database entry for the
ZNF C2H2 family [1]. The length of the profile is 23,
which is shorter than a typical human zinc finger mo-
tif. The reason is that the model is based on a more
diverse set of sequences from various species.


3.1 The PPP score distribution


To compare the scoring function of the PPP model
with the scores used by MotifAligner, we created two
sets of zinc-finger motif pairs. The related set con-
tained 1000 fingers from the human genome, each
paired with the corresponding finger from macaque,
mouse or dog. The random set contained 1000 ran-
dom pairs of fingers; we assume that these fingers are
on average more distantly related to each other than
paired fingers in the first set.


We have computed a PPP alignment of each se-
quence pair in both samples. The score distributions
are shown in Figure 7. Both distributions resemble the
normal distribution, with mean of the related set close
to 20 and mean of the random set at around 5.


For comparison purposes, we have reimplemented
MotifAligner algorithm as described in [11]. Figure 7
shows the score distributions of the MotifAligner ap-
proach to alignment of individual motifs, based on the
BLOSUM85 substitution matrix. These score distribu-
tions do not resemble the normal distribution. In par-
ticular, the distribution for the related set has a heavy
tail, which is clearly not desirable.


The important property of the scoring scheme is
how well it is able to distinguish positive examples
from negative ones. Figure 9 shows a ROC curve,


Histogram of ppp.related[, 2] − (ppp.related[, 3] + ppp.related[, 4])


Score


Fr
eq


ue
nc


y


−40 −20 0 20 40 60 80


0
20


40
60


80


Histogram of ppp.unrelated[, 2] − (ppp.unrelated[, 3] + ppp.unrelated[, 4])


Score


Fr
eq


ue
nc


y


−40 −20 0 20 40 60 80


0
20


40
60


80


Fig. 7. Score distributions in related (left) and random
(right) datasets om PPP model.
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Fig. 8. The score distributions in related (left) and ran-
dom (right) datasets, MotifAligner approach based on the
BLOSUM85 matrix.


where the related set was treated as positives and the
random set as negative examples. The classification
performance of the PPP is clearly better, demonstrat-
ing that our scheme is more suitable as a score for
classification of paired motifs from random pairs.


3.2 Alignment accuracy


Next we use the PPP and the simpler MotifAligner
method for scoring pairs of zinc fingers as building
blocks in the whole motif array alignment. The
Needleman-Wunsch algorithm for the whole motif ar-
ray alignment has three parameters: the gap opening
penalty g, the gap extension penalty e, and the sub-
stitution matrix s that scores individual motif align-
ments. For MotifAligner, we have used the original
parameters [11], in particular the BLOSUM85 substi-
tution matrix and the gap penalties set to g = 84 and
e = 75.6. In the PPP model, the matrix s is deter-
mined by the equation 3, and we have tested several
different settings of the parameters g and e.


We carried out three tests. In the first one, we
aligned all zinc finger arrays of orthologous proteins in
the complete dataset. The second and the third exper-
iments simulated a loss of fingers during the evolution
– we created two artificial datasets with 1/5 and 1/3
of the total number of fingers removed in each zinc
finger array in all four genomes, and we aligned the
original human dataset with the four reduced sets.
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Fig. 9. ROC curve for related (positive) and random (neg-
ative) datasets.


Aligned Misaligned
Dataset Program arrays motifs


Complete, Unchanged MotifAligner 2161 234
Complete, Unchanged PPP1 2161 178
Complete, Unchanged PPP2 2161 331


Restricted, 1/5 Loss MotifAligner 1609 149
Restricted, 1/5 Loss PPP1 1609 139
Restricted, 1/5 Loss PPP2 1609 142


Restricted, 1/3 Loss MotifAligner 1651 169
Restricted, 1/3 Loss PPP1 1651 254
Restricted, 1/3 Loss PPP2 1651 252


Table 3. The comparison of MotifAligner and PPP model.
PPP1 refers to Needleman-Wunsch gap penalty parame-
ters set to g = 30, e = 20 and PPP2 to g = 20, e = 10.
The third column lists the number of different zinc fin-
ger array pairs aligned; fourth column lists the number of
wrongly aligned motifs.


In our tests, we achieved the best results when the
gap opening penalty g was set to 30 and the gap ex-
tension penalty e to 20. The results of all tests are
shown in the Table 3. PPP1 was able to out-
perform the MotifAligner on the Unchanged and
1/5 Loss datasets. On the other hand, our model per-
formed slightly worse as the number of lost fingers was
increased.


4 Conclusion


We have designed and implemented an algorithm for
alignment of sequences with repetitive motifs. The al-
gorithm is built on top of two types of hidden Markov
models. It utilizes positional information from two
copies of a profile HMM and uses a pair HMM to align
the motif sequences. We were able to apply our model
on real world data, and obtained better results than


the only existing program specifically designed to align
sequences with repetitive motifs.


There is still a room for improvement of our work.
Apart from obvious upgrades, like a more efficient im-
plementation, the underlying model can be enhanced
in several ways. For example, an interesting question is
whether some other scoring function of individual mo-
tif alignments would perform better. Such a function
might be based on different properties of the under-
lying models, e.g. the full probability of a sequence,
instead of the probability of the Viterbi path.


To alleviate problems caused by the computational
complexity of the algorithm, various heuristics could
be applied, especially methods avoiding exhausting
computations of the whole dynamic programming ma-
trix. In order to apply our model to other protein fami-
lies with repeating motifs, a more robust procedure for
parameter estimation should be established. In addi-
tion, a method for assessment of statistical significance
of alignments may be helpful when computing align-
ments of large datasets where random similarities are
more likely to occur.


The model we have implemented is not the only
way of doing sequence alignment with repetitive mo-
tifs. It is very appealing to use a monolithic proba-
bilistic model instead of multiplying probabilities of
three separate models. We have tried to develop such
a model, but we were not able to overcome some of
their intrinsic difficulties.


From the practical point of view, the most serious
problem we have encountered is the lack of reliable
benchmark for assessing the accuracy of alignments
with repetitive motifs. A high quality reference is very
valuable, because it allows exact evaluation of algo-
rithms and can give a clue where are the weak and
the strong parts of a particular method, or how to
set the method parameters to ensure optimal perfor-
mance. We hope that our work will at least partially
serve as a catalyst towards the creation of such a re-
source.
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4. R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological
sequence analysis. 1st edition. Cambridge University
Press. 1998, 356 p., ISBN: 978-0521629713.


5. S. R. Eddy: Accelerated profile HMM searches. PLoS
Comput. Biol. 7(10), 2011, e1002195.


6. I. Elias: Settling the intractability of multiple align-
ment. Journal of Computational Biology 13(7), 2006,
1323–1339.


7. A. T. Hamilton, S. Huntley, M. Tran-Gyamfi,
D. M. Baggott, L. Gordon, L. Stubbs: Evolutionary
expansion and divergence in the ZNF91 subfamily of
primate-specific zinc finger genes. Genome Res. 16(5),
2006, 584–594.


8. S. Henikoff, J. G. Henikoff: Amino acid substitution
matrices from protein blocks. Proc. Natl. Acad. Sci.
U.S.A., 89(22), 1992, 10915–10919.


9. S. Huntley, D. M. Baggott, A. T. Hamilton, M. Tran-
Gyamfi, S. Yang, J. Kim, L. Gordon, E. Branscomb,
L. Stubbs: A comprehensive catalog of human KRAB-
associated zinc finger genes: insights into the evolu-
tionary history of a large family of transcriptional re-
pressors. Genome Res., 16(5), 2006, 669–677.


10. S. B. Needleman, C. D. Wunsch: A general method ap-
plicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol., 48(3), 1970,
443–453.


11. K. Nowick, C. Fields, T. Gernat, D. Caetano-Anolles,
N. Kholina, L. Stubbs: Gain, loss and divergence in
primate zinc-finger genes: a rich resource for evolution
of gene regulatory differences between species. PLoS
ONE 6(6), 2011, e21553.


12. K. Nowick, A. T. Hamilton, H. Zhang, L. Stubbs:
Rapid sequence and expression divergence suggest se-
lection for novel function in primate-specific KRAB-
ZNF genes. Molecular Biology and Evolution 27(11),
2010, 2606–2617.


13. P. Rice, I. Longden, A. Bleasby: EMBOSS: the Eu-
ropean molecular biology open software suite. Trends
Genet., 16(6), 2000, 276–277.


14. D. Schmidt, R. Durrett: Adaptive evolution drives the
diversification of zinc-finger binding domains. Mol.
Biol. Evol. 21(12), 2004, 2326–2339.


15. B. Schuster-Bockler, J. Schultz, S. Rahmann: HMM
Logos for visualization of protein families. BMC Bioin-
formatics 5, 2004, 7.


16. J. H. Thomas, R. O. Emerson: Evolution of C2H2-zinc
finger genes revisited. BMC Evol. Biol. 9, 2009, 51.


17. UCSC Human Genome Feb. 2009 (hg19,
GRCh37) Pairwise Alignments. Online.
http://hgdownload.cse.ucsc.edu/downloads.html.


18. R. Urrutia: KRAB-containing zinc-finger repressor
proteins. Genome Biology 4(10), 2003, 231.


19. A. J. Viterbi: Error bounds for convolutional codes and
an asymtotically optimum decoding algorithm. IEEE
Transactions on Information Theory IT-13, 1967, 260–
267.








Surrogate solutions of Fredholm equations


by feedforward networks⋆
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Abstract. Surrogate solutions of Fredholm integral equa-


tions by feedforward neural networks are investigated theo-


retically. Convergence of surrogate solutions computable by


networks with increasing numbers of computational units to


theoretically optimal solutions is proven and upper bounds


on rates of convergence are derived. The results hold for


a variety of computational units, they are illustrated by


examples of perceptrons and Gaussian radial units.


1 Introduction


Surrogate modeling is one of successful applications of
neural networks. Often it has been used for empirical
functions, i.e., functions for which no mathematical
formulas are known and thus their values can only be
gained experimentally. When such experimental eval-
uations are too expensive or time consuming, it can
be useful to perform them merely for some samples
of points of the domains of the empirical functions
and the obtained values use as training data for neu-
ral networks. The networks trained on such data can
play roles of surrogate models of these empirical func-
tions. For example, input-output functions of feedfor-
ward networks have been used in chemistry as surro-
gate models of empirical functions assigning to compo-
sitions of chemicals measures of quality of catalyzers
produced by reactions of these chemicals, in biology
as models of empirical functions classifying structures
of RNA, and in economy as models of functions as-
signing credit ratings to companies [7, 2]. However, it
should be emphasized that results obtained by surro-
gate modeling of empirical functions can only be used
as suggestions to be confirmed by additional exper-
iments as no other than empirical knowledge of the
functions is available. Moreover, no methodology for
choice of suitable network architectures, type of com-
putational units and their number has been developed.


In contrast to the case of empirical func-
tions, analytically described functions, which are sub-
jects of surrogate modeling due to their complicated
and time consuming numerical calculations, provide
a potential for theoretical analysis of quality of their
surrogate models. Available analytic expressions can


⋆ This work was partially supported by MŠMT grant
COST INTELLI OC10047 and RVO 67985807.


be compared with various surrogate models. One can
investigate mathematical properties of these functions
as well as properties of their surrogate models aim-
ing to estimate speed of convergence of approxima-
tions computable by surrogate models with increasing
model complexity to functions described by the com-
plicated formulas. Mathematical theory of approxima-
tion of functions by neural networks offers some tools
for derivation of such estimates.


A large class of functions described by mathemati-
cal formulas, numerical calculations of which are diffi-
cult, is formed by solutions of Fredholm integral equa-
tions. These equations play an important role in many
problems in applied science and engineering. They
arise in image restoration, differential problems with
auxiliary boundary conditions, potential theory and
elasticity, etc. (see, e.g., [23, 22, 24]). Mathematical de-
scriptions of solutions of Fredholm equations following
from classical Fredholm theorem [27, p.499] involve
complicated expressions in terms of infinite Liouville-
Neumann series with coefficients in the forms of inte-
grals. Thus numerical calculations of these expressions
are time consuming.


Recently, several authors [13, 6] explored experi-
mentally possibilities of surrogate modeling of solu-
tions of Fredholm equations by perceptron and kernel
networks. Motivated by these experimental studies,
in [9] we initiated a theoretical analysis of approxi-
mation of solutions of Fredholm equtions by neural
networks. In [9, 12, 20], estimates of rates of approx-
imation were derived for surrogate modeling by net-
works with kernel units induced by the same kernels
as the kernels defining the equations and extended to
certain smooth kernels.


In this paper, we investigate surrogate solutions
of Fredholm integral equations by networks with gen-
eral computational units. Taking advantage of results
from nonlinear approximation theory and suitable in-
tegral representations of functions in the form of “in-
finite” networks, we estimate how well surrogate so-
lutions computable by feedforward networks can ap-
proximate exact solutions of Fredholm equations. We
apply general results to perceptron and Gaussian ra-
dial networks.
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The paper is organized as follows. In section 2, we
describe surrogate modeling of functions by feedfor-
ward neural networks and in section 3, we introduce
Fredholm integral equations and theoretical approach
to their solutions. In section 4, we recall some results
from nonlinear approximation theory and apply them
to approximation of solutions of Fredholm equations
by feedorward networks. We illustrate our results by
an example of approximation of Fredholm equations
with the Gaussian kernel by networks with percep-
trons and Gaussian radial units.


2 Surrogate modeling by neural


networks


A traditional approach to surrogate modeling of func-
tions has employed linear methods such as polyno-
mial interpolation. For suitable points x1, . . . , xm from
a domainX ⊂ R


d, empirically or numerically obtained
approximations φ̄(x1), . . . , φ̄(xm) of values φ(x1), . . . ,
φ(xm) of a function φ are interpolated by functions
from n-dimensional function spaces. These spaces are
obtained as linear spans


span{g1, . . . , gn} :=


{


n
∑


i=1


wigi |wi ∈ R


}


, (1)


where the functions g1, . . . gn are first n elements from
a set G = {gn |n ∈ N+} with a fixed linear ordering
(we use the standard notation := meaning a defini-
tion). Typical examples of linear approximators are
algebraic or trigonometric polynomials. They are ob-
tained by linear combinations of powers of increasing
degrees or trigonometric functions with increasing fre-
quencies, resp.


Feedforward neural networks have more adjustable
parameters than linear models as in addition to coef-
ficients of linear combinations of basis functions, also
inner coefficients of computational units are optimized
during learning. Thus they are sometimes called
variable-basis approximation schemas in contrast to
traditional linear approximators which are called fixed
basis approximation schemas. In some cases, especially
in approximation of functions of large numbers of vari-
ables, it was proven that neural networks achieve bet-
ter approximation rates than linear models with much
smaller model complexity [11, 10].


One-hidden-layer networks with one linear output
unit compute input-output functions from sets of the
form


spann G :=


{


n
∑


i=1


wigi |wi ∈ R, gi ∈ G


}


, (2)


where the set G is sometimes called a dictionary [14]
and n is the number of hidden computational units.


This number can be interpreted as a measure of model
complexity of the network. In contrast to linear ap-
proximation, the dictionary G has no fixed ordering.


Often, dictionaries are parameterized families of
functions modeling computational units, i.e., they are
of the form


GF (X,Y ) := {F (·, y) : X → R | y ∈ Y } , (3)


where F:X×Y →R is a function of two variables, an
input vector x ∈ X ⊆ R


d and a parameter y∈Y ⊆R
s.


When X = Y , we write briefly GF (X). So one-hidden-
layer networks with n units from a dictionaryGF(X,Y )
compute functions from the set


spann GF (X,Y ) :=


{


n
∑


i=1


wiF (x, yi) |wi ∈ R, yi ∈ Y


}


.


In some contexts, F is called a kernel. However, the
above-described computational scheme includes fairly
general computational models, such as functions com-
putable by perceptrons, radial or kernel units, Hermite
functions, trigonometric polynomials, and splines. For
example, with


F (x, y) = F (x, (v, b)) := σ(〈v, x〉 + b)


and σ : R → R a sigmoidal function, the computa-
tional scheme (2) describes one-hidden-layer percep-
tron networks. Radial (RBF) units with an activation
function β : R → R are modeled by the kernel


F (x, y) = F (x, (v, b)) := β(v‖x − b‖).


Typical choice of β is the Gaussian function. Kernel
units used in support vector machine (SVM) have the
form F (x, y) where F : X × X → R is a symmetric
positive semidefinite function [27].


Various learning algorithms optimize parameters
y1, . . . , yn of computational units as well as coefficients
w1, . . . , wn of their linear combinations so that net-
work input-output functions


n
∑


i=1


wi F (., yi)


from the set spann GF (X,Y ) fit well to training sam-
ples {(xi, φ̄(xi) |i = 1, . . . ,m}.


3 Solutions of Fredholm integral


equations


Solving an inhomogeneous Fredholm integral equation
of the second kind on a domain X ⊆ R


d for a given
λ ∈ R \ {0}, K : X × X → R, and f : X → R is
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a task of finding a function φ : X → R such that for
all x ∈ X


φ(x) − λ


∫


X


φ(y)K(x, y) dy = f(x). (4)


The function φ is called solution, f data, K kernel,
and λ parameter of the equation (4).


Fredholm equations can be described in terms of
theory of inverse problems. Formally, an inverse prob-
lem is defined by a linear operator A : X → Y between
two function spaces. It is a task of finding for f ∈ Y
(called data) some φ ∈ X (called solution) such that


A(φ) = f.


Let TK denotes the integral operator with a kernel
K : X × X → R defined for every φ in a suitable
function space as


TK(φ)(x) :=


∫


X


φ(y)K(x, y) dy (5)


and IX denotes the identity operator. Then the Fred-
holm equation (4) can be represented as an inverse
problem defined by the linear operator IX − λTK . So
it is a problem of finding for a given data f a solution φ
such that


(IX − λTK)(φ) = f. (6)


The classical Fredholm alternative theorem
from 1903 proved existence and uniqueness of solu-
tions of Fredholm equations for continuous one vari-
able functions on intervals. A modern version hold-
ing for general Banach spaces is stated in the
next theorem from [27, p.499]. Recall that an operator
T : (X , ‖.‖X ) → (Y, ‖.‖Y) between two Banach spaces
is called compact if it maps bounded sets to precom-
pact sets (i.e., sets whose closures are compact).


Theorem 1. Let (X , ‖.‖X ) be a Banach space, T :
(X , ‖.‖X ) → (X , ‖.‖X ) be a compact operator, and IX
be the identity operator. Then the operator IX + T :
(X , ‖.‖X ) → (X , ‖.‖X ) is one-to-one if and only if it
is onto.


A straightforward corollary of Theorem 1 guaran-
tees existence and uniqueness of solutions of the in-
verse problem (6) when T is a compact operator and
1/λ is not its eigenvalue (i.e., there is no φ ∈ X for
which T (φ) = φ


λ ).


Corollary 1. Let (X , ‖.‖X ) be a Banach space,
T : (X , ‖.‖X ) → (X , ‖.‖X ) be a compact operator,
IX be the identity operator, and λ 6= 0 be such that 1/λ
is not an eigenvalue of T . Then the operator IX − λT
is invertible (one-to-one and onto).


The following proposition gives conditions guar-
anteeing compactness of operators TK in spaces
(C(X), ‖.‖sup), where X ⊆ R


d, of bounded continu-
ous functions on X with the supremum norm
‖f‖sup = supx∈X |f(x)| and to spaces (L2(X), ‖.‖L2)
of square integrable functions with the norm ‖f‖L2 =
(∫


X
f(x)2 dx


)1/2
. The proof is well-known and easy to


check (see, e.g., [26, p. 112]).


Proposition 1. (i) If X ⊂ R
d is compact and K :


X×X → R is continuous, then TK : (C(X), ‖.‖sup) →
(C(X), ‖.‖sup) is a compact operator.
(ii) If X ⊂ R


d and K ∈ L2(X × X), then TK :
(L2(X), ‖.‖L2) → (L2(X), ‖.‖L2) is a compact oper-
ator.


So by Corollary 1, when the assumptions of the
Proposition 1 (i) or (ii) are satisfied and 1/λ is not
an eigenvalue of TK , then for every f in C(X) or
L2(X), resp., there exists unique solution φ of the
equation (4). It is known (see, e.g, [1]) that the so-
lution φ can be expressed as


φ(x) = f(x)− λ


∫


X


f(y)Rλ
K(x, y) dy , (7)


where Rλ
K : X ×X → R is called a resolvent kernel .


However, the formula expressing the resolvent kernel
is not suitable for efficient computation as it is ex-
pressed as an infinite Neumann series in powers of λ
with coefficients in the form of integrals with iterated
kernels [5, p.140]. So numerical calculations of values
of solutions of Fredholm equations based on (7) are
quite computationally demanding. Thus various meth-
ods of finding surrogate solutions of (4) have been ex-
plored [13, 6]. Some of these methods utilized feedfor-
ward networks. Such networks were trained on samples
of input-output pairs {(x1, φ̄(x1)), . . . , (xm, φ̄(xm)}
where {x1, . . . , xm} are selected points from the do-
main X and {φ̄(x1), . . . , φ̄(xm)} are numerically com-
puted approximations of values {φ(x1), . . . , φ(xm)} of
the solution φ. In these experiments, one-hidden-layer
networks with perceptrons and Gaussian radial units
were used. However, without a theoretical analysis, it
is not clear how to choose a proper number n of net-
work units to guarantee that input-output functions
approximate well the solution and the networks are
not too large to make their implementation unfeasi-
ble.


4 Rates of convergence of surrogate


solutions


Estimates of model complexity of one-hidden-layer
networks approximating solutions of Fredholm equa-
tions follow from inspection of upper bounds on rates
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of decrease of errors in approximation of solutions of
the equation (4) by sets spannG with n increasing.
Approximation properties of sets of the form spann G
have been studied in mathematical theory of neuro-
computing for various types of dictionaries G
and norms measuring approximation errors such as
Hilbert-space norms and the supremum norm (see,


e.g., [4, 8]). Some such bounds have the form ξ(h)√
n
,


where n is the number of network units and ξ(h) de-
pends on a certain norm of the function h to be ap-
proximated.


This norm is tailored to the dictionary of compu-
tation units and can be estimated for functions sat-
isfying suitable integral equations. The norm is de-
fined quite generally for any bounded nonempty sub-
set G of a normed linear space (X , ‖.‖X ). It is called
G-variation, denoted ‖.‖G, and defined for all f ∈ X
as


‖f‖G,X := inf {c > 0 | f/c ∈ clX conv (G ∪−G)} ,


where the closure clX is taken with respect to the
topology generated by the norm ‖.‖X and conv de-
notes the convex hull. So G-variation depends on the
ambient space norm, but when it is clear from the
context, we write merely ‖f‖G instead of ‖f‖G,X .


The concept of variational norm was introduced by
Barron [3] for sets of characteristic functions. Among
them, the set of characteristic functions of half-spaces
forming the dictionary of functions computable by
Heaviside perceptrons. Barron’s concept was general-
ized in [18, 19] to variation with respect to an arbitrary
bounded set of functions and applied to various dictio-
naries of computational units such as Gaussian RBF
units or kernel units [16].


The following theorem on rates of approximation
by sets of the form spannG is a reformulation from [19]
of results by Maurey [25], Jones [15], Barron [4] in
terms of G-variation. For a normed space (X , ‖.‖X ),
g ∈ X and A ⊂ X , we denote by


‖g −A‖X := inf
f∈A


‖g − f‖X


the distance of g from A.


Theorem 2. Let (X , ‖.‖X ) be a Hilbert space, G its
bounded nonempty subset, sG = supg∈G‖g‖X , f ∈ X ,
and n be a positive integer. Then


‖h− spannG‖2X ≤ s2G‖h‖2G − ‖h‖2X
n


.


Theorem 2 guarantees that for every ε > 0 and n
satisfying


n ≥
(


sG ‖h‖G
ε


)2


,


a network with n units computing functions from the
dictionary G approximates the function h within ε. So
the size of G-variation of the function h to be approxi-
mated is a critical factor influencing model complexity
of networks approximating h within a required accu-
racy. Generally, it is not easy to estimate G-variation.
However, the following theorem from [21] shows that
for the special case of functions with integral represen-
tations in the form of “infinite networks”, variational
norms are bounded from above by the L1-norms of
“output-weight” functions of these networks.


Theorem 3. Let X ⊆ R
d, Y ⊆ R


s, w ∈ L1(Y ), K :
X×Y → R be such that GK(X,Y ) = {K(., y) | y ∈ Y }
is a bounded subset of (L2(X), ‖.‖L2), and h ∈ L2(X)
be such that for all x ∈ X, h(x) =


∫


Y w(y)K(x, y) dy.
Then


‖h‖GK(X,Y ) ≤ ‖w‖L1 .


To apply Theorem 2 to approximation of solutions
of Fredholm equations by surrogate models formed by
networks with units from a general dictionary G, we
need upper bounds on G-variation. The next proposi-
tion describes a relationship between variations with
respect to two sets, G and F ; its proof follows easily
from the definition of variational norm.


Proposition 2. Let (X , ‖.‖X ) be a normed linear
space, F and G its bounded subsets such that cG,F :=
supg∈G‖g‖F < ∞. Then for all h ∈ X , ‖h‖G ≤
cG,F ‖h‖F .


Combining Theorems 2, 3, and Proposition 2, we
obtain the next theorem on rates of approximation of
functions which can be expressed as h = TK(w) by
networks with units from a dictionary G.


Theorem 4. Let X ⊆ R
d, K : X × Y → R be


a bounded kernel, and h ∈ L2(X) such that
h = TK(w) =


∫


Y w(y)K(., y) dy for some w ∈ L1(Y ),
where GK(X,Y ) is a bounded subset of L2(X). Let G
be a bounded subset of L2(X) with sG = supg∈G‖g‖L2


such that cG,K = supg∈G‖g‖GK(X,Y ) is finite. Then
for all n > 0,


‖h− spann G‖L2 ≤ sG cG,K ‖w‖L1√
n


.


A critical factor in the estimate given in Theo-
rem 4 is the L1-norm of the “output-weight function”
w in the representation of the function h to be ap-
proximated an “infinite network” with units comput-
ing K(., y) in the form


h(x) = TK(w) =


∫


Y


w(y)K(x, y) dy.
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The solution φ of the Fredholm equation minus the
function f representing the data, φ − f , is the image
of λφ mapped by the integral operator TK , i.e.,


φ− f = TK(λφ) = λ


∫


X


φ(y)K(x, y) dy .


Thus to apply Theorem 4 to approximation of a so-
lution of Fredholm equation, we need to estimate the
L1-norm of the solution φ itself as λφ plays the role
of the “output-weight” function in the infinite network
∫


X λφ(y)K(x, y) dy.


Theorem 5. Let X ⊂R
d be compact, K : X ×X →


R be a bounded kernel such that K ∈ L2(X × X),
ρK :=


∫


X
supy∈X |K(x, y)|dx be finite, G be a bounded


subset of L2(X) with sG = supg∈G‖g‖L2 such that
cG,K = supg∈G‖g‖GK(X) is finite, and λ 6= 0 be such


that 1
λ is not an eigenvalue of TK and |λ| ρK < 1.


Then the solution φ of the equation (4) satisfies for
all n > 0,


‖φ− f − spann G‖L2 ≤ sG cG,K |λ| ‖f‖L1


(1− |λ| ρK)
√
n


.


Proof. As φ− f satisfies the Fredholm equation (4),
we have for every x ∈ X ,


|φ(x)| ≤ |λ| ‖φ‖L1 supy∈X |K(x, y)|+ |f(x)|.


Integrating over X we get


‖φ‖L1 ≤ |λ| ρK ‖φ‖L1 + ‖f‖L1


and so ‖φ‖L1 (1− |λ| ρK) ≤ ‖f‖L1. This inequality is
non trivial only when |λ| < 1


ρK
. Thus we get ‖w‖L1 =


|λ|‖φ‖L1 ≤ |λ| ‖f‖
L1


1−|λ| ρK


. The statement then follows from


Theorem 4. 2


Theorem 5 estimates rates of approximation of the
function φ − f = λ


∫


X f(y)Rλ
K(x, y) dy by functions


computable by networks with units from dictionary G
formed by functions with GK-variations bounded
by cG,K . Numerical computations of values of the func-
tion λ


∫


X
f(y)Rλ


K(x, y) dy are time consuming.


For |λ| < 1
ρK


and any bounded dictionary G with fi-
nite bound cG,K on GK(X)-variations on its elements,
input-output functions of networks with increas-
ing numbers of units from G converge to the function
φ− f . When for a reasonable size of the network mea-
sured by the number n of units, the upper bound from
Theorem 5 is sufficiently small, the network can serve
as a good surrogate model of the solution of Fredholm
equation.


To illustrate our results, consider approximation of
Fredholm equations with the Gaussian kernel


Kb(x, y) = e−b‖x−y‖


with the width b by surrogate solutions in the form
of input-output functions of networks with two types
of popular units: sigmoidal perceptrons and Gaussian
radial units. Note that Fredholm equations with Gaus-
sian kernels arise, e.g., in image restoration problems
[24]. By µ is denoted the Lebesgue measure on R


d and
by P σ


d (X) the dictionary of functions on X computable
by sigmoidal perceptrons.


Corollary 2. Let X ⊂ R
d be compact, b > 0,


Kb(x, y) = e−b‖x−y‖2


, λ 6= 0 be such that 1
λ is not an


eigenvalue of TKb
and |λ| < 1. Then the solution φ


of the equation (4) with f continuous satisfies for all
n > 0


‖φ− f − spann GKb
(X)‖L2 ≤ µ(X) |λ| ‖f‖L1


(1− |λ|µ(X) )
√
n


and


‖φ− f − spann P
σ
d (X)‖L2 ≤ µ(X) 2d |λ| ‖f‖L1


(1− |λ|µ(X) )
√
n
.


Proof. It was shown in [17] that variation of the d-
dimensional Gaussian with respect to the dictionary
formed by sigmoidal perceptrons is bounded from
above by 2d and thus by Proposition 2, cPσ


d
,Kb


≤ 2d.
The statement then follows by Theorem 5, an estimate
sGK


b
≤ µ(X) and equalities sPσ


d
= µ(X) and


ρKb
= µ(X). 2
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17. P.C. Kainen, V. Kůrková, A. Vogt: A Sobolev-type


upper bound for rates of approximation by linear com-


binations of Heaviside plane waves. Journal of Ap-
proximation Theory 147, 2007, 1–10.
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M. Kárný, (Eds), Computer-Intensive Methods in
Control and Signal Processing. The Curse of Dimen-
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Abstract. A reducing automaton (red-automaton) is
a deterministic automaton proposed for checking word and
sub-word correctness by the use of analysis by reduction. Its
monotone version characterizes the class of deterministic
context-free languages (DCFL). We propose a method for
a construction of a deterministic monotone enhancement
of any monotone reducing automaton which is able with the
help of special auxiliary symbols to localize its prefix and
post-prefix (in)consistencies, and certain types of reducing
conflicts. In other words this method ensures a robust anal-
ysis by reduction without spurious error messages. We for-
mulate natural conditions for which this method ensures
the localization of all prefix and post-prefix inconsistencies
in any (incorrect) word with respect to a DCFL.


1 Introduction


A reducing automaton (red-automaton for short) is
a device that models the so called analysis by reduc-
tion. Analysis by reduction consists in a stepwise sim-
plification of an extended sentence (word) until a sim-
ple sentence (word) is obtained or an error is found. It
is based on another automata model – restarting au-
tomaton (R-automaton) introduced in [2]. Similarly to
R-automaton, red-automaton can only delete symbols.
At some place it decides to delete some of the last k
visited symbols, where k is limited by a fixed constant
and then restarts its computations, i.e. it enters its
initial state and its head is placed on the left end of
the remaining word.


Reducing automaton is formalized as an extension
of deterministic finite automaton. This kind of for-
malization serves here as a basic tool for the method
of algorithmic localization of syntactic inconsistencies
(errors) for the languages from the class of DCFL.
The notion of red-automata was introduced in order to
present naturaly the techniques of minimization. In [7]
we construct to any red-automaton M an unambigu-
ously determined minimal red-automaton Mm which
preserves the recognized language, and the set of all
reductions defined by M .


For a given language L and a word w 6∈ L, it
is natural to define the maximal correct prefix and


⋆ This work was supported by the grant projects of the
Grant Agency of the Czech Republic No. P202/10/1333
and P103/10/0783.


prefix-inconsistency (prefix error) in w. The prefix in-
consistency is the minimal incorrect prefix of w. Let
x ∈ Σ be the leftmost symbol in the word w such that
w = uxv, u, v ∈ Σ∗, there exists a word v′ ∈ Σ∗ for
which it holds uv′ ∈ L and there is no word v′′ such
that uxv′′ ∈ L. The u is the maximal correct prefix
of w, and ux the prefix-inconsistency of w.


In a similar way we can consider (in)correct infixes
for a given language L and a word w 6∈ L. We can eas-
ily see that a prefix-inconsistence can occur in a word
at most once. Our effort is to study properties of re-
ducing automata which will ensure the detection of
(in)correct prefixes, and/or certain types of (in)correct
infixes. The types of the (in)correct infixes studied
here are studied by different techniques already in [1].
We call them here post-prefix (in)consistencies.


In this paper we use the advantage of the fact, that
to any deterministic context-free language L there is
a monotone reducing automaton recognizing L which
is also able to detect the prefix inconsistency (error).
Such type of automaton characterizes the class of
DCFL. This fact is shown in [6].


The paper is structured as follows. First, in Sec-
tion 2 we introduce red-automata and their basic prop-
erties. The Section 3 creates the core of this paper.
Conclusion contains some remarks about connections
of the presented method with the methods based on
the so called head-symbols.


2 Definitions and basic properties


The reducing automaton has a finite control unit and
a working head attached to a list with sentinels on
both ends. It works in certain cycles called stages. At
the beginning of each stage, the head points at the
leftmost item behind the left sentinel, and the control
unit is in a special initial state. In the process of the
stage the automaton moves the head from the item it
currently points to the next item on the right. Dur-
ing such a transition it changes the state of its control
unit according to the current state and the currently
scanned symbol. The stage ends as the control unit
gets to any of special states called operations. There
are three kinds of operations: ACC, ERR, and RED. Both
ACC and ERR-operation halts the whole computation,
ACC accepts and ERR rejects the word in the list. The
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RED-operation RED(n) determines how the list should
be shortened. Its parameter n – a binary word of a lim-
ited size – specifies which item on the left of the head
are to be removed from the list. Bit 1 means “remove
the item from the list”, bit 0 means “leave the item
in the list”. After all items designated for deletion are
removed, the automaton resets its control unit to the
initial state and places the head at the leftmost item
behind the left sentinel. The string n ∈ (10∗)+ deter-
mines, which items will be deleted from the list. If the
i-th symbol of n from the right is equal to 1, then the
automaton deletes the i-th item to the left from the
position of the head. The item scanned by the head is
considered as the first one.


All final states of a reducing automaton M create
a finite subset FM of the (unbounded) set { ACC, ERR }∪
{ RED(n) | n ∈ (1·0∗)+ }. Now we are able to introduce
reducing automata in a formal way.


A reducing automaton (red-automaton) is a 7-tuple
M = (ΣM , «, », SM , sM , FM , fM ), where ΣM is a fi-
nite input alphabet, «, » 6∈ ΣM are the (left and right)
sentinels, SM is the finite set of internal states,
sM ∈ SM is the (re)starting state, FM is the finite set
of final states (operations), fM : SM ×(ΣM ∪{»}) −→
(SM ∪FM ) is the transition function of M , which ful-
fills the following condition:


∀s ∈ SM : fM (s, ») ∈ FM .
We will describe the behavior of M in more details by
two functions enhancing the transition function fM :


δM : (SM ∪ FM ∪ {RED}) × (ΣM ∪ {«, »}) −→ (SM ∪
FM ∪ {RED})
∆M : (SM ∪ F ∗


M )× (ΣM ∪ {«, »}) −→ (SM ∪ F ∗
M )


RED is a new (helping) state which is different from
all states from SM , and the set F ∗


M is defined in the
following way:


F ∗
M = FM ∪ {RED(n · 0k) | RED(n) ∈ FM a k ≥ 1}


Both functions δM , ∆M for all pairs created by a state
s ∈ SM and by a symbol a ∈ (ΣM ∪ {»} are equal to
the function fM . We define the new functions for the
remaining relevant pairs in the following way:


δM (s, «) = sM ∆M (s, «) = sM


and for all a ∈ (ΣM ∪ {»}),


δM (ACC, a) = ACC ∆M (ACC, a) = ACC


δM (ERR, a) = ERR ∆M (ERR, a) = ERR


δM (RED(n), a) = RED ∆M (RED(n), a) = RED(n·0)


δM (RED, a) = RED


The first enhancement of δM :
δ∗M (s, λ) = s, δ∗M (s, ua) = δM (δ∗M (s, u), a)


The first enhancement of ∆M :
∆∗


M (s, λ) = s, ∆∗
M (s, ua) = ∆M (∆∗


M (s, u), a)


We will often use the following conventions:
δ∗M (sM , w) = δ∗M («w), ∆∗


M (sM , w) = ∆∗
M («w).


We define for the both function a further important
enhancement, namely for the final subsets S of the set
SM ∪ FM ∪ {RED} resp. SM ∪ F ∗


M :
δ∗M (S, u) = {δ∗M (s, u) | s ∈ S}
∆∗


M (S, u) = {∆∗
M (s, u) | s ∈ S}


Let us note that the tuple
(ΣM ∪ {«, »}, SM ∪ FM ∪ {RED}, sM , FM , δM ) is


a finite automaton which accepts exactly all prefixes
(words) which lead M to some reduction, or to an ac-
ceptation, or to a rejection.


We will consider in the following only the reducing
automata which fulfills the following natural condi-
tion:
δ∗M (sM , u) = RED(n) =⇒ |u| ≥ |n|.


Let us take: L0(M) = {w ∈ Σ∗
M | ∆∗


M («w ») = ACC}.


Constant. Let kM = max
{


|n|
∣


∣RED(n) ∈ FM


}


. We
call kM the characteristic constant of M .


The operation of reduction. We will exactly de-
scribe a reduction of a word by a binary sequence with
the help of the following operation /:


a/0 = a, a/1 = λ, λ/n = λ, u/λ = u,
(u · a)/(n · i) = (u/n) · (a/i),
where u ∈ Σ∗, a ∈ Σ, n ∈ (10∗)+ and i ∈ {0, 1}. The
size of the strings u, n is here unbounded, moreover u
can be longer then n, and vice versa. The reduction of
the word (a) by the sequence 1 · 0 · 1 is given in the
following way: (a)/101 = a.
Using just defined operation we can describe the way
how the red-automaton M reduces a word w ∈ Σ∗


M .
The relation of reduction denoted by ⇒M is intro-
duced in the following way: «w» ⇒M «w′»,
if ∆∗


M («w») = RED(n), and «w»/n = «w′».
If «w» ⇒M «w′» holds, we say, that the automaton M
reduces the word w into the word w′. We can see that
|w| > |w′|.
The relation ⇒+ is the transitive closure of ⇒; ⇒∗ is
the reflexive and transitive closure of ⇒.
Analysis by reduction by M is any sequence of re-
ductions «w1» ⇒ «w2» ⇒ . . . ⇒ «wn», which cannot
be further prolonged. If wn ∈ L0(M), we speak about
accepting analysis by reduction, in the other case we
speak about rejecting analysis by reduction. Often we
will speak about analysis instead of analysis by reduc-
tion.


Stages. Let us recall that each computation of a red-
automaton is divided in stages. At the beginning of
each stage the head points at the leftmost item be-
hind the left sentinel, and the control unit is in the
(re)starting state. The stage ends as the control unit
gets to any final state (operation) from FM . There are
three kinds of operations: ACC, ERR, and RED. Accord-
ingly, we have accepting (ACC-), rejecting (ERR-), and
reducing (RED-)stages.
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Recognized language. The language recognized by
M is defined in the following way:
L(M) = {w | «w» ⇒∗


M «w′», and w′ ∈ L0(M) }.


Equivalences of red-automata. Two red-automata
M1 and M2 are equivalent, if L(M1) = L(M2).


We will often consider a stronger equivalence. Let
us suppose that for any w ∈ (Σ∗


M1
∪Σ∗


M2
)·{λ, »} hold


at the same time
δ∗M1


(«w) = ACC ⇐⇒ δ∗M2
(«w) = ACC,


δ∗M1
(«w) = RED(n) ⇐⇒ δ∗M2


(«w) = RED(n).
We say that M1 and M2 are strongly equivalent.


We can see that if M1 and M2 are strongly equivalent
then they are equivalent, as well.


Error and correctness preserving property.
We can see the following usefull property:


Lemma 1. If «w1» ⇒M «w2», then w1 ∈ L(M), ex-
actly if w2 ∈ L(M).


Monotony. Monotony is an important property that
enables to characterize the class of DCFL in terms
of monotonic reducing automata. This property was
introduced for restarting automata in [2], first. Infor-
mally a red-automaton M is monotonic if the size of
sequences of non-visited items (symbols) in individ-
ual stages of any analysis by reduction by M is non-
increasing. A monotonic reducing automaton will be
called a mon-red-automaton for short. As an example
see Table 1.


3 Robust analyzer


We introduce for the robust analysis by reduction
a new type of automaton – robust analyzer. Robust an-
alyzer enhances the reducing automaton by the ability
of inserting special auxiliary symbols, and by the abil-
ity to read any input word about its input alphabet to
the end. Robust analyzer A consists of finite control
unit with a finite set of states SA, and from a working
head connecting the finite control unit with a linear
list of items. The list of items is bounded by a left
and right sentinels « and ». All other items contain
a symbol from a finite input alphabet XA, or of a finite
auxiliary alphabet YA. These alphabets are mutually
disjunct.


Robust analyzer is able to delete some items from
the list (operation of reduction). Deleted can be the
item visited by the working head and some items po-
sitioned not far to the left from the working head.
Operations of reductions are controlled by reducing
sequences. Each operation of reduction is followed by
a restart, i.e., transfer of the control unit into the
(re)starting state sA, and a placement of the work-
ing head on the left sentinel «. It means, that the ro-
bust analyzer, similarly as reducing automaton, works


in stages. Therefore we can define the monotony for
robust analyzers in the same way as for reducing au-
tomata.


We divide auxiliary symbols into two types. Each
type serves to a different purpose:
1) for a transfer of local informations between different
stages,
2) for a marking of correct and incorrect sub-words
of the analyzed word, and for marking of the place of
certain types of a reducing conflict.


The auxiliary symbols of the type 2 are called signs.
Here we use two signs:
! – for marking of incorrectnesses,
? – for marking of reducing ambiguities.
We understand under the reducing ambiguity a sub-
word for which is obtained by the robust analysis an
ambiguous information about its current reduction.


There is a technical difference between reducing
automata, and robust parsers. The behavior of the ro-
bust parser is described by the following three func-
tions:


Transition function tA : SA × (XA ∪ YA) −→ SA.
ta determines the state, into which will be transfered
the finite control from its current state after scanning
the symbol from the item visited by the working head.


Inserting function iA : SA × (XA ∪ YA) −→ IA.
iA assigns to a state, and to a scanned symbol an in-
serting sequence from a (final) set IA ⊆ (YA · 0∗)∗.


Inserting sequences serves in a similar way as re-
ducing sequences. They describe the inserted auxiliary
symbols, and their inserting positions. If the value of
the inserting function is λ, it will be nothing inserted.
If the value is !, A inserts new item with the marking !
immediately before (to the left) the scanned item. The
value ?000 says, that the marking ? should be inserted
before the third item to the left before the scanned
item.


Reducing function rA : SA × (XA ∪ YA) −→ RA.
rA assigns to a state, and to a scanned symbol a re-
ducing sequence from a (final) set RA ⊆ (1 · 0∗)∗.


Reducing sequence is here interpreted in the same
way as for reducing automata.


A step of the robust analyzer A consists from the
sequence of the following actions:


Shift to the right. Analyzer A starts each step by
a shift to the right of its working head to the next
item of the working list.


Application of the inserting function. iA by the
current situation (state, symbol) determines the
inserting sequence Is. A controlled by Is inserts
new auxiliary symbols.


Application of the reduction function. rA deter-
mines by the current situation the current reduc-
ing sequence Rs. If RS is non-empty, A controlled
by Rs reduces (deletes) determined items from the
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working list. After such a reduction A finishes the
step by a restart, i.e., moves the working head on
the left sentinel «, and transfers the control unit
into the (re)starting state sA. Then a new stage
will be started on the reduced list.
If Rs is empty then A does not perform any reduc-
tion, neither the restart, and it finishes the step by
the following action.


Application of the transition function. tA deter-
mines by the current situation the new state q.
Then A continues from the state q by a further
step of the current stage.


The last difference of A from reducing automata
consists in the fact that A contains only one halt-
ing state END ∈ SA. We will see that the signs of A
will refine the ability of accepting and rejecting by the
states ACC and ERR of reducing automata. For this
purpose we observe the signs ! and ? inserted in the
different stages of the computation into the gradually
reduced working list. We will project the signs into
the original input list in such a way that we will in-
sert the signs into the same positions (i.e. before the
same items) into which they were inserted during the
individual stages of the computation (robust analysis)
by A.


We denote by pA(w) a word w enriched by the
signs (in the way mentioned above) inserted into the
list during the analysis by the robust analyzer A. We
will later formulate our results using this denotation.
As an example see Fig.1. We can consider pA(w) as
the output word of A.


3.1 Prefix and post-prefix (in)consistencies


Assumption. We assume in the following that
L ⊆ Σ∗, and any symbol of Σ is a symbol of some
word from L.


We call a word v inconsistent (incorrect) with re-
spect to the language L ⊆ Σ∗, if for any u, w ∈ Σ∗ is
uvw 6∈ L.


We can see that incorrect words can obtain proper
incorrect sub-words. This fact lead us to the following
notion.
We say that a word v is an incorrect core of the word w
with respect to the language L, if it is a subword of w,
if it is incorrect with respect to the language L, and if
it is minimal by the ordering “to be a sub-word”.


On the other hand, a word v is a correct sub-word
of a word w with respect to the language L, if w = xvy,
and for some x′, y′ is x′vy′ ∈ L. We say that v is
a correct core of a word w with respect to the language
L, if it is a correct sub-word of w with respect to L,
and it is maximal by the ordering “o be a sub-word”.
The assumption that each symbol of Σ is a symbol of
some word of the language L ensures that each symbol


of any word w ∈ Σ∗ is contained in some correct core
of this word.


Prefix consistence is the longest correct prefix v of
the analyzed word w. Prefix inconsistence is the short-
est incorrect prefix of the analyzed word w, i.e., it is
the prefix va of w, where a ∈ Σ. Post-prefix consis-
tence is a suffix x of a correct core behind (to the right
of) the prefix consistence, or behind some of the pre-
vious post-prefix consistencies. We assign to the post-
prefix consistency x the incorrect sub-word xa of w.
We say that xa is a post-prefix inconsistence of w (with
respect to L).


Our effort in the following is to deterministically,
in a monotonic way, and exactly to localize the prefix
and post-prefix (in)consistencies in the analyzed words
from DCFL.


3.2 Post-prefix robust analyzer A


Prefix consistence. A red-automaton M is prefix-
consistent when for each word u and each symbol a
(including the right sentinel) it holds the following: if
∆M (sM , u) ∈ SM and ∆M (sM , ua) 6= ERR, then ua is
a prefix of some word from L(M) · {»}.


The following proposition is derived from the main
result from [2]. The detailed proof is in [6]. There is
also connected with some other propositions.


Proposition 1. Monotone, prefix consistent, red-
automata characterize the class of DCFL.


It is shown in [7] that the notion of red-automata is
useful for the techniques of minimization. There is to
any red-automaton M constructed an unambiguously
determined state-minimal red-automaton Mm which
is strongly equivalent with M .


We will show informally in the next part a method
how construct for a given monotone, prefix-correct,
state-minimal reducing automaton M a robust ana-
lyzer A which determines in any word w ∈ «Σ∗


M» the
prefix-(in)consistence, and (not obligatory all) post-
prefix (in)consistencies. We suppose for the construc-
tion that L(M) 6= ∅.


At first A will use the prefix-consistency of M for
the finding of the prefix-(in)consistency of the ana-
lyzed word w.


Such a situation can occur after one, or after more
stages if M will be transfered into the final rejecting
state ERR. The computation (analysis) of M on the
word w until this moment we describe in the following
way:
1) At first M (possibly) gradually reduces the word w
into the word w′, i.e., w ⇒∗


M w′.
2) Then in the next stage M transfers over some pre-
fix x of the word w′ into some non-final state s ∈ SM ,
i.e., δ∗M (sM , x) = s ∈ SM ,







Localization of (in)consistencies . . . 59


3) Finally from the state s transfers over the next sym-
bol a into the final state ERR, i.e., δM (s, a) = ERR.


We can see that A has founded by the previous sim-
ulation of M the prefix inconsistency of w. For mark-
ing of the prefix inconsistency A inserts the sign !


between the correct prefix «x and the symbol a.
The prefix-consistency of M ensures that M has


visited in the last step described above the symbol a
at the first time. Therefore if w′ = «xay for some y
then ay is a suffix of the original input word w.


Let us now informaly describe how A continues in
the robust analysis over the mentioned suffix ay of the
word w.


We will use the function δM for this aim. This func-
tion was introduced as an enhancement of the transi-
tion function fM . It describes not only the transfers
between the individual states, but also the tranfers be-
tween the indiviual subsets of the set SM∪FM∪{RED},
i.e., of the set of all final and non-final states, and of
a special state RED. We will use it in the following in
order to describe the all possible (partial) computation
of M over the suffix ay at the same time.


We let A to compute the function δM over the suffix
ay = a0a1 . . . a|y| starting from the set SM of all non-
final states of M . A will control the computation in
the following way. Let us initially take the set SM as
a set further denoted as SI .


Let us denote the following part of the computation
of A as a cycle C1. The cycle C1 is performed until for
the set S = δ∗M (SI , a0 . . . ai), where 0 ≤ i ≤ |y|, holds
that ∅ ⊂ S ⊆ SM ∪{ERR}, and S contains some non-
final state. Then A performs the following action: the
head of A will be placed to the next item to the right,
and as (the current value of) the set S will be taken
the set δM (S, ai+1). Here ends the description of C1.


The core of the post-prefix analysis by A are the
following four cases where is not fulfilled the condition
for the continuation of the computation by cycle C1.


Correct suffix. The set S contains the accepting
state ACC; i.e., ACC ∈ S.
If ACC ∈ S, then the current suffix of the analyzed
word w by A is a suffix of some word from L(M).
Therefore, the current suffix cannot contain any fur-
ther inconsistency. The work of A on w is finished at
this moment.


An unambiguous inconsistency. The set S con-
tains a single state – the rejecting state ERR; i.e.,
S = {ERR}.


All the possible computations of M over the
word w behind the previous inconsistency has ended
at the same time in the state ERR. We have found
a suffix of a correct core of the analyzed word, i.e., one
of its post-prefix (in)consistency. At this moment A
inserts the sign ! immediately before the position of


its working head. The automaton A will look for a new
post-prefix (in)consistency behind (to the right from)
the currently inserted sign !. A will take instead of
the set {ERR} as the current value of the set S the
set δM (SM , a), where a is the symbol scanned by the
working head. A will continue in the robust analysis
of the remaining suffix by the schema of the cycle C1.


An ambiguous reduction. S does not contain
ACC, and either does contain two different reducing
states of M , or does contain at least one non-final
state, and at least one reducing state; i.e.,
ACC 6∈ S, and ∃n : RED(n) ∈ S 6⊆ {RED(n), ERR}.
We say that S fulfilling the condition above is an am-
biguous set.
The task for A is to work without false inconsistency
messages. From that reason A separates the ambigu-
ous part from the remaining suffix. It inserts the sign
for the ambiguity ? in the place of the current ambi-
guity, i.e., immediately to the left from the position
of the working head (if the sign is not already placed
there in some of the previous stages). At this moment
A takes for the set S the complete set SM , and con-
tinues in the robust analysis behind the sign ? by the
scheme of the cycle C1.


An unambiguous reduction. The set S con-
tains exactly one reducing operation, and possibly be-
side it the final state ERR; i.e., ∃n : RED(n) ∈ S ⊆
{RED(n), ERR}.


Let us denote as u the sub-word which is created
by the input symbols positioned between the last sign
! or ?, and the position of the working head includ-
ing the scanned symbol. The sub-word u is because of
the prefix-consistency, and because of the state min-
imality of M a sub-word of some word from L(M).
Moreover, the u is reduced in any word w ∈ L(M) of
the form w = vux by the reducing seguence n, i.e, the
reducing sequence and the position of the reduction
are determined unambiguously. A will reduce also by
n, but only the symbols from u if we consider the case
that n can be longer then u.


Observation. The reducing sequence n deletes at
least one symbol from u. This observation follows from
the unambiguity of the reduction of u. Let us sup-
pose the opposite. Then for some z, and n′ is n =
n′ · 0|u|, and δ∗M (sM , zu) = RED(n).
Let z′ be the shortest z with the properties described
above. Since M is prefix-correct «z′u is a prefix of some
word from «L(M)». In the next stage occurs one of the
following variant:


δ∗M (sM , (z′/n′) · u) = RED(n′′) for some n′′


δ∗M (sM , (z′/n′) · u) = RED


δ∗M (sM , (z′/n′) · u) = ACC


δ∗M (sM , (z′/n′) · u) ∈ SM
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Each of the presented variant leads to a contradiction
with the unambiguity of the reduction of the word u.
If occurs the first one, then n′′ reduces some symbol of
the sub-word u (since z′ cannot be shorter), therefore
n′′ 6= n and RED(n′′) ∈ S 6⊆ {RED(n), ERR}. By the
remaining variants is the contradiction obvious.


Apart from the reduction of u by n, A will insert
into the list a new item with an auxiliary symbol – the
set U of pairs of an internal state and a word over an
input alphabet of the length kM at most. This auxil-
iary symbol will be used in the next stage to adjust the
set of states computed by the function δM . Our goal is
to avoid situation when δ∗M (s, u) = ERR 6= δ∗M (s, u/n)
for some s ∈ SM . Such internal states s must be elim-
inated. The set U is defined by the following way:


– If |u| ≥ |n|, then A reduces the working list of
items by n and A puts a new item with the auxil-
iary symbol U just in front of the leftmost deleted
item. U = {(s, λ) | ∃s′ ∈ SM : δ∗M (s′, u1) =
s and δ∗M (s, u2) = RED(n)} where u = u1u2 and
|u2| = |n|.


– If |u| < |n|, then A cannot reduce by the whole n as
such a reduction would impact a part of the work-
ing list in front of u; this part would be reduced by
n1 such that n = n1n2 and |n2| = |u|. But a part
of the working list in front of the rightmost marker
! or ? can be reduced in some word of L(M) in
other way or even not at all. So, A will reduce
items behind the rightmost marker ! or ? by the
reducing sequence n2 and it will insert a new item
containing an auxiliary symbol U just to the right
of the rightmost marker. U = {(s, x) | ∃v ∈ Σ∗


M :
x = v/n1 a |v| = |n1| a δ∗M (s, vu) = RED(n)}.


Insertion of the set U into the working list is impor-
tant as it ensures the continuity of subsequent stages
of computation. In next stage, A will use this set to
adjust the set S of internal states computed by func-
tion δM . As soon as A reach the item with U , it substi-
tute S by S′ = {δ∗M (s, v) | (s, v) ∈ U}. It guarantees
that A enter a part of the list impacted by the last
reduction in such states only that led to the last re-
duction of u by n resp. n2.


A uses just defined set U in such a case only when
the new item with U is inserted just behind an item
containing a symbol of the input alphabet or a marker.
Otherwise, when this item contains an auxiliary sym-
bol U ′ different from both markers, then (instead of
insertion of U) A replaces U ′ with U computed in the
following way:


U = {(s, x) | ∃y, (s′, x′) ∈ U ′ : x = yx′/n1 , and
δ∗M (s, y) = s′ , and δ∗M (s′, x′u) = RED(n) , and
|y| = max{0, |n1| − |x′|}},


where n1 is a prefix of n of the length |n| − |u|. In
all cases, the length of the word x contained in any


pair of inserted set U is bounded by the characteristic
constant kM which ensures that U is finite.


Let us note that A stores in its finite control a suit-
able suffix of its working list before the position of its
working head. The length of this suffix need not be
longer then 2 · kM . It contains the input items, and
the inserted values of the set S in the last 2 ·kM steps.


Recall, that we suppose that the automaton M is
minimal and prefix-consistent. The minimality of M
ensures that each state of M is reachable. The state-
reachability, and the prefix-consistence of the automa-
ton M ensure for any word u, that u is a sub-word of
some word of L(M), if δ∗M (SM , u) 6⊆ {ERR, RED}.


If A inserts the sign ! or ? immediately before the
right sentinel » it finishes its computation. Since we
suppose that L(M) is non-empty, is » a suffix of some
word of the language «L(M)» (i.e.,L(M) with sen-
tinels).


Now we have outlined the behavior of A in the first
stage after the localization of the prefix-inconsistence.
In the next stages we need also to consider the signs
and the other auxiliary symbols inserted in the previ-
ous stages. We will not describe here these details.


We illustrate the outlined method by the following
example.


Example 1. We explain the presented method by two
prefix-consistent, state-minimal mon-red-automata.
We will present two different robust analyses of the
following inconsistent word «a++(a)+)(a».


The transition functions of the automata M1


and M3 from [6] which we use in this example are
defined by the tables in the figure 1. We do not present
here the automaton M2 from [6].


The robust reduction analyses of the considered
word are on figures 1a, and 1b. Both figures contain
also the input word enriched by the signs ! and ? on
the corresponding places.


Let us note that in [6] is a detailed description
of a construction which constructs to a given prefix
consistent, state minimal mon-red-automaton M its
robust analyzer A. This construction implements the
outlined method. The robust analyzer A is by this con-
struction given unambiguously for a given M .


3.3 Guarantees of the presented method


We formulate the guarantees of the presented method
as theorems. The detailed proofs can be found in [6].


Theorem 1. Let M be a prefix consistent, state-
minimal mon-red-automaton and A its post-prefix ro-
bust analyzer. For any w ∈ «Σ∗» the following propo-
sitions hold:
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a + ( ) »


⇒ s0 s1 ERR s2 ERR ERR


s1 ERR RED(11) ERR ERR ACC


s2 s3 ERR s2 ERR ERR


s3 ERR s4 ERR RED(101) ERR


s4 s5 ERR s2 ERR ERR


s5 ERR s4 ERR RED(110) ERR


(a) automaton M1 reducing the word
a+ without brackets around it “from
the left” and the +a with brackets
around “from the right”


a + ( ) »


⇒ s0 s1 ERR s2 ERR ERR


s1 ERR RED(11) ERR ERR ACC


s2 s3 ERR s2 ERR ERR


s3 ERR RED(11) ERR RED(101) ERR


(b) (strongly) monotone automaton
M3 reducing a+ only “from the left”


Table 1: The transition functions for M1 and M3.
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(a) The robust analyzer of M1
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(b) The robust analyzer of M3


Fig. 1: The robust analysis of «a++(a)+)(a».


1. The analyzer A reads (in one or more stages) the
complete word «w» and finishes its computation
in a special state END. Any computation of A is
monotone.


2. If pA(«w») does not contain any sign !, then
pA(«w») = «w» and w is from L(M).


3. If «w» ∈ «L(M)» then pA(«w») = «w».
4. If «u! is a prefix of pA(«w») and u does not con-


tain the sign ! then u does not contain the sign ?


as well, and «u is the longest correct-prefix of the
word «w» with respect to the language «L(M)».


5. If !u! or ?u! is a sub-word of the word pA(«w»)
and u does not contain any sign ! or ? then u is
a suffix of some corect core of the word «w» with
respect to the language «L(M)».


6. If !u» or ?u» is a suffix of the word pA(«w»),
and u does not contain any sign ! or ? then u» is
a sufix of some word from «L(M)».


7. If !u? or ?u? is a sub-word of pA(«w») and u does
not contain any sign ! or ? then u is a sub-word
of some word from «L(M)».


We will discuss the meaning of the sign ?, and we
will formulate properties of the mon-red-automatonM
which ensure that its post-prefix robust analyzer A
does not use the sign ? at all. This sign serves as the
right sentinel for the correct sub-words of L(M) which
lead A to some of two following types of a reduction
conflict. Let u be such a sub-word which is followed by
?. The first type of the conflict means that there are
two different words of L(M) containing u which lead
M by reading the complete u and its prefixes to two
different reductions. The second type of the conflict
means that there is a transfer trough u by M which
leads to a reduction, and at the same time there is an
another transfer leading to the shift to the right of M
from u to the next symbol.


Now we gradually introduce the notions of unam-
biguously reducible sub-word and unambiguously re-
ducing red-automaton, and we will show that a post-
prefix robust analyzer A of M which is unambiguously
reducing, need not to use the sign ? at all.


We say that a sub-word w is reducible by M if for
some n holds that RED(n) ∈ δ∗M (SM , w).


We say that a sub-word w is unambiguously re-
ducible by M if for some n holds that RED(n) ∈
δ∗M (SM , w) ⊆ {RED(n), ERR}.


We say that a sub-word which is reducible but it
is not unambiguously reducible is an ambiguously re-
ducible sub-word.


We say that M is unambiguously reducing if any of
its reducible sub-words is unambiguously reducible.


Example 2. The automaton M1 from the example 1
is not unambiguously reducing. All its ambiguously
reducible sub-words are presented in Table 2a. Let us
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note the length of this words is not limited by any
constant, since for any i ≥ 0 holds that


δ∗M1
(SM1 , (+a)


i+) = {ERR, RED(110), s4}.
The minimal unambiguously reducible sub-words


of M1 are in Table 2b.


sub-word w ) a) + a+ +a+ . . .
δ∗M1


(SM1 , w) RED(110) RED(110) RED(11) RED(11) RED . . .
RED(101) RED(101) s4 s4 s4


(a) ambiguously reducible sub-words


sub-word w +a) (a) «a+
δ∗M1


(SM1 , w) RED(110) RED(101) RED(11)


(b) minimal unambiguously reducible sub-
words
Table 2: Reducible sub-words of M1.


We can see that in this example the robust ana-
lyzer of M3 has founded all inconsistencies in the word
«a++(a)+)(a»., i.e., it has not used the sign ? at all.
This example illustrates the fact that M3 is an unam-
biguously reducing red-automaton. We can see that
directly from Table 1b.


The meaning of the reducing unambiguity for the
localization of the post-pefix inconsistencies summa-
rizes the following theorem.


Theorem 2. Let M be a prefix consistent, state-mini-
mal mon-red-automaton and A its post-prefix robust
analyzer. If M is at the same time unambiguously re-
ducing then its post-prefix robust analyzer A does not
use the sign ? at all. That means, that A in any word
from «Σ∗


M» determines the prefix inconsistency and
all its post-prefix inconsistencies with respect to the
language L(M).


Corollary 1. Let M be a mon-red-automaton which
is at the same time prefix-consistent and state-
minimal, and A be its robust analyzer. Then there is
a deterministic push-down transducer which translates
any word w from Σ∗


M on the word pA(w).


4 Conclusion


The presented method can be considered as a direct
generalization of the method presented in [9], and as
an essential refinement and a generalization of the
method from [5]. The method in [9] is based on mono-
tone reducing automata, the method in [5] is based
on (monotone) list automata with auxiliary symbols.
Both the methods are based on the so called head-
symbols. The head-symbol (in)consistencies from [9]


create a very special type of (in)consistencies consid-
ered by the method presented in this paper. In the
close future we will show that the set of languages rec-
ognized by unambiguously reducing, prefix consistent,
state-minimal mon-red-automata creates a proper
subclass of DCFL.
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