
Nejlepších výsledků dosáhnete, když toto portfolio PDF
otevřete v aplikaci Acrobat 9 či Adobe Reader 9 nebo novější.

Opatřete si Adobe Reader nyní!

http://www.adobe.com/go/reader_download_cz

Preface

The 11th conference ITAT’11: Information Technology – Applications and Theory
(http://itat.ics.upjs.sk/) was held in Hotel Boboty (http://www.hotelboboty.sk/) located
in Vrátná dolina near Těrchová in Malá Fatra, Slovakia, September 23-27, 2011.

ITAT is a traditional place of meeting for scientists and experts working in computer science from
the Czech Republic and Slovakia. The emphasis is on exchange of ideas and information between the
participants as well as on informal communication; a big space is devoted to discussions. The conference
also offers a possibility for young researchers and students to present their work and to discuss it with
more experienced colleagues. The conference languages are Slovak and Czech, proceedings papers are
in English.

ITAT is a broad scope conference that ranges from theoretical foundations of computer science, through
security and cryptography, through software engineering to data processing, semantic web and to
natural language processing.

Each from the 31 submissions was refereed by at least two independent referees. The Proceedings
consists of two invited lectures and five original scientific papers.

The conference ITAT’11 was co-organized by the following institutions:
– Institute of Informatics of University of P. J. Šafárik in Košice,
– Faculty of Mathematics and Physics, Charles University in Prague,
– Institute of Computer Science of Academy of Sciences of the Czech Republic, Prague
– Slovak Society for Artificial Intelligence.

We would like to thank the invited speakers Karel Oliva and Zdeněk Žabokrtský, the authors of
presented papers, all PC members and reviewers for keeping high scientific level of ITAT as well as
organizers led by Peter Gurský for organizing the 11th ITAT conference.

Partial support has to be acknowledged to the project NoSCoM: Non-Standard Computational Models
and Their Applications in Complexity, Linguistics, and Learning, the Grant Agency of the Czech
Republic, grant No. P202/10/1333.

Special thanks go to our sponsor Profinit (http://www.profinit.eu/).

Markéta Lopatková

We recommend the use of Adobe Reader version 9.0 to view this pdf-file.

Program Committee
Markéta Lopatková, (Chair), Charles University in Prague, Prague, CZ
Radim Bača, Technical University VŠB, Ostrava, CZ
David Bednárek, Charles University in Prague, Prague, CZ
Mária Bieliková, Slovak University of Technology, Bratislava, SK
Jiří Dokulil, Charles University in Prague, Prague, CZ
Jana Dvořáková, Charles University in Prague, Prague, CZ
Peter Gurský, University of P.J. Šafárik, Košice, SK
Tomáš Holan, Charles University in Prague, Prague, CZ
Martin Holeňa, Institute of Computer Science, AS CR, Prague, CZ
Tomáš Horváth, University of P.J. Šafárik, Košice, SK
Daniela Chudá, Institute of Informatics and Software Engineering, Bratislava, SK
Jozef Jirásek, University of P.J. Šafárik, Košice, SK
Jana Katreniaková, Comenius University, Bratislava, SK
Rastislav Královič, Comenius University, Bratislava, SK
Michal Krátký, Technical University VŠB, Ostrava, CZ
Věra Kůrková, Institute of Computer Science, AS CR, Prague, CZ
Roman Neruda, Institute of Computer Science, AS CR, Prague, CZ
Dana Pardubská, Comenius University, Bratislava, SK
Tomáš Plachetka, Comenius University, Bratislava, SK
Martin Plátek, Charles University in Prague, Prague, CZ
Jaroslav Pokorný, Charles University in Prague, Prague, CZ
Karel Richta, Charles University in Prague, Prague, CZ
Gabriel Semanišin, University of P.J. Šafárik, Košice, SK
Václav Snášel, Technical University VŠB, Ostrava, CZ
Vojtěch Svátek, University of Economics, Prague, CZ
Roman Špánek, Institute of Computer Science, AS CR, Prague, CZ
Július Štuller, Institute of Computer Science, AS CR, Prague, CZ
Ondrej Šuch, Inštitút matematiky a informatiky, SAV, Banská Bystrica, SK
Peter Vojtáš, Charles University in Prague, Prague, CZ
Jakub Yaghob, Charles University in Prague, Prague, CZ
Filip Zavoral, Charles University in Prague, Prague, CZ

Organizing Committee
Peter Gurský, (chair), University of P. J. Šafárik, Košice, SK
Hanka Bílková, Institute of Computer Science, AS CR, Prague, CZ
Tomáš Horváth , University of P. J. Šafárik, Košice, SK
Róbert Novotný, University of P. J. Šafárik, Košice, SK
Martin Šumák, University of P. J. Šafárik, Košice, SK
Mária Palušáková, University of P. J. Šafárik, Košice, SK

Organization
ITAT 2011 – Information Technologies – Applications and Theory was organized by
University of P. J. Šafárik, Košice, SK
Institute of Computer Science, AS CR, Prague, CZ
Faculty of Mathematics and Physics, Charles University in Prague, CZ
Slovak Society for Artificial Intelligence, SK

Table of Contents

Invited papers

Linguistics behind the mirror . 1
K. Oliva

Treex – an open-source framework for natural language processing . 7
Z. Žabokrtský

Scientific papers

Flip-pushdown automata: nondeterministic ε-moves can be removed . 15
P. Ďuriš, M. Košta

Named entities from Wikipedia for machine translation . 23
O. Hálek, R. Rosa, A. Tamchyna, O. Bojar

Assessing the suitability of surrogate models in evolutionary optimization . 31
M. Holeňa, R. Demut

Gene finding with complex external information . 39
M. Kucharík, J. Kováč, B. Brejová

Web application for recognition of mathematical formulas .47
J. Stria, D. Průša

Linguistics behind the mirror

Karel Oliva

Institute of the Czech Language AS CR, v. v. i.
Letenská 123/4, Praha 1 - Malá Strana, CZ - 118 51, Czech Republic

Abstract. A natural language is usually modelled as
a subset of the set T ∗ of strings (over some set T of termi-
nals) generated by some grammar G. Thus, T ∗ is divided
into two disjoint classes: into grammatical and ungram-
matical strings (any string not generated by G is considered
ungrammatical). This approach brings along the following
problems:
– on the theoretical side, it is impossible to rule out

clearly unacceptable yet “theoretically grammatical”
strings (e.g., strings with multiple centre self-embed-
dings, cf. The cheese the lady the mouse the cat the
dog chased caught frightened bought cost 10 £),

– on the practical side, it impedes systematic build-up
of such computational lingustics applications as, e.g.,
grammar-checkers.

In an attempt to lay a theoretical fundament enabling the
solution of these problems, the paper first proposes a tri-
partition of the stringset into:
– clearly grammatical strings,
– clearly ungrammatical strings,
– strings with unclear (“on the verge”) grammaticality

status
and, based on this, concentrates on
– techniques for systematic discovery and description of

clearly ungrammatical strings,
– the impact of the approach onto the theory of gram-

maticality,
– an overview of simple ideas about applications of the

above in building grammar-checkers and rule-based
part-of-speech taggers.

1 Introduction

Apart from deciding on the membership of a particular
string σ in a particular language L, a formal grammar
is usually assigned an additional task: to assign each
string from the language L some (syntactic) structure.
The idea behind this is that the property of having
a structure differentiates the strings σ ∈ L from all
“other” strings ω 6∈ L, i.e. having a structure differ-
entiates sentences from “nonsentences”. Due to this,
the task of identifying the appurtenance of a string to
a language (the set membership) and the task of as-
signing the string its structure are often viewed as in
fact identical. In other words, the current approach to
syntactic description supposes that any string ω ∈ T ∗

which cannot be assigned a structure by the respective
grammar is to be considered (formally) ungrammati-
cal. Closely linked to this is also the presupposition

that the borderline between strings which are gram-
matical and those which are ungrammatical is sharp
and clear-cut.

Even elementary language practice (e.g., serving
as a native speaker – informant for fellow linguists, or
teaching one’s mother tongue) shows that this presup-
position does not hold in reality. The realistic picture
is much more like the one in Fig. 1: there are strings
which are considered clearly correct (“grammatical”)
by the native speakers, there are other ones that are
doubtless incorrect (out of the language, “informally
ungrammatical”, unacceptable for native speakers),
and there is a non-negligible set of strings whose sta-
tus wrt. correctness (acceptability, grammaticality) is
not really clear and/or where opinions of the native
speakers differ (some possibly tending more in this,
others more in the other direction, etc.).

Assuming the better empirical adequacy of the pic-
ture in Fig. 1, the objective of this paper will be to
propose that a syntactic description of (some natural)
language L should consist of:

– a formal grammar G defining the set L(G)
of doubtlessly grammatical strings (L(G) ⊆ L).
Typically, the individual components of G (rules,
principles, constraints, . . .) are based on a struc-
ture assigned to a string, either directly (mention-
ing, e.g., the constituent structure) or indirectly,
operating with other syntactically assigned fea-
tures (such as subject, direct object, etc.). Since
the description of the “clearly correct” strings via
such a grammar is fairly standard, it will not be
further dealt with here,

– a formal “ungrammar” U defining the set L(U)
of doubtlessly ungrammatical strings. Typically,
any individual component (“unrule”) of U would be
based on lexical characteristics only, i.e. it would
take recourse neither to any structure of a string
nor to other syntactic characteristics (such as be-
ing a subject etc.), not even indirectly.

Unlike the standard approach, such a description
allows also for the existence of a non-empty set of
strings which belong to neither clearly grammatical
nor clearly ungrammatical strings – more formally,
such a description allows for a nonempty set
T ∗\(L(G)∪L(U)). Apart from this, the explicit knowl-
edge of the set L(U) of ungrammatical strings allows

2 Karel Oliva

"clearly" correct strings (sentences)

"clearly" incorrect strings

strings with uncertain/unclear

grammaticality status

T*

Fig. 1.

for straightforward development of important applica-
tions (cf. Sect. 4).

2 The unrules of the ungrammar

The above abstract ideas call for methods for discover-
ing and describing the “unrules” of the “ungrammar”.
In doing this, the following two points can be postu-
lated as starters:

– grammaticality/ungrammaticality is defined for
whole sentences (i.e. not for subparts of sentences
only, at least not in the general case)

– ungrammaticality occurs (only) as a result of vio-
lation of some linguistic phenomenon or phenom-
ena within the sentence.

Since any “clear” error consists of violation of a lan-
guage phenomenon, it seems reasonable that the
search for incorrect configurations be preceded by an
overview and classification of phenomena fit to the cur-
rent purpose.

From the viewpoint of the way of their manifesta-
tion in the surface string, (syntactic) phenomena can
be divided into three classes:
selection phenomena: in a rather broad under-
standing, selection (as a generalized notion of sub-
categorisation) is the requirement for a certain ele-
ment (a syntactic category, sometimes even a single
word) E1 to occur in a sentence if another element E2
(or: set of elements {E2, E3, . . . , En}) is present, i.e.
if E2 (or: {E2, E3, . . . , En}) occur(s) in a string but
E1 does not, the respective instance of selection phe-
nomena is violated and the string is to be considered
ungrammatical.
Example: in English, if a non-imperative finite verb
form occurs in a sentence, then also a word function-
ing as its subject must occur in the sentence (cf. the
contrast in grammaticality between She is at home.
vs. *Is at home.).

(word) order phenomena: word order rules are
rules which define the mutual ordering of (two or
more) elements E1, E2, . . . occurring within a partic-
ular string; if this ordering is not kept, then the re-
spective word order phenomenon is violated and the
string is to be considered ungrammatical.

Example: in an English do-interrogative sentence con-
sisting of a finite form of the auxiliary verb do, of a sub-
ject position filled in by a noun or a personal pronoun
in nominative, of a base form of a main verb different
from be and have, and of the final question mark, the
order must necessarily follow the pattern just used for
listing the elements, or, in an echo question, it must
follow the pattern of a declarative sentence. If this or-
der is not kept, the string is ungrammatical (cf. Did
she come?, She did come? vs. *Did come she?, etc.).

agreement phenomena: understood broadly, an
agreement phenomenon requires that if two (or more)
elements E1, E2, . . . cooccur in a sentence, then some
of their morphological characteristics have to be in
a certain systematic relation (most often, identity); if
this relation does not hold, the respective instance of
the agreement is violated and the string is ungram-
matical. (The difference to selection phenomena con-
sists thus of the fact that the two (or more) elements
E1, E2, . . . need not cooccur at all – that is, the agree-
ment is violated if they cooccur but do not agree, but
it is not violated if only one of the pair (of the set)
occurs, which would, however, be a violation of the
selection.)

Example: the string *She does it himself. breaks the
agreement relation in gender between the anaphora
and its antecedent (while the sentences She does it
herself. and She does it. are both correct – mind here
the difference to selection).

This overview of classes of phenomena suggests
that each string violating a certain phenomenon can
be viewed as an extension of some minimal violating

Linguistics behind the mirror 3

≺⊕





[

cat: n
gender:fem

]

∨





cat: pron
pron type:pers
gender:fem







⊕ himself⊕� (1)

string, i.e. as an extension of a string which contains
only the material necessary for the violation. For ex-
ample, the ungrammatical string The old woman saw
himself in the mirror yesterday, if considered a case
of violation of the anaphora-agreement relation, can
be viewed as an extension of the minimal string The
woman saw himself, and in fact as an extension of
the string Woman himself (since for the anaphora-
agreement violation, the fact that some other phenom-
ena are also violated in the string does not play any
role).

This means that a minimal violating string can be
discovered in each ungrammatical string, and hence
each “unrule” of the “formal ungrammar” can be con-
structed in two steps:

– first, by defining an (abstract) minimal violating
string, based on a violation of an individual phe-
nomenon (or, as the case might be, based on com-
bination of violations of a “small number” of phe-
nomena)

– second, by defining how the (abstract) minimal vi-
olating string can be extended into a full-fledged
(abstract) violating string (or to more such strings,
if there are more possibilities of the extension), i.e.
by defining the material (as to quality and posi-
tioning) which can be added to the minimal string
without making the resulting string grammatical
(not even contingently).

The approach to discovering/describing ungrammati-
cal strings will be illustrated by the following example
where the sign ‘≺’ will mark sentence beginning (an
abstract position in front of the first word), and ‘Â’
will mark sentence end (i.e. an abstract position “after
the full stop”).

Example: As reasoned already above, the abstract
minimal violating string of the string The old woman
saw himself in the mirror yesterday is the following
configuration (1) (in the usual regular expression no-
tation, using feature structures for the individual el-
ements of the regular expression, ‘∨’ for disjunction,
the sign ‘⊕’ for concatenation, and brackets ‘(‘and’)’ in
the usual way for marking off precedence/grouping).

This configuration states that a string consisting of
two elements (the sentential boundaries do not count),
a feminine noun or a feminine personal pronoun fol-
lowed by the word himself, can never be a correct sen-
tence of English (cf., e.g., the impossibility of the dia-
logue Who turned Io into a cow? *Hera himself.)

Further, such a minimal violating (abstract) string
can be generalized into an incorrect configuration of
unlimited length using the following linguistic facts
about the anaphoric pronoun himself in English:

– a bound anaphora must cooccur with a noun or
nominal phrase displaying the same gender and
number as the pronoun (with the binder of the
anaphor); usually, this binder precedes the pro-
noun within the sentence (and then it is a case of a
true anaphor) or, rarely, it can follow the anaphor
(in case of a cataphoric relation: Himself, he bought
a book.)

– occassionally, also an overtly unbound anaphora
can occur; apart from imperative sentences (Kill
yourself !), the anaphor must then closely follow
a to-infinitive (The intention was only to kill him-
self.) or a gerund (Killing himself was the only
intention.).

Taken together, these points mean that the only
way how to give the configuration from the string (1)
at least a chance to be grammatical is to extend it
with an item which

– either, is in masculine gender and singular number
– or is an imperative or an infinitive or a gerund and

stands to the left of the word himself.

This further suggests that – in order to keep the string
ungrammatical also after the extension – no masculine
gender and singular number item must occur within
the (extended) string, as well as no infinitive or gerund
must appear to the left of the word himself.

This can be captured in a (semi-)formal way (em-
ploying the Kleene-star ‘*’ for any number of repeated
occurrences, and ‘¬’ for negation) as follows.

In the first step, the requirement of no singular
masculine is to be added (2), in the second step, the
prohibition on occurrence of an imperative or an in-
finitive (represented by the infinitival particle to) or
a gerund to the left of the word himself will be ex-
pressed as in (3). This is then the final form of de-
scription of an abstract violating string. Any partic-
ular string matching this description is guaranteed to
be ungrammatical in English.

3 Ungrammar and the theory of
grammaticality

An important case – mainly for the theory of gram-
maticality – of a minimal violating string is three fi-

4 Karel Oliva

≺ ⊕

(

¬

[

number: sg
gender:masc

])

∗

⊕





[

cat: n
gender:fem

]

∨





cat: pron
pron type:pers
gender:fem









⊕

(

¬

[

number: sg
gender:masc

])

∗

⊕ himself ⊕

(

¬

[

number: sg
gender:masc

])

∗

⊕ � (2)

≺ ⊕

(

¬

([

number: sg
gender:masc

]

∨ [v form : (imp ∨ ger)] ∨

[

cat:part
form:to

]))

∗

⊕





[

cat: n
gender:fem

]

∨





cat: pron
pron type:pers
gender:fem









⊕

(

¬

([

number: sg
gender:masc

]

∨ [v form : (imp ∨ ger)] ∨

[

cat:part
form:to

]))

∗

⊕ himself ⊕

(

¬

[

number: sg
gender:masc

])

∗

⊕ � (3)

nite verbs following each other closely, i.e. the config-
uration V Fin + V Fin + V Fin. Such a configuration
appears, e.g., in the sentence The mouse the cat the
dog chased caught survived which is a typical example
of – in its time frequently discussed – case of a multi-
ple centre self-embedding construction. The important
point concerning this construction is that it became
the issue of discussions since

– one the one hand, this construction is – (almost)
necessarily – licensed by any “reasonable” formal
grammar of English, due to the necessity of allow-
ing in this grammar for the possibility of (recur-
sive) embedding (incl. centre self-embedding) of
relative clauses

– on the other hand, such sentences are unanimously
considered unacceptable by native speakers of En-
glish (with the contingent exception of theoretical
linguists J).

The antagonism between the two points is tradition-
ally attributed to (and attempted to be explained by)
a tension between the langue (grammar, grammatical
competence) and the parole (language performance) of
the speakers, that is, by postulating that the speakers
possess some internal system of the language but that
they use the language in a way which deviates from
this system. Such an assumption is generally a good
explanation for such (unintentional) violations of
langue (i.e. of grammaticality) in speech as, e.g., slips
of tongue, hesitations and/or repetitions, etc., but it
can hardly be used sensibly in case there are no extra-
linguistic factors and, above all, where the sentences in
question correspond to the langue (to the grammatical
description). This demonstrates that what is really at
stake here is the correctness of the general understand-
ing of the langue (and not a problem of a particular
grammar of a particular language).

The difference in methods of ruling sentences with
multiple centre self-embedding out of the language
drives us to the fact that the standard view of langue –

and hence that of a grammar – and the view advocated
in this paper differ considerably:

– the standard approach to langue, which allows for
specification of the set of correct strings only (via
the grammar), has no means available for ruling
out constructions with multiple centre self-
embedding (short of ruling out recursion of the
description of relative clauses, which would indeed
solve the problem, however, would also have se-
rious negative consequences elsewhere),

– the approach proposed, by allowing for explicit
and most importantly independent specifications
of the sets of correct and of incorrect strings as
two autonomous parts of the langue, allows for
ruling out constructions involving multiple centre
self-embedded relative clauses (at least in certain
cases); this is achieved without consequences on
any other part of the grammar and the language
described, simply by stating that strings where
three (or more) finite verbs follow each other im-
mediately belong to the area of “clearly incorrect”
strings.

By solving the problem of unacceptability of the
strings involving three (and more) finite verbs follow-
ing each other via the formal ungrammar, the ap-
proach proposed enforces a refinement of perspective
of the general description of grammaticality and un-
grammaticality. In particular, from now on the Fig. 1
above has to be understood as depicting the situation
in the language (understood as set of strings) only, i.e.
without any recourse to the means of its description
(i.e. without any recourse to a grammar and, in par-
ticular, to the coverage of a grammar). The coverage
of the two grammar modules introduced above (the
“grammar of the correct strings” and the “ungram-
mar of the incorrect strings”), i.e. the stringsets de-
scribed by the components of the grammar describing
the “clearly correct” and the “clearly incorrect” strings,
should be rather described as in Fig. 2.

Linguistics behind the mirror 5

 strings (sentences) described by

 the "grammar of the correct strings"

 strings (sentences) described by

 the "grammar of the incorrect strings"

 T* strings described by

 neither of the grammars

Fig. 2.

The crucial point is the part of this picture pointed
out by the arrow (where dense dots and vertical bars
overlap). This area of the picture is the one represent-
ing strings which are described by both components
of the grammar, i.e. strings which are covered both
by the description (grammar) of the correct strings
and by the description (ungrammar) of the incorrect
strings. At first glance, this might seem as a contra-
diction (seemingly, some strings are considered correct
and incorrect simultaneously), but it is not one, since
the true situation described in this picture is in fact
two independent partitionings of the set of strings T ∗

by two independent set description systems, each of
which describes a subset of T ∗. Viewed from this per-
spective, it should not be surprising that some strings
are described by both of the systems (while others are
described by neither of them). The fundamental is-
sue here is the relation of the two description systems
(the grammar and the ungrammar) to the pretheoret-
ical understanding of the notion of grammaticality as
acceptability of a string for a native speaker of a lan-
guage. Traditionally, all the strings were considered
grammatical which were described by the grammar
of the correct strings. In the light of the current dis-
cussion, and mainly of the evidence provided by the
multiple centre self-embedding relative constructions,
this definition of grammaticality should be adjusted
by adding the proviso that strings which are covered
by the description of incorrect strings (by the ungram-
mar) should not be considered grammatical (not even
in case they are simultaneously covered by the gram-
mar of the correct strings). This changes the perspec-
tive (compared to the standard one), by giving the
ungrammar the “veto right” over the grammaticality
of a string, but obviously corresponds to the language
reality more closely than the standard approach.

Viewed from the perspective of a grammatical de-
scription considered as a model of a linguistic compe-
tence, the previous discussion can be summed up as
follows:

– (formally) grammatical strings are strings de-
scribed by the grammar but not by the ungram-
mar

– (formally) ungrammatical strings are strings de-
scribed by the ungrammar

– strings whose grammaticality is (formally) unde-
fined are strings which are described neither by
the grammar not by the ungrammar.

4 Applications

In the previous sections, rather theoretical issues con-
cerning the general view of grammaticality and means
of description of grammatical/ungrammatical strings
were dealt with. The task of finding the set of strictly
ungrammatical strings has also a practical importance,
however, since for certain applications it is crucial to
know that particular configuration of words (or of ab-
stractions over strings of words, e.g., configurations of
part-of-speech information) is guaranteed to be incor-
rect.

The most prominent (or at least: the most ob-
vious) among such tasks is (automatic) grammar-
checking: the ability to recognize reliably that
a string is ungrammatical would result in grammar-
checkers with considerably more user-friendly perfor-
mance than most of our present ones display, as they
are based predominantly on simple patter-matching
techniques, and hence they produce a lot of false
alarms over correct strings on the one hand while they
leave unflagged many strings whose ungrammaticality
is obvious to a human, but which cannot be detected
as incorrect since their inner structure is too complex
or does not correspond to any of the patterns for any
other reason.

Another practical task where the knowledge of the
ungrammar of a particular language may turn into
the central expertise needed is part-of-speech tag-
ging, i.e. assigning morphological information (such
as part-of-speech, case, number, tense, . . .) to words

6 Karel Oliva

in running texts. The main problem for (automatic)
part-of-speech tagging is morphological ambiguity, i.e.
the fact that words might have different morphologi-
cal meanings (e.g., the English wordform can is either
a noun (“a food container”) or a modal verb (“to be
able to”); a more typical – and much more frequent -
case of ambiguity in English is the noun/verb ambigu-
ity in such systematic cases as weight, jump, call, . . .).
The knowledge of ungrammatical configurations can
be employed for the build-up of a part-of-speech tag-
ger based on the idea of (stepwise) elimination of those
individual readings which are ungrammatical (i.e. im-
possible) in the context of a given sentence. In particu-
lar, each extended violating string with n constituting
members (i.e. a configuration which came into being
by extending a minimal violating string of length n)
can be turned into a set of disambiguation rules by
stipulating, for each resulting rule differently, (n − 1)
constituting members of the extended violating string
as unambiguous and issuing a deletion statement for
the n-th original element in a string which matches
the constituting elements as well as the extension ele-
ments inbetween them. Thus, each extended violating
string arising from a simple violating string of length n
yields n disambiguation rules.

Example: The two-membered minimal violating
string ARTICLE + VERB, after being extended into
the configuration (in the usual Kleene-star notation)
ARTICLE + ADVERB∗ + VERB, yields the follow-
ing two rules:

Rule 1:

find_a_string consisting of (from left to right):

– a word which is an unambiguous ARTICLE
(i.e. bears no other tag or tags than ARTICLE)

– any number of words which bear the tag ADVERB
(but no other tags)

– a word bearing the tag VERB

delete_the_tag VERB from the last word of the string

Rule 2:

find_a_string consisting of (from left to right):

– a word bearing the tag ARTICLE
– any number of words which bear the tag ADVERB

(but no other tags)
– a word which is an unambiguous VERB (i.e. it

bears only a single tag VERB or it bears more
than one tag, but all these tags are VERB)

delete_the_tag ARTICLE from the first word of the
string

The (linguistic) validity of these rules is based on
the fact that any string matching the pattern part of
the rule on each position would be ungrammatical (in
English), and hence that the reading to be deleted can
be removed without any harm to any of the grammat-
ical readings of the input string.

It is important to realize that the proposed ap-
proach to the "discovery" of disambiguation rules
yields the expected results – i.a. rules corresponding
to the Constraint Grammar rules given in standard lit-
erature (e.g., it brings the rule for English saying that
if an unambiguous ARTICLE is followed by a word
having a potential VERB reading, then this VERB
reading is to be discarded, cf. [1, p. 11], and compare
this to the example above). The most important in-
novative feature (wrt. the usual ad hoc approach to
writing these rules) is thus the systematic linguistic
method of discovering the violating strings, supporting
the development of all possible disambiguation rules,
i.e. of truly powerful Constraint Grammars. It is also
worth mentioning that the idea of the method as such
is language independent – it can be used for develop-
ment of Constraint Grammars for most different lan-
guages (even though the set of the developed rules will
be of course language-specific and will depend on the
syntactic regularities of the language in question).

References

1. F. Karlsson, A. Voutilainen, J. Heikikilä, and A. Antilla
(eds.) Constraint grammar – a language-independent
system for parsing unrestricted text. Mouton de
Gruyter, Berlin & New York, 1995.

Treex – an open-source framework
for natural language processing?

Zdeněk Žabokrtský

Charles University in Prague, Institute of Formal and Applied Linguistics
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

zabokrtsky@ufal.mff.cuni.cz

WWW home page: http://ufal.mff.cuni.cz/~zabokrtsky

Abstract. The present paper describes Treex (formerly
TectoMT), a multi-purpose open-source framework for de-
veloping Natural Language Processing applications. It fa-
cilitates the development by exploiting a wide range of soft-
ware modules already integrated in Treex, such as tools for
sentence segmentation, tokenization, morphological analy-
sis, part-of-speech tagging, shallow and deep syntax pars-
ing, named entity recognition, anaphora resolution, sen-
tence synthesis, word-level alignment of parallel corpora,
and other tasks. The most elaborate application of Treex is
an English-Czech machine translation system with trans-
fer on deep syntactic (tectogrammatical) layer. Besides re-
search, Treex is used for teaching purposes and helps stu-
dents to implement morphological and syntactic analyzers
of foreign languages in a very short time.

1 Introduction

Natural Language Processing (NLP) is a multidisci-
plinary field combining computer science, mathemat-
ics and linguistics, whose main aim is to allow com-
puters to work with information expressed in human
(natural) language.

The history of NLP goes back to 1950s. Early NLP
systems were based on hand-written rules founded by
linguistic intuitions. However, roughly two decades ago
the growing availability of language data (especially
textual corpora) and increasing capabilities of com-
puter systems lead to a revolution in NLP: the field
became dominated by data-driven approaches, often
based on probabilistic modeling and machine learning.

In such data-driven scenario, the role of hu-
man experts was moved from designing rules rather to
(i) preparing training data enriched with linguistically
relevant information (usually by manual annotation),
(ii) choice of an adequate probabilistic model, propos-
ing features (various indicators potentially useful for
making the desired predictions), and (iii) specifying an
objective (evaluation) function. Optimization of the

? The presented research is supported by the grants
MSM0021620838 and by the European Commission’s
7FP grant agreement n◦ 231720 (EuroMatrix Plus). We
would like to thank Martin Popel for useful comments
on the paper.

decision process (such as searching for optimal feature
weights and other model parameters) is then entirely
left to the learning algorithm.

Recent developments in NLP show that another
paradigm shift might be approaching with unsuper-
vised and semi-supervised algorithms, which are able
to learn from data without hand-made annotations.
However, such algorithms require considerably more
complex models and for most NLP tasks they have
not outperformed supervised solutions based on hand-
annotated data so far.

Nowadays, researched NLP tasks range from rel-
atively simple ones (like sentence segmentation, lan-
guage identification), through tasks which already
need a higher level of abstraction (such as morpholog-
ical analysis, part-of-speech tagging, parsing, named
entity recognition, coreference resolution, word sense
disambiguation, sentiment analysis, natural language
generation), to highly complex systems (machine
translation, automatic summarization, or question an-
swering). The importance of (and demand for) such
tasks increases along with the rapidly growing amount
of textual information available on the Internet.

Many NLP applications exploit several NLP mod-
ules chained in a pipeline (such as a sentence seg-
menter and part-of-speech tagger prior to a parser).
However, if state-of-the-art solutions created by dif-
ferent authors – often written in different program-
ming languages, with different interfaces, using dif-
ferent data formats and encodings – are to be used,
a significant effort must be invested into integrating
the tools. Even if these issues are only of technical na-
ture, in real research they constitute one of limiting
factors for building more complex NLP applications.

We try to eliminate such problems by introducing
a common NLP framework that integrates a number
of NLP tools and provides them with unified object-
oriented interfaces, which hide the technical issues
from the developer of a larger application. The frame-
work’s architecture seems viable – tens of researchers
and students have already contributed to the system
and the framework has been already used for a number
of research tasks carried out at the Institute of For-

8 Zdeněk Žabokrtský

mal and Applied linguistics as well as at some other
research institutions. The most complex application
implemented within the framework is English-Czech
machine translation. The framework is called Treex.1

The remainder of the paper is structured as fol-
lows. Section 2 overviews related work that had to be
taken into account when developing such framework.
Section 3 presents the main design decisions Treex
is build on. English-Czech machine translation imple-
mented in Treex is described in Section 4, while other
Treex applications are mentioned in Section 5, which
also concludes.

2 Related work

2.1 Theoretical background

Natural language is an immensely complicated phe-
nomenon. Modeling the language in its entirety would
be extremely complex, therefore its description is of-
ten decomposed into several subsequent layers (levels).
There is no broadly accepted consensus on details con-
cerning the individual levels, however, the layers typ-
ically roughly correspond to the following scale: pho-
netics, phonology, morphology, syntax, semantics, and
pragmatics.

One of such stratificational hypotheses is Func-
tional Generative Description (FGD), developed by
Petr Sgall and his colleagues in Prague since the
1960s [18]. FGD was used with certain modifications as
the theoretical framework underlying the Prague De-
pendency Treebank [6], which is a manually annotated
corpus of Czech newspaper texts from the 1990s. PDT
in version 2.0 (PDT 2.0) adds three layers of linguistic
annotation to the original texts:

1. morphological layer (m-layer)
Each sentence is tokenized and each token is an-
notated with a lemma (basic word form, such as
nominative singular for nouns) and morphological
tag (describing morphological categories such as
part of speech, number, and tense).

1 The framework was originally called TectoMT since
starting its development in autumn 2005 [23], because
one of the sources of motivation for building the frame-
work was developing a Machine translation (MT) system
using tectogrammatical (deep-syntactic) sentence repre-
sentation as the transfer medium. However, MT is by
far not the only application of the framework. As the
name seemed to be rather discouraging for those NLP
developers whose research interests did not overlap with
tectogrammatics nor with MT, TectoMT was rebranded
to Treex in spring 2011. To avoid confusion, the name
Treex is used throughout the whole text even if it refers
to a more distant history.

2. analytical layer (a-layer)
Each sentence is represented as a shallow-syntax
dependency tree (a-tree). There is one-to-one cor-
respondence between m-layer tokens and a-layer
nodes (a-nodes). Each a-node is annotated with
the so-called analytical function, which represents
the type of dependency relation to its parent
(i.e. its governing node).

3. tectogrammatical layer (t-layer)
Each sentence is represented as a deep-syntax de-
pendency tree (t-tree). Autosemantic (meaning-
ful) words are represented as t-layer nodes
(t-nodes). Information conveyed by functional
words (such as auxiliary verbs, prepositions and
subordinating conjunctions) is represented by
attributes of t-nodes. Most important attributes
of t-nodes are: tectogrammatical lemma, functor
(which represents the semantic value of syntactic
dependency relation) and a set of grammatemes
(e.g. tense, number, verb modality, deontic modal-
ity, negation).

Edges in t-trees represent linguistic dependencies
except for several special cases, the most notable
of which are paratactic structures (coordinations).

All three layers of annotation are described in an-
notation manuals distributed with PDT 2.0.

This annotation scheme has been adopted and fur-
ther modified in Treex. One of the modifications con-
sists in merging m-layer and a-layer sentence represen-
tations into a single data structure.2

Treex also profits from the technology developed
during the PDT project, especially from the existence
of the highly customizable tree editor TrEd, which is
used as the main visualization tool in Treex, and from
the XML-based file format PML (Prague Markup Lan-
guage, [14]), which is used as the main data format in
Treex.

2.2 Other NLP frameworks

Treex is not the only existing general NLP frame-
work. We are aware of the following other frameworks
(a more detailed comparison can be found in [15]):

– ETAP-3 [1] is a C/C++ closed-source NLP frame-
work for English-Russian and Russian-English
translation, developed in the Russian Academy of
Sciences.

2 As mentioned above, their units are in a one-to-one rela-
tion anyway; merging the two structures together has led
to a significant reduction of time and memory require-
ments when processing large data, as well as to a lower
burden for eyes when browsing the structures.

Treex – an open-source framework for NLP 9

– GATE (Java, LGPL) is one of the most widely
used NLP frameworks with integrated graphical
user interface. It is being developed at University
of Sheffield [4].

– Apache OpenNLP (Java, LGPL)3 is an organiza-
tional center for open source NLP projects.

– WebLicht4 is a Service Oriented Architecture for
building annotated German text corpora.

– Apertium [20] is a free/open-source machine trans-
lation platform with shallow transfer.

In our opinion, none of these frameworks seems fea-
sible (or mature enough) for experiments on MT based
on deep-syntactic dependency transfer. The only ex-
ception is ETAP-3, whose theoretical assumptions are
similar to that of Treex (its dependency-based stratifi-
cational background theory called Meaning-Text The-
ory [13] bears several resemblances to FGD), however,
it is not an open-source project.

2.3 Contemporary machine translation

MT is a notoriously hard problem and it is studied
by a broad research field nowadays: every year there
are several conferences, workshops and tutorials dedi-
cated to it (or even to its subfields). It goes beyond the
scope of this work even to mention all the contempo-
rary approaches to MT, but several elaborate surveys
of current approaches to MT are already available to
the reader elsewhere, e.g. in [10].

A distinction is usually made between two MT
paradigms: rule-based MT (RBMT) and sta-
tistical MT (SMT). The rule-based MT systems are
dependent on the availability of linguistic knowledge
(such as grammar rules and dictionaries), whereas sta-
tistical MT systems require human-translated parallel
text, from which they extract the translation knowl-
edge automatically. One of the representatives of the
first group is the already mention system ETAP-3.

Nowadays, the most popular representatives of the
second group are phrase-based systems (in which the
term ‘phrase’ stands simply for a sequence of words,
not necessarily corresponding to phrases in constituent
syntax), e.g. [8], derived from the IBM models [3].

Even if phrase-based systems have more or less
dominated the field in the recent years, their trans-
lation quality is still far from perfect. Therefore we
believe it makes sense to investigate also alternative
approaches.

MT implemented in Treex lies somewhere between
the two main paradigms. Like in RBMS, sentence rep-
resentations used in Treex are linguistically in-
terpretable. However, the most important decisions

3 http://opennlp.sourceforge.net
4 http://weblicht.sfs.uni-tuebingen.de/englisch/index.shtml

during the translation process are made by statistical
models like in SMT, not by rules.

3 Treex architecture overview

3.1 Basic design decisions

The architecture of Treex is based on the following
decisions:

– Treex is primarily developed in Linux. However,
platform independent solutions are searched for
wherever possible.

– The main programming language of Treex is Perl.
However, a number of tools written in other lan-
guages have been integrated into Treex (after pro-
viding them with a Perl wrapper).

– Linguistic interpretability – data structures repre-
senting natural language sentences in Treex must
be understandable by a human (so that e.g. trans-
lation errors can be traced back to their source).
Comfortable visualization of the data structures is
supported.

– Modularity – NLP tools in Treex are designed so
that they are easily reusable for various tasks (not
only for MT),

– Rules-vs-statistics neutrality – Treex architecture
is neutral with respect to the rules vs. statistics
opposition (rule-based as well as statistical solu-
tions are combined).

– Massive data – Treex must be capable of process-
ing large data (such as millions of sentence pairs
in parallel corpora), which implies that distributed
processing must be supported.

– Language universality – ideally, Treex should be
easily extendable to any natural language.

– Data interchange support – XML is used as the
main storage format in Treex, but Treex must be
able to work with a number of other data formats
used in NLP.

3.2 Data structure units

In Treex, representations of a text in a natural lan-
guage is structured as follows:

– Document. A Treex document is the smallest in-
dependently storable unit. A document represents
a piece of text (or several parallel pieces of texts
in the case of multilingual data) and its linguistic
representations. A document contains an ordered
sequence of bundles.

– Bundle. A bundle corresponds to a sentence (or
a tuple of sentences in the case of parallel data)
and its linguistic representations. A bundle con-
tains a set of zones.

10 Zdeněk Žabokrtský

– Zone. Each language (languages are distinguished
using ISO 639-2 codes in Treex) can have one or
more zones in a bundle.5 Each zone corresponds to
one particular sentence and at most one tree for
each layer of linguistic description.

– Tree. All sentence representations in Treex have
the shape of an oriented tree.6 At this moment
there are four types of trees: (1) a-trees – morphol-
ogy and surface-dependency (analytical) trees,
(2) t-trees – tectogrammatical trees, (3) p-trees –
phrase-structure (constituency) trees, (4) n-trees
– trees of named entities.

– Node. Each nodes contains (is labeled by) a set of
attributes (name-value pairs).

– Attribute. Some node attributes are universal
(such as identifier), but most of them are specific
for a certain layer. The set of attribute names and
their values for a node on a particular layer is de-
clared using the Treex PML schema.7 Attribute
values can be further structured.

Of course, there are also many other types of data
structures used by individual integrated modules (such
as dictionary lists, weight vectors and other trained
parameters, etc.), but they are usually hidden behind
module interfaces and no uniform structure is required
for them.

3.3 Processing units

There are two basic levels of processing units in Treex:

– Block. Blocks are the smallest processing units in-
dependently applicable on a document.

– Scenario. Scenarios are sequences of blocks. When
a scenario is applied on a document, the blocks
from the sequence are applied on the document
one after another.

5 Having more zones per language is useful e.g. for com-
paring machine translation with reference translation,
or translation outputs from several systems. Moreover
it highly simplifies processing of parallel corpora, or
comparisons of alternative implementations of a certain
tasks (such as different dependency parsers).

6 However, tree-crossing edges such as anaphora links in
a dependency tree can be represented too (as node at-
tributes).

7 There are also “wild” attributes allowed, which can store
any Perl data structure without its prior declaration
by PML. However, such undeclared attributes should
serve only for tentative or rapid development purposes,
as they cannot be validated.

(a) Simple Treex scenario:

Util::SetGlobal language=en # do everyth. in English zone
Block::Read::Text # read a text from STDIN
W2A::Segment # segment it into sentences
W2A::Tokenize # divide sentences into words
W2A::EN::TagMorce # morphological tagging
W2A::EN::Lemmatiz # lemmatization (basic word forms)
W2A::EN::ParseMST # dependency parsing
W2A::EN::SetAfunAuxCPCoord # fill analytical functions
W2A::EN::SetAfun # fill analytical functions
Write::CoNLLX # print trees in CoNLLX format
Write::Treex # store trees into XML file

(b) Input text example:

When the prince mentions the rose, the geographer explains
that he does not record roses, calling them "ephemeral".
The prince is shocked and hurt by this revelation. The
geographer recommends that he visit the Earth.

(c) Fragment from the printed output (simplified):

1 The the DT 2
2 prince prince NN 3
3 is be VBZ 0
4 shocked shock VBN 5
5 and and CC 3
6 hurt hurt VBN 5
7 by by IN 5
8 this this DT 9
9 revelation revelation NN 7
10 . . . 3

(d) A-tree visualization in TrEd:

a-tree
zone=en

The
AuxA
DT

prince
Sb
NN

is
Pred
VBZ

shocked
NR
VBN

and
NR
CC

hurt
NR
VBN

by
AuxP
IN

this
Atr
DT

revelation
Adv
NN

.
AuxG
.

Fig. 1. Simple scenario for morphological and surface-
syntactic analysis of English texts. Generated trees are
printed in the CoNLLX format, which is a simple line-
oriented format for representing dependency trees.

Treex – an open-source framework for NLP 11

A block can change a document’s content “in
place”8 via a predefined object-oriented interface. One
can distinguish several broad categories of blocks:

– blocks for sentence analysis – blocks for tokeniza-
tion, morphological tagging, parsing, anaphora
resolution, etc.

– blocks for sentence synthesis – blocks for propa-
gating agreement categories, ordering words, in-
flecting word forms, adding punctuation, etc.

– blocks for transfer – blocks for translating a com-
ponent of a linguistic representation from one lan-
guage to another, etc.

– blocks for parallel texts – blocks for word align-
ment, etc.

– writer and reader blocks – block for stor-
ing/loading Treex documents into/from files or
other streams (in the PML or other format),9

– auxiliary blocks – blocks for testing, printing, etc.

If possible, we try to implement blocks in a lan-
guage independent way. However, many blocks will re-
main language specific (for instance a block for moving
clitics in Czech clauses can hardly be reused for any
other language).

There are large differences in complexity of blocks.
Some blocks contain just a few simple rules (such as
regular expressions for sentence segmentation), while
other blocks are Perl wrappers for quite complex prob-
abilistic models resulting from several years of research
(such as blocks for parsing).

As for block granularity, there are no widely agreed
conventions for decomposing large NLP applica-
tions.10 We only follow general recommendations for
system modularization. A piece of functionality should
be performed by a separate block if it has well defined
input and output states of Treex data structures, if it
can be reused in more applications and/or it can be
(at least potentially) replaced by some other solution.

8 Pipeline processing (like with Unix text-processing com-
mands) is not feasible here since linguistic data are
deeply structured and the price for serializing the data
at each boundary would be high.

9 In the former versions, format converters were consid-
ered as tools separated from scenarios. However, provid-
ing the converters with the uniform block interface al-
lows to read/write data directly within a scenario, which
is not only more elegant, but also more efficient (inter-
mediate serialization and storage can be skipped).

10 For instance, some taggers provides both morphological
tag and lemma for each word form, while other taggers
must be followed by a subsequent lemmatizer in order
to achieve the same functionality.

4 English-Czech machine translation
in Treex

The translation scenario implemented in Treex com-
poses of three steps described in the following sec-
tions: (1) analysis of the input sentences up to tec-
togrammatical layer of abstraction, (2) transfer of the
abstract representation to the target language, and
(3) synthesis (generating) of sentences in the target
language. See an example in Figure 2.

4.1 Analysis

The analysis step can be decomposed into three phases
corresponding to morphological, analytical and tec-
togrammatical analysis.

In the morphological phase, a text to be trans-
lated is segmented into sentences and each sentence
is tokenized (segmented into words and punctuation
marks). Tokens are tagged with part of speech and
other morphological categories by the Morce tag-
ger [19], and lemmatized.

In the analytical phase, each sentence is parsed us-
ing the dependency parser [12] based on Maximum
Spanning Tree algorithm, which results in an analyti-
cal tree for each sentence. Tree nodes are labeled with
analytical functions (such as Sb for subject, Pred for
predicate, and Adv for adverbial).

Then the analytical trees are converted to the tec-
togrammatical trees. Each autosemantic word with its
associated functional words is collapsed into a sin-
gle tectogrammatical node, labeled with lemma, func-
tor (semantic role), formeme,11 and semantically in-
dispensable morphologically categories (such as tense
with verbs and number with nouns, but not number
with verbs as it is only imposed by subject-predicate
agreement). Coreference of pronouns is also resolved
and tectogrammatical nodes are enriched with infor-
mation on named entities (such as the distinction be-
tween location, person and organization) resulting
from Stanford Named Entity Recognizer [5].

11 Formemes specify how tectogrammatical nodes are re-
alized in the surface sentence shape. For instance,
n:subj stands for semantic noun in the subject posi-
tion, n:for+X for semantic noun with preposition for,
v:because+fin for semantic verb in a subordinating
clause introduced by the conjunction because, adj:attr for
semantic adjective in attributive position. Formemes do
not constitute a genuine tectogrammatical component
as they are not oriented semantically (but rather mor-
phologically and syntactically). However, they have been
added to t-trees in Treex as they facilitate the transfer.

12 Zdeněk Žabokrtský

Fig. 2. Analysis-transfer-synthesis translation scenario in Treex applied on the English sentence “However, this very
week, he tried to find refuge in Brazil.”, leading to the Czech translation “Přesto se tento právě týden snažil naj́ıt
útočǐstě v Braźılii.”. Thick edges indicate functional and autosemantic a-nodes to be merged.

4.2 Transfer

The transfer phase follows, whose most difficult part
consists in labeling the tree with target-language lem-
mas and formemes. Changes of tree topology and of
other attributes12 are required relatively infrequently.

Our model for choosing the right target-language
lemmas and formemes in inspired by Noisy Channel
Model which is the standard approach in the contem-
porary SMT and which combines a translation model
and a language model of the target language. In other
words, one should not rely only on the information
on how faithfully the meaning is transfered by some
translation equivalent, but also the additional model
can be used which estimates how well some translation
equivalent fits to the surrounding context.13

Unlike in the mainstream SMT, in tectogrammat-
ical transfer we do not use this idea for linear struc-
tures, but for trees. So the translation model estimates
the probability of source and target lemma pair, while
the language tree model estimates the probability of
a lemma given its parent. The globally optimal tree

12 For instance, number of nouns must be changed to plural
if the selected target Czech lemma is a plurale tantum.
Similarly, verb tense must be predicted if an English
infinitive or gerund verb form is translated to a finite
verb form.

13 This corresponds to the intuition that translating to
one’s native language is simpler for a human than trans-
lating to a foreign language.

labelling is then revealed by the tree-modified Viterbi
algorithm [22].

Originally, we estimated the translation model sim-
ply by using pair frequencies extracted from English-
Czech parallel data. A significant improvement was
reached after replacing such model by Maximum En-
tropy model. In the model, we employed a wide range
of features resulting from the source-side analysis. The
weights were optimized using training data extracted
from the CzEng parallel treebank [2], which contains
roughly 6 million English-Czech pairs of analyzed and
aligned sentences.

4.3 Synthesis

Finally, surface sentence shape is synthesized from the
tectogrammatical tree, which is basically a reverse
operation for the tectogrammatical analysis: adding
punctuation and functional words, spreading morpho-
logical categories according to grammatical agree-
ment, performing inflection (using Czech morphology
database [7]), arranging word order etc.

4.4 Evaluating translation quality

There are two general methods for evaluating transla-
tion quality of outputs of MT systems: (1) the quality
can be judged by humans (either using a set of criteria
such as grammaticality and intelligibility, or relatively
by comparing outputs of different MT systems), or

Treex – an open-source framework for NLP 13

��������	
��	���
�
���
	���
��	
��	���
�
���

����
�����������������
�������������
���������������

����������������������������������� ������

!������������
"����������������
!����!����#

���� ����

���������������
�������������
�������$%&���
�����������������

���������������

�	
�'��

Fig. 3. Tectogrammatical transfer implemented as Hidden Markov Tree Model.

(2) the quality can be estimated by automatic met-
rics, which usually measure some form of string-wise
overlap of an MT system’s output with one or more
reference (human-made) translations.

Both types of evaluation are used regularly during
the development of our MT system. Automatic metrics
are used after any change of the translation scenario,
as they are cheap and fast to perform. Large scale
evaluations by volunteer judges are organized annu-
ally as a shared task with the Workshop on Statistical
Machine Translation.14 Performance of the tectogram-
matical translation increases every year in both mea-
sures, and it already outperforms some commercial as
well as academic systems. Actually, it is the participa-
tion in this shared task (a competition, in other words)
what provides the strongest motivation momentum for
Treex developers.

5 Final remarks and conclusions

Even if tectogrammatical translation is considered as
the main application of Treex, Treex has been used for
a number of other research purposes as well:

– other MT-related tasks – Treex has been used for
developing alternative MT quality measures in [9],
and for improving outputs of other MT systems by
grammatical post-processing in [11],

– building linguistic data resources – Treex has been
employed in the development of resources such
as the Prague Czech-English Dependency Tree-
bank [21], the Czech-English parallel corpus
CzEng [2], and Tamil Dependency Treebank [16].

14 http://www.statmt.org/wmt11/

– linguistic data processing service for other research
carried out in other institutions, such as data anal-
yses for prosody prediction for The University of
West Bohemia [17].

Treex significantly simplifies code sharing across
individual research projects in our institute. There are
around 15 programmers (postgraduate students and
researchers) who have significantly contributed to the
development of Treex in the last years; four of them
are responsible for developing the central components
of the framework infrastructure called Treex Core.

Last but not least, Treex is used for teaching pur-
poses in our institute. Undergraduate students are
supposed to develop their own modules for morpho-
logical and syntactic analysis for foreign languages of
their choice. Not only that the existence of Treex en-
ables the students to make very fast progress, but their
contributions are accumulated in the Treex Subver-
sion repository too, which enlarges the repertory of
languages treatable by Treex.15

There are two main challenges for the Treex devel-
opers now. The first challenge is to continue improving
the tectogrammatical translation quality by better ex-
ploitation of the training data. The second challenge
is to widen the community of Treex users and devel-
opers by distributing majority of Treex modules via
CPAN (Comprehensive Perl Archive Network), which
is a broadly respected repository of Perl modules.

When thinking about a more distant future of MT
and NLP in general, an exciting question arises about
the future relationship of linguistically interpretable

15 There are modules for more than 20 languages available
in Treex now.

14 Zdeněk Žabokrtský

approaches (like that of Treex) and purely statisti-
cal phrase-based approaches. Promising results of [11],
which uses Treex for improving the output of a phrase-
based system and thus reaches the state-of-the-art MT
quality in English-Czech MT, show that combinations
of both approaches might be viable.

References

1. I. Boguslavsky, L. Iomdin, and V. Sizov: Multilin-
guality in ETAP-3: reuse of lexical resources. In
G. Sérasset, (ed.), COLING 2004 Multilingual Linguis-
tic Resources, pp. 1–8, Geneva, Switzerland, August 28
2004. COLING.

2. O. Bojar, M. Jańıček, Z. Žabokrtský, P. Češka, and
P. Beňa: CzEng 0.7: parallel corpus with community-
supplied translations. In Proceedings of the Sixth In-
ternational Language Resources and Evaluation, Mar-
rakech, Morocco, 2008. ELRA.

3. P.E. Brown, V.J. Della Pietra, S.A. Della Pietra,
and R.L. Mercer: The mathematics of statistical ma-
chine translation: parameter estimation. Computa-
tional Linguistics, 1993.

4. H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan: GATE: an architecture for development
of robust HLT applications. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, July, pp. 07–12, 2002.

5. J.R. Finkel, T. Grenager, and C. Manning: Incorporat-
ing non-local information into information extraction
systems by gibbs sampling. In ACL ’05: Proceedings of
the 43rd Annual Meeting on Association for Computa-
tional Linguistics, pp. 363–370, Morristown, NJ, USA,
2005. Association for Computational Linguistics.

6. J. Hajič, E. Hajičová, J. Panevová, P. Sgall, P. Pajas,
J. Štěpánek, J. Havelka, and M. Mikulová: Prague De-
pendency Treebank 2.0. Linguistic Data Consortium,
LDC Catalog No.: LDC2006T01, Philadelphia, 2006.

7. J. Hajič: Disambiguation of rich inflection – computa-
tional morphology of Czech. Charles University – The
Karolinum Press, Prague, 2004.

8. P. Koehn et al: Moses: open source toolkit for statisti-
cal machine translation. In Proceedings of the Demo
and Poster Sessions, 45th Annual Meeting of ACL,
pp. 177–180, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics.

9. K. Kos and O. Bojar: Evaluation of machine transla-
tion metrics for Czech as the target language. Prague
Bulletin of Mathematical Linguistics, 92, 2009.

10. A. Lopez: A survey of statistical machine translation.
Technical Report, Institute for Advanced Computer
Studies, University of Maryland, 2007.

11. D. Mareček, R. Rosa, P. Galuščáková, and O. Bojar:
Two-step translation with grammatical post-processing.
In Proceedings of the 6th Workshop on Statistical Ma-
chine Translation, pp.426–432, Edinburgh, Scotland,
2011. Association for Computational Linguistics.

12. R . McDonald, F. Pereira, K. Ribarov, and J. Hajič:
Non-projective dependency parsing using spanning tree
algorithms. In Proceedings of Human Langauge Tech-
nology Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pp. 523–530,
Vancouver, BC, Canada, 2005.

13. I.A. Mel’čuk: Dependency syntax: theory and practice.
State University of New York Press, 1988.

14. P. Pajas and J. Štěpánek: Recent advances in a feature-
rich framework for treebank annotation. In Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics, volume 2, pp. 673–680, Manch-
ester, UK, 2008.

15. M. Popel and Z. Žabokrtský: TectoMT: modular NLP
framework. In Lecture Notes in Artificial Intelligence,
Proceedings of the 7th International Conference on
Advances in Natural Language Processing (IceTAL
2010), volume 6233 of LNCS, pp. 293–304, Berlin /
Heidelberg, 2010. Springer.

16. L. Ramasamy and Z. Žabokrtský: Tamil dependency
parsing: results using rule based and corpus based ap-
proaches. In Proceedings of 12th International Con-
ference CICLing 2011, volume 6608 of Lecture Notes
in Computer Science, pp. 82–95, Berlin / Heidelberg,
2011. Springer.

17. J. Romportl: Zvyšováńı přirozenosti strojově vytvářené
řeči v oblasti suprasegmentálńıch zvukových jev̊u. PhD
Thesis, Faculty of Applied Sciences, University of West
Bohemia, Pilsen, Czech Republic, 2008.

18. P. Sgall, E. Hajičová, and J. Panevová: The Meaning
of the sentence in its semantic and pragmatic aspects.
D. Reidel Publishing Company, Dordrecht, 1986.

19. D. Spoustová, J. Hajič, J. Votrubec, P. Krbec, and
P. Květoň: The best of two worlds: cooperation of sta-
tistical and rule-based taggers for Czech. In Proceed-
ings of the Workshop on Balto-Slavonic Natural Lan-
guage Processing, ACL 2007, pp. 67–74, Praha, 2007.

20. F.M. Tyers, F.Sánchez-Martánez, S Ortiz-Rojas, and
M.L. Forcada: Free/open-source resources in the Aper-
tium platform for machine translation research and de-
velopment. Prague Bulletin of Mathematical Linguis-
tics, 93, 2010, 67–76.

21. J. Šindlerová, L. Mladová, J. Toman, and S. Cinková:
An application of the PDT-scheme to a parallel tree-
bank. In Proceedings of the 6th International Work-
shop on Treebanks and Linguistic Theories (TLT
2007), pp. 163–174, Bergen, Norway, 2007.

22. Z. Žabokrtský and M. Popel: Hidden Markov tree
model in dependency-based machine translation. In
Proceedings of the 47th Annual Meeting of the As-
sociation for Computational Linguistics, 2009.

23. Z. Žabokrtský, J. Ptáček, and P. Pajas. TectoMT:
Highly modular MT system with tectogrammatics used
as transfer layer. In Proceedings of the 3rd Workshop
on Statistical Machine Translation, ACL, 2008.

Flip-pushdown automata:
nondeterministic ε-moves can be removed⋆

Pavol Ďurǐs and Marek Košta

Comenius University, Bratislava, Slovakia,
duris@dcs.fmph.uniba.sk

kosta1@st.fmph.uniba.sk

Abstract. Flip-pushdown automaton is pushdown au-
tomaton which has ability to flip its pushdown through-
out the computation. This model was introduced in [3] by
Sarkar. Here we solve in the affirmative the following open
problem posed by Holzer and Kutrib in [1]: What is the
power of ε-moves for nondeterministic flip-pushdown au-
tomata – can they be removed without affecting the compu-
tational capacity? (ε denotes the empty word.) Moreover,
we prove here that the family of languages recognized by the
deterministic variant of the flip-pushdown automata (with
k-pushdown reversals) is closed under intersection with reg-
ular sets, complement and inverse homomorphism, but it is
not closed under union, intersection, (non-erasing) homo-
morphism, reverse, concatenation and (positive) iteration.
Finally, we formulate some new questions and pose new
problems.

1 Introduction

A flip-pushdown automaton, introduced by Sarkar [3],
is an ordinary one-way pushdown automaton with the
ability to flip its pushdown during the computation. It
is known [3] that the flip-pushdown automata without
any limit on the number of flips are equally powerful
to Turing machines.

Holzer and Kutrib [1, 2] have introduced the so-
called “flip-pushdown input-reversal technique” and
using it they have shown that k+1 pushdown reversals
are more powerful than k for deterministic and non-
deterministic flip-pushdown automata, and, nondeter-
minism is more powerful than determinism for flip-
pushdown automata with constant number of flips.
Another use of this technique led to the fact that
languages accepted by flip-pushdown automata using
constant number of flips can be accepted by linear
bounded automata, so investigated language classes lie
between context-free and extended context-sensitive
language classes in Chomsky hierarchy. These papers
raised also some new questions and pointed to some
interesting problems.

⋆ This work was supported by Slovak Grant Agency for
Science (VEGA) under contract #1/0726/09 “Algorith-
mics and Complexity Aspects of Information Process-
ing”.

The problem we deal with is the power of ε-moves.
Well-known and famous result by Greibach [5] is the
so-called Greibach normal form for the context-free
grammar. With this result one can easily prove that for
every pushdown automaton ε-free pushdown automa-
ton can be constructed. By ε-free pushdown automa-
ton we mean automaton that does not use ε-moves.
Our main result parallels this nicely: for every flip-
pushdown automaton other ε-free flip-pushdown au-
tomaton accepting the same language can be found.
Moreover, our proof of this fact is constructive. Of
course we will use Greibach normal form quite exten-
sively.

In section 2 we give necessary formal definitions
and cite the most important Theorems. Section 3 is the
central section of the paper, here we state and prove
our main result – that ε-moves can be removed with-
out affecting computational power of the nondetermin-
istic flip-pushdown automaton model. Some closure
properties of families of languages described by de-
terministic flip-pushdown automata are discussed in
section 4. Finally, we summarize our results and pose
new problems in section 5.

2 Preliminaries

The reader should be familiar with basic facts from
formal language theory, where we refer to standard
textbook on this subject [4]. We use ε to denote empty
word, powerset of a set S by 2S and length of w by |w|.

Definition 1. A nondeterministic flip-pushdown au-
tomaton (NFPDA) is a system A = (Q, Σ, Γ , δ, ∆,
q0, Z0, F), where Q is a finite set of states, Σ is a fi-
nite input alphabet, Γ is a finite pushdown alphabet,
δ is a mapping from Q × (Σ ∪ {ε}) × Γ to finite
subsets of Q × Γ ∗ called the transition function, ∆ is
a mapping from Q to 2Q, q0 is the initial state, Z0 ∈ Γ
is a specific pushdown symbol, called the bottom-of-
pushdown symbol, which initially appears on the push-
down store, and F ⊆ Q is the set of final states.

A configuration of this automaton is a triple
(q, w, γ), where q ∈ Q, w ∈ Σ∗ and γ ∈ Γ ∗. When flip-
pushdown automaton A is in configuration (q, w, γ),

16 Pavol Ďurǐs, Marek Košta

then it is in state q, remaining input is w and stack
content is γ. Flip-pushdown automaton has two pos-
sibilities how to change configuration: via δ-function
or via ∆-function. We write (q, aw, γZ) ⊢A (p, w, γα)
if and only if (p, α) ∈ δ(q, a, Z) when δ-step is taken.
In second case we write (q, w, Z0γ) ⊢A (p, w, Z0γ

R) if
and only if p ∈ ∆(q). Intuitively, the first case is the
standard pushdown computational step. Second case,
however, is new possibility (in comparison to standard
pushdown automaton) and in this case content of the
pushdown is reversed (flipped). So the flip-pushdown
automaton has two possibilities in any configuration:
either apply δ-function or apply ∆-function. Nonde-
terministic choice is made to choose the next config-
uration. Note that when A is flipping pushdown con-
tent then special symbol (Z0) has to be at the bottom
of the pushdown and is not flipped. The reflexive and
transitive closure of relation ⊢A just defined is denoted
by ⊢∗

A. The subscript A will be omitted whenever the
meaning is clear.

Let k ≥ 0. Then we define the language accepted
by flip-pushdown automaton A by final state and by at
most k pushdown reversals as T≤k(A) = {w ∈ Σ∗ such
that (q0, w, Z0) ⊢∗

A (q, ε, γ) with at most k pushdown
reversals, for some γ ∈ Γ ∗ and q ∈ F}.

Language accepted by empty pushdown and by at
most k pushdown reversals is defined as N≤k(A) =
{w ∈ Σ∗ such that (q0, w, Z0) ⊢∗

A (q, ε, ε) with at
most k pushdown reversals}. When accepting by
empty pushdown, set of the final states is usually de-
fined to be empty. Similarly, one can also define
N=k(A) or T=k(A) with apparent meaning.

Class of languages accepted by nondeterministic
flip-pushdown automata by at most k flips (i.e. those
languages L for which there is A, such that
T≤k(A)=L) is denoted by L (NFPDA(≤ k)). Broader
class containing all these classes is

∞∪
i=0

L (NFPDA(≤ k)) = L (NFPDA(fin)).

When dealing with nondeterministic flip-pushdown
automata the mode of acceptance does not change the
computational power of the model. In deterministic
case, however, situation is a little bit more compli-
cated. For more information we refer to [1].

Just for completeness, let us define Greibach nor-
mal form.

Definition 2. Context free grammar G=(N,T, P, S)
is in Greibach normal form if all rules are of the form
A → aβ where A ∈ N , a ∈ T and β ∈ N∗.

Already mentioned “flip-pushdown input-reversal”
technique is very powerful tool we will use extensively
in the following.

Theorem 1 ([2]). Let k ≥ 0. Then language L is
accepted by a nondeterministic flip-pushdown automa-
ton M = (Q,Σ, Γ, δ,∆, q0, Z0, F) by final state with at
most k+1 pushdown reversals, i.e. L = T≤k+1(M), if
and only if language LR = {wvR such that (q0, w, Z0)
⊢∗
M (q1, ε, Z0γ) with k reversals, q2 ∈ ∆(q1) and

(q2, v, Z0γ
R) ⊢∗

M (q3, ε, ε) without any reversal} is ac-
cepted by a nondeterministic flip-pushdown automaton
M ′ by final state with at most k pushdown reversals,
i.e. LR = T≤k(M

′). The same holds when acceptance
by empty pushdown is considered. Moreover, automa-
ton M ′ can be effectively constructed from automa-
ton M and vice versa.

This Theorem provides trade-off between number
of flips and number of reversals. The number of flips
can be reduced by one when correct suffixes of words
in L are reversed. But the real power of this Theorem
is revealed when it is applied k times on language L ac-
cepted by some k-flip pushdown automaton. Then we
get context-free language L′ that has strong connec-
tion with language L. Simply speaking, we get words
in L′ first by reversing some correct suffixes of words
in L and then applying this process inductively.

3 Main result

In this section we will prove that for every k-flip push-
down automaton M , a k-flip pushdown automaton M̄
can be constructed in such a way that M̄ does not
use ε-steps. This means that δ(q, ε, Z) = ∅ holds for
every q, Z and δ-function of M̄ and M̄ accepts the
same language as M .

3.1 Main idea

Suppose we have a language L that is accepted by
some k-flip pushdown automaton M = (Q,Σ, Γ, δ,∆,
q0, Z0, ∅) by empty pushdown. In previously defined
notation this means that L = N=k(M). Let Lk be the
language containing the words of the form v0$v1$. . .
vk such that w = v0v1 . . . vk ∈ L, and for w there
is an accepting computation of M on w during which
M makes a flip of the pushdown content at the end of
each vi for 0 ≤ i ≤ k − 1. New automaton M ′ accept-
ing Lk can be easily constructed: just simulate M and
after each flip symbol $ must be read or computation
will stuck. Symbol $ must be also read at the end of
the word.

So we have marked places in words accepted by M
where flip of pushdown occurred. We will also con-
struct languages Lk−1, . . . , L0 in this way: language Li

is constructed from language Li+1 (0 ≤ i ≤ k − 1)
by applying “flip-pushdown input-reversal technique”,

Flip pushdown automata 17

see Theorem 1. So Li is accepted by some i-flip push-
down automaton which can be constructed according
to Theorem 1. These facts are formally described in
two following Lemmas.

Lemma 1. Let Lk be the previously defined language.
Let Lk, . . . , L0 be the languages, where the language
Li−1 is obtained from language Li by one application
of Theorem 1 for 1 ≤ i ≤ k. Then word w =

v0$v1$. . . $vi−1$vi$vi+1$. . . $vk−1$vk$

is in language Li if and only if word w′ =

v0$v1$. . . $vi−1$v
R
k $v

R
k−1$. . . $v

R
i+1$v

R
i $

is in language Li−1 for 1 ≤ i ≤ k.

Proof. Quite obvious. The last flip in computation on
word w occurs after subword vi. Because symbol $
is new and also from formulation of Theorem 1 stated
correspondence between words from Li and Li−1holds.

⊓⊔

Lemma 2. When k = 2l then word w0 =

v0$v2$. . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $

belongs to language L0 if and only if word wk = v0$v1$
. . . vk belongs to Lk. In case k = 2l+1 words in L0

have form

v0$v2$. . . $v2l$v
R
2l+1$v

R
2l−1$. . . $v

R
3 $v

R
1 $

Proof. Just apply Lemma 1 inductively k times. ⊓⊔

In the following we assume for simplicity that
k = 2l, case when k = 2k + 1 is proved similarly. We
will exploit correspondence between words in L0 and
those in Lk stated in Lemma 2. Language L0 is by def-
inition context-free so there is Greibach normal form
context free grammar generating it. We want to sim-
ulate leftmost derivations in this grammar (and oth-
ers constructed from this one) with flip-pushdown au-
tomaton.

Let us have context-free grammar G0 =
(N0, Σ∪{$}, P0, S0), such that L(G0) = L0. Leftmost
derivation of word w0 ∈ L0 in grammar G0 looks like
this:

S0 ⇒∗ v0α0 ⇒∗ (1)

⇒∗ v0$v2α2 ⇒∗ v0$v2$v4α4 ⇒∗

⇒∗ v0$v2$v4 . . . $v2lα2l ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1α2l−1 ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1$v

R
2l−3α2l−3 ⇒∗

⇒∗ · · · ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $ = w0

Here αi is non-empty string of nonterminals, other
symbols are terminal.

If we were able to reverse and regulate this deriva-
tion in right way we could obtain “derivation” of word
wk instead of w0 (w0 and wk are from Lemma 2). This
means that if we could after (1) reverse string α0 and
also reverse terminal words derived from these non-
terminals (i.e. derive in grammar G1 obtained from G0

by reversing right-hand side of each production), we
could obtain something like this:

S0 ⇒∗
G0

v0α0 reverse nonterminal string

v0α
R
0 now continue in G1

⇒∗
G1

v0$v1β β is nonterminal string in G1

The main idea of the previous process is this. We want
to simulate the leftmost derivation (in grammar G0)
by pushdown automaton, storing nonterminal string
on the stack. When reversal takes place, automaton
will simulate leftmost derivation in G1 (we will call it
reverse grammar) and so on. By continuing this sim-
ulation in suitable grammars making reversals along
the way we can obtain valid accepting computation
on word wk. Deeper analysis will follow but first we
need some notation based on (1).

α0 = A1 . . . An (2)

Ai ⇒∗
G0

xi ∈ T ∗

u = x1 . . . xn

u = $v2$v4 . . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $

uR = $v1$v3$. . . $v2l−1$v
R
2l$. . . $v

R
4 $v

R
2 $

We will use the concept of reverse grammar exten-
sively in the following so here is formal definition.

Definition 3. We say that context-free grammar H=
(NH , T, PH , SH) is reverse grammar to context-free
grammar I = (NI , T, PI , SI) if the following condi-
tions hold:

1. H is in Greibach normal form
2. NH ∩NI = NI

3. (∀ξ ∈ NI)(∀z ∈ T ∗) ξ ⇒∗
H zR ⇐⇒ ξ ⇒∗

I z

Lemma 3. Assume that H is reverse grammar to I.
Then for every α (non-empty nonterminal string of
grammar I) and v (terminal string) we have:

α ⇒∗
I v if and only if αR ⇒∗

H vR (3)

Proof. Easy induction on the length of α. From defi-
nition 3 we see that the statement holds when |α| = 1.
Assume that the statement hold for all α of length k.
Now let αA ⇒∗

I vαvA. By induction hypothesis and
definition 3 this is equivalent to AαR ⇒∗

H vRAv
R
α . So

the statement of the Lemma follows by induction. ⊓⊔

18 Pavol Ďurǐs, Marek Košta

We want to construct flip-pushdown automaton M̃
without ε-moves, which will simulate leftmost deriva-
tions in G0, . . . , Gk (here Gi+1 is reverse to Gi) as fol-

lows. On input wk, M̃ is going to verify if wk belongs
to Lk. Initial configuration of M̃ is (q0, wk, S0). After
simulating the leftmost derivation (in G0) the config-
uration will be (q, $v1$. . . vk, An . . . A1)

1. Flip now

takes place and M̃ will continue simulating G1 – re-
verse grammar to grammarG0. From Lemma 3 and (2)
we have:

Ai ⇒∗
G1

xR
i

uR = xR
n . . . xR

1

uR = $v1$v3$. . . $v2l−1$v
R
2l$. . . $v

R
4 $v

R
2 $ (4)

From these facts it is apparent that

An . . . A1 ⇒∗
G1

$v1B1B2 . . . Bm

where Bi are nonterminals of grammar G1. So M̃ will
continue from configuration (p,$v1$. . .vk, A1 . . .An),
simulating G1, to configuration (r, $v2$. . . vk,
Bm . . . B1).

We believe that the main idea is now clear. The
most important point here is that we are able to sim-
ulate leftmost derivation in G0 by standard δ-steps of
flip-pushdown automaton with sentential form on the
stack. Then flip can be done and we can continue by
simulating derivation in G1 which is reverse grammar
to G0. This process of simulating and flipping will con-
tinue up to grammar Gk. Crucial here is that all these
grammars used along the way are in Greibach normal
form so M̃ will not use ε-moves when simulating these
grammars.

3.2 Proof

So we have M ′ accepting language Lk (see the begin-
ning of subsection 3.1) by empty pushdown and by
exactly k flips. By Lemma 2, L0 can be generated by
some context-free grammar G0 = (N0, Σ, P0, S0).

We want to construct automaton M̃ without ε-moves
which will accept Lk by final state and by exactly k re-
versals. However, this acceptation mode will be more
special than this: from construction it will be appar-
ent that M̃ will accept only in configuration in which
final state is reached, pushdown is empty and exactly
k flips took place.

According to previously stated ideas, automaton
M̃ will simulate leftmost derivations consequently in
grammar G0 then G1 and so on up to Gk. Now we
sketch how to construct these grammars.

1 we remind that the top of the stack is on the right

Construction of Reverse Grammars. Initially, we have
grammar G0. We show construction of Gi when Gi−1

is already constructed. So assume that we have gram-
mar Gi−1 = (Ni, Σ, Pi, Si). We want to construct
grammarGi which satisfy all conditions in definition 3.
From these the most important is the third condition.
Consider language LA = {uR | A ⇒∗

Gi−1
u} for every

nonterminal A of Gi−1. Greibach normal form gram-
mar GA for this language can be constructed by well-
known construction. From these grammars one can get
grammar Gi satisfying all three conditions in defini-
tion 3 easily – just by union of rules and nonterminal.
Some renaming, however, must be done to ensure the
second condition of definition 3.

Technical Consideration. In definition 1 we wanted to
be coherent with established formalism. But this def-
inition is a little bit cumbersome. Our idea is to rep-
resent sentential form on the stack and do computa-
tion with this representation (doing flips and simulate
grammars Gi). So it is inconvenient to bother with
special Z0 symbol and convention that it is always at
the bottom and never flipped. For the sake of simplic-
ity, we will formally do our construction without this
restriction. But we must note that this in no way spoils
the result or prevents construction in accordance with
definition 1. This construction is straightforward but
technical – some simulation of bottom of pushdown,
some information stored in states, new marked push-
down symbols and so on. The most important point
is that all these things can be done without any use of
ε-steps. So in the following construction ∆-steps cause
reversal of the whole pushdown word and no special
symbol must be at the bottom of the stack. So senten-
tial form is represented “as is” on the stack.

Let M̃ = (Q, Σ∪{$}, Γ , δ, ∆, q0, S0, {qF }), where

Q = {q0, q1, . . . , qk} ∪ {q1, . . . , qk} ∪ {qF },
Σ is alphabet of M ′ and $ is new symbol,

Γ = {A | where A is nontermial of Gi, 0 ≤ i ≤ k},
∆(qi) = {qi+1} ∧ 0 ≤ i ≤ k − 1.

Standard pushdown moves (i.e. δ-steps) will ensure the
simulation of the leftmost derivation in grammars Gi.
This can be seen from next lines:

δ(q0, a, S0) ∋ (q0, β
R) ⇔ a ∈ Σ ∧ S0 → aβ ∈ P0

δ(qi, $, Z) ∋ (qi, β
R) ⇔ Z → $β ∈ Pi

δ(qi, a, Z) ∋ (qi, β
R) ⇔ a ∈ Σ ∧ Z → aβ ∈ Pi

δ(qk, $, Z) ∋ (qF , ε) ⇔ Z → $ ∈ Pk

For every i ∈ {1, . . . , k} we have according lines in
the δ-function. No other lines except of these are in
δ-function (i.e. for all other combinations of state, in-
put and pushdown symbol δ-function is defined to be
empty set).

Flip pushdown automata 19

First line is used for start of the simulation in G0.
Next two lines ensure that after each flip (i.e. ∆-step)
symbol $ is read from the input and simulation of
grammar Gi takes place. Last line ensures accepting
end of the whole computation in successful cases.
Essence of simulation and derivation is described in
the following Lemma. This key Lemma is obvious right
from the construction of M̃ . Simulation of context free
grammar within pushdown automaton is idea that was
mentioned already a few times but we refer unfamiliar
reader (once more) to [4].

Lemma 4. Let M̃ be constructed from grammars
G0, . . . , Gk in the way just described. Then the follow-
ing equivalence holds for every v ∈ Σ∗ and α, β ∈ Γ ∗.

(q0, v, S0) ⊢∗ (q0, ε, α
R) ⇔ S0 ⇒∗

G0
vα

(qi, $v, α
R) ⊢∗ (qi, ε, β

R) ⇔ α ⇒∗
Gi

$vβ

(qk, v, α
R) ⊢∗ (qF , ε, ε) ⇔ α ⇒∗

Gk
v

Here i ∈ {1, . . . , k − 1} and all ⊢ transitions are by
means of δ-function (i.e. without any pushdown rever-
sal).

Proof. Is really straightforward because δ-function
contains all transitions needed for proper simulation
of the leftmost derivation in grammar Gi. Formally,
everything would be done by induction on the length
of the leftmost derivation (or number of ⊢ steps). ⊓⊔

Theorem 2. Automaton M̃ does not use ε-moves
and accepts language Lk by final state and by exactly
k flips.

Proof. It is immediate from construction that M̃ does
not use ε-moves because all grammars M̃ simulates
are in Greibach normal form. So every production is
of the form Ni → ΣN∗

i for some i. Simulating this

production M̃ reads symbol from input.

Now we have to prove two inclusions. We prove the
more apparent one first. We assume for simplicity that
k = 2l. The proof is similar for k = 2l + 1.

Lk ⊆ T=k(M̃) :

Assume that wk is in Lk. By Lemma 2 we know that
w0 belongs to L0, generated by grammar G0. This
means that there exists some leftmost derivation of
w0 in grammar G0. According to previously defined
notation we have:

S0 ⇒∗
G0

v0$v2$. . . $v2l$v
R
2l−1$. . . $v

R
1 $ = w0

S0 ⇒∗
G0

v0α (5)

α ⇒∗
G0

$v2$. . . $v2l$v
R
2l−1$. . . $v

R
1 $ (6)

Following facts also hold.

(q0, v0, S0) ⊢∗ (q0, ε, α
R) (7)

(q0, ε, α
R) ⊢ (q1, ε, α) (8)

αR ⇒∗
G1

$v1β (9)

β ⇒∗
G1

$v3 . . . $v2l−1$v
R
2l$. . . $v

R
2 $ (10)

Reasons for this are as follows. Fact (7) is due to (5)

and Lemma 4. Fact (8) is just ∆-step in automaton M̃

– construction of M̃ allows this transition. Facts (9)
and (10) are implied by (6) and Lemma 3.

By (10) and Lemma 3, βR ⇒∗
G2

$v2γ and γ ⇒∗
G2

$v4$. . . $v2l$v
R
2l−1$. . . $v

R
3 $ for some nonterminal

word γ. This means together with (5), (9) and
Lemma 4 that (q0, v0, S0) ⊢∗ (q0, ε, α

R), (q1, $v1, α) ⊢∗

(q1, ε, β
R) and (q2, $v2, β) ⊢∗ (q2, ε, γ

R). Since M̃ can
flip the stack just before reading $ (see construction of
M above), then we get (q0, v0$v1$v2, S0) ⊢∗ (q2, ε, γ

R).
Generalizing this approach – using the idea that the
derivation of w0 in G0 yields some (sub)derivations
of v0 in G0, $v1 in G1, $v2 in G2 and so on up to
$vk in Gk (see (5), (9), see above, . . .), we can con-

struct (by Lemma 4) an accepting computation of M̃

on wk = v0$v1$v2 . . . vk. Hence Lk ⊆ T=k(M̃) (re-
call the assumption wk ∈ Lk, see above).

T=k(M̃) ⊆ Lk :

Lemmas 4 and 3 will be now used in reverse direction:
from existence of accepting computation we will con-
clude that some derivations in grammars Gk, Gk−1,
. . . , G0 exist. We will also use induction.

Assume that wk = v0$v1 . . . $vk−1$vk$ belongs to

T=k(M̃). From construction of M̃ we know that wk

has to be of this form – after each flip symbol $ must
be read, exactly k flips have to be done and this kind
of argumentation (based only on construction of M̃)
imply these statements:

(q0, v0$v1$. . . vk, S0) ⊢∗ (q0, u1, α
R
1)

(qi, ui+1, α
R
i+1) ⊢ (qi+1, ui+1, αi+1) (11)

(qi, ui, αi) ⊢∗ (qi, ui+1, α
R
i+1) (12)

(qk, uk, αk) ⊢∗ (qF , ε, ε) (13)

Here ui = vi . . . vk, 1 ≤ i ≤ k. This is just com-
putation of M̃ written in convenient way, assuming
that wk ∈ T=k(M̃). Fact (11) is just pushdown rever-
sal, (12) is part of computation between i-th and
i + 1-th flip and (13) is the final part of accepting
computation. We want to show that some derivation
of word w0 = v0 $v2$. . . vk v

R
k−1$. . . $v

R
1 $ in gram-

mar G0 exists, i.e. w0 is in L0. This and Lemma 2 will
imply that wk belongs to Lk.

20 Pavol Ďurǐs, Marek Košta

From assumption (13) and Lemma 4 we can infer
that

αR
k ⇒∗

Gk
uk = vk (14)

Fact (12) for i = k − 1 and second equivalence of
Lemma 4 lead to

αR
k−1 ⇒∗

Gk−1
$vk−1αk (15)

Facts (14) and (15) with Lemma 3 imply that

αR
k−1 ⇒∗

Gk−1
$vk−1$v

R
k $ (16)

Ideas contained in these statments can be transformed
into formal inductive proof of the fact that in gram-
mar G0 word w0 can be derived. Main idea is that
from facts like (14) and (15) we can infer (16). So
from existence of particular part of computation one
can infer that corresponding partial derivation exists.
These partial derivations are then joined inductively
to form derivation of word w0 in grammar G0. Some
“descent” from grammar Gk to grammar Gk−1 is also
important in the whole argument. We will not elab-
orate statements in fully formal way but provide one
specific example to demonstrate these ideas.

Example for k = 2. In this case w2 = v0$v1$v2$. Parts
of accepting computation look like this:

(q0, v0, S0) ⊢∗ (q0, ε, α
R
1)

(q1, $v1$, α1) ⊢∗ (q1, ε, α
R
2)

(q2, $v2$, α2) ⊢∗ (qF , ε, ε)

These parts of computation with Lemma 4 give us:

S0 ⇒∗
G0

v0α1

αR
1 ⇒∗

G1
$v1α2

αR
2 ⇒∗

G2
$v2$

These facts with Lemma 3 lead to:

α2 ⇒∗
G1

$vR2 $

αR
1 ⇒∗

G1
$v1$v

R
2 $

α1 ⇒∗
G0

$v2$v
R
1 $

S0 ⇒∗
G0

v0$v2$v
R
1 $ = w0

⊓⊔
So now we have automaton M̃ , accepting lan-

guage Lk which does not use ε-moves. The final step in
our proof is to delete marks (i.e. symbols $) from Lk,
thus obtaining language L. Deletion of marks must be
done without using ε-steps. This is easy in principle,
but technical. One symbol can be easily deleted with-
out using ε-steps. Idea is quite easy: join two steps into
one. This is standard well-known construction. Con-
stant number of symbols can be deleted by iterating
this construction. So by applying this construction on
automaton M̃ repeatedly k-times we get the desired
automaton M̄ that accepts language L.

3.3 Summary of the proof

Our proof consists of five main steps, we review them
here.

1. Language L is given, accepted by automaton M ,
ε-steps are allowed.

2. Marks are inserted into L to denote that flip took
place in computation. This gives us language Lk

accepted by M ′.
3. By means of flip-pushdown input-reversal tech-

nique languages Lk−1, . . . , L1, L0 are constructed.
Correspondence between words in Lk and L0 is
proved.

4. Automaton M̃ is constructed. It simulates suitable
Greibach normal form grammars. M̃ doesn’t use
ε-steps and accepts language Lk.

5. Marks are deleted from language Lk yielding lan-
guage L accepted by M̄ . Well-known trick of join-
ing two steps into one is used to achieve this.

4 Closure properties

In this section we establish some closure properties of
deterministic flip-pushdown automata. A determinis-
tic flip-pushdown automaton (DFPDA) is nondeter-
ministic flip-pushdown automaton which has at most
one choice of action for any possible configuration.
This means that there must never be a choice of us-
ing an input symbol, using ε-step or ∆-step. Formally,
a flip-pushdown automaton A=(Q,Σ,Γ,δ,∆, q0, Z0, F)
is deterministic if these conditions are satisfied for all
a ∈ Σ ∪ {ε}, q ∈ Q,Z ∈ Γ

1. |δ(q, a, Z)| ≤ 1
2. If δ(q, ε, Z) ̸= ∅ then δ(q, a, Z) = ∅.
3. |∆(q)| ≤ 1
4. If ∆(q) ̸= ∅ then δ(q, a, Z) = ∅.

For deterministic flip-pushdown automaton we can
naturally define acceptance by final state, empty push-
down, by exactly k flips or at most k flips. We will use
notation as in previous parts, i.e. T≤k(A) or N=k(A)
with obvious meaning. Classes of languages are defined
without confusion. For example, L (DFPDA(≤ k))
is class of languages accepted by deterministic flip-
pushdown automata by final state and by at most k
pushdown reversals. Note that some nuances are asso-
ciated with deterministic variant of the model. Accep-
tance by final state is not equivalent to acceptance by
empty pushdown for example. We refer to [1] where
results concerning these questions can be found. We
will explicitly state which mode of acceptance we are
considering.

The following result will be of great importance for
us.

Flip pushdown automata 21

Theorem 3 ([2]). Language

Labc = {anbncn | n ≥ 1}

is not accepted by any nondeterministic flip-pushdown
automaton. This means that Labc /∈ L (NFPDA(fin)).

Separation of hierachy is also one of the interesting
results which was achieved.

Theorem 4 ([2, 1]). Let k be natural number greater
than zero. Consider language

Jk = {w1$w1$w2$w2$. . . wkwk$ |
wi ∈ {a, b}∗, 1 ≤ i ≤ k}.

Then

Jk ∈ L (DFPDA(= k)) ⊂
⊂ L (DFPDA(≤ k)) ⊂ L (NFPDA(= k)),

Jk /∈ L (NFPDA(= k− 1)).

Our next result is quite interesting. In principle it
says that one nondeterministic step of standard push-
down automaton cannot be simulated by any finite
number of pushdown reversals with deterministic flip-
pushdown automaton.

Theorem 5. L (DFPDA(≤ k) is not closed under
union for any k ≥ 0.

Proof. Consider languages

L1 = {anbn | n ≥ 1} ∈ L (DFPDA(≤ k)),

L2 = {anb2n | n ≥ 1} ∈ L (DFPDA(≤ k)).

These are simple deterministic pushdown languages.
We will prove by contradiction that L1 ∪ L2 does not
belong to L (DFPDA(≤ k)) for any k. Suppose that
this is not the case. So deterministic flip-pushdown au-
tomaton A = (Q, {a, b}, Γ, δ,∆, q0, Z0, F) exists such
that T≤k(A) = L1 ∪ L2. From A we will construct
another nondeterministic flip-pushdown automaton B
which will accept the language T≤2k(B) such that
T≤2k(B) ∩ a+b+c+ = Labc. This contradiction with
Theorem 3 will conclude the proof.

We construct B = (Q∪Q, {a, b, c}, Γ , δB , ∆B, q0,
Z0, F ∪ F) from A as follows.

Q = {q | q ∈ Q}
F = {q | q ∈ F}

δB(q, a, Z) ∋ (p, β) ⇔ δ(q, a, Z) ∋ (p, β)

δB(q, b, Z) ∋ (p, β) ⇔ δ(q, b, Z) ∋ (p, β)

δB(q, a, Z) ∋ (p, β) ⇔ δ(q, a, Z) ∋ (p, β)

δB(q, c, Z) ∋ (p, β) ⇔ δ(q, b, Z) ∋ (p, β)

δB(q, ε, Z) ∋ (q, Z) ⇔ q ∈ F

∆B(q) = ∆(q)

∆B(q) = {p | p ∈ ∆(q)}

Informally, our construction did this. Take two copies
of automaton A, in second copy use symbol c instead of
symbol b when reading input. Then there is an ε-step
from accepting states of first copy into corresponding
accepting states of second copy. Initial state is in first
copy (identical with that of A).

How does the language T≤k(B) look like? Automa-
ton B could end accepting computation in some
state qF in first copy, or in qF in second copy. First
case is not really interesting: from construction of B it
is obvious that words which caused this computation
are exactly those in T≤k(A) = L1 ∪ L2.

Second case is the interesting one. B ended in qF ,
so one ε-step from first to second copy must have taken
place. Consider time when B did this step. By con-
struction, B is at this time in a configuration in which
A accepts, so input word already read at this time
must be one of anbn or anb2n for some n. When the
input word already read is anbn, then B is capable
to accept anbncn, since anbn is a prefix of anb2n ac-
cepted by A, and after ε-step, B works as the second
copy of A, where the symbol b is replaced by c. Simi-
larly, when the input word already read is anb2n then
B cannot accept any word of the form anb2nv for any
v ̸= ε, since otherwise A has to accept anb2nv′, where
v′ ̸= ε is obtained from v by replacing symbols c by b,
but A (recognizing L1 ∪ L2) cannot accept any such
word anb2nv′.

Automaton A accepts L1 ∪ L2 by at most k-flips
so B accepts mentioned words by at most 2k-flips (in
each copy at most k flips took place).

Consequently, we have that

T≤2k(B) = {anbn | n ≥ 1} ∪
∪ {anb2n | n ≥ 1} ∪ {anbncn | n ≥ 1}.

Intersection with regular language a+b+c+ leads to
language Labc. This is the desired contradiction with
Theorem 3, since one can easily observe that
L (NFPDA(≤ l)) is closed under intersection with reg-
ular set for every l. ⊓⊔

Proposition 1. L (DFPDA(≤ k)) is closed under
intersection with regular set, complement and inverse
homomorphism for every k ≥ 0.

Proof. Trivial simulation of finite automaton will give
us closure under intersection with regular set.

Closure under inverse homomorphism is done via
standard construction. Automaton reads input, on this
homomorphism is applied and simulation takes place
from buffer.

Complement is more peculiar. We give here just
sketch of the proof. Idea is the same as with stan-
dard deterministic pushdown automata [4]. First we
must ensure that automaton reads its whole input.

22 Pavol Ďurǐs, Marek Košta

Here there are two main problems – automaton stucks
during computation because of undefined transition
or in infinite sequence of ε-moves. The first problem
is handled easily. Problem of looping is the main part
of the proof. Crucial here is that deterministic flip-
pushdown automaton uses only constant number of
flips. After each flip detection of looping on empty in-
put can be done by mentioned technique. From these
two facts it can be inferred that detection of infinite
loops can be done effectively.

When this normal form is achieved, construction is
quite simple. We repeatedly refer reader to [4]. ⊓⊔

Proposition 2. L (DFPDA(≤ k)) is not closed un-
der intersection, homomorphism (even non-erasing),
reverse, contatenation and (positive) iteration for any
k ≥ 0.

Proof. For intersection it suffices to use De Morgan’s
laws, Theorem 5 and Proposition 1.

For concatenation and iteration it suffices to con-
sider language Jk and Theorem 4.

For homomorphism just take language

L = {can−1bn | n ≥ 1} ∪
∪ {dan−1b2n | n ≥ 1}

and homomorphism h(a) = h(c) = h(d) = a, h(b) = b.
Apply h and use Theorem 5.

For reverse just apply construction from Theorem 5
on language LR where

L = d{b2nan | n ≥ 1} ∪ {bnan | n ≥ 1}.

This construction will give us nondeterministic flip-
pushdown automaton accepting language

L′ = {anbn | n ≥ 1} ∪
∪ {anb2n | n ≥ 1}d ∪ {anbncnd | n ≥ 1}.

But this also leads to contradiction with Theorem 3.
⊓⊔

5 Conclusions

We discussed flip-pushdown automaton model. Our
main contribution to this area of theoretical research
is solution of problem of ε-moves. We proved that
ε-moves can be removed and normal form effectively
achieved. Some (non)closure properties of determinis-
tic model were also investigated. Our results answer
some open questions formulated in [1]. Finally, we list
some interesting questions which wait for answer.

1. Is L (DFPDA(≤ k)) closed under right quotient
with regular set? From our results it can be easily

shown that this is not the case when left quotient is
considered but we were unable to investigate right
quotient deeper. We tried to generalize the idea of
predicting machine from deterministic pushdown
automata, but without success.

2. What do we get when we apply flip-pushdown
input-reversal technique on deterministic k-flip
pushdown automaton? Do we get deterministic
k− 1-flip pushdown language? Or does there exist
some other similar technique which can be used
for deterministic variant?

3. Can number of states in nondeterministic k-flip
pushdown automaton be bounded without affect-
ing the computational power? In pushdown au-
tomata normal form with one state can be
achieved. Our construction from section 3 yields
normal form with at most O(k) states, where k is
number of flips. Is this boundary tight?

4. What properties “pushdown language” Lp has?

Lp = {α ∈ Γ ∗ | (q0, w, α) ⊢∗ (q, ε, ε)}

for some w ∈ Σ∗ and q ∈ Q. This language of
words which can be erased from pushdown
by some input word is regular when one considers
standard pushdown automaton. What we can say
about it here?

5. Which properties are decidable? This is only in-
teresting when deterministic variant is considered
because for nondeterministic variant these results
can be derived from previous work easily. We high-
light two non-trivial properties about determinis-
tic flip-pushdown automata which are not easily
implied by previous results. These are: regularity
problem and equality problem. Are these decid-
able?

References

1. M. Holzer and M. Kutrib: Flip-pushdown automata:
nondeterminism is better than determinism. LNCS
2710, 2003, 361–372.

2. M. Holzer and M. Kutrib: Flip-pushdown automata:
k+1 pushdown reversals are better than k. LNCS 2719,
2003, 490–501.

3. P. Sarkar: Pushdown automaton with the ability to flip
its stack. ECCC Report No. 81, 2001.

4. J.E. Hopcroft and J.D. Ullman: Introduction to au-
tomata theory, languages and computation. Addison-
Wesley, 1979.

5. S.A. Greibach: A new normal-form theorem for context-
free phrase structure grammars. Journal of ACM 12,
1965, 42–52.

Named entities from Wikipedia for machine translation⋆

Ondrej Hálek, Rudolf Rosa, Aleš Tamchyna, and Ondrej Bojar

Charles University in Prague, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

ohalek@centrum.cz, rur@seznam.cz, a.tamchyna@gmail.com, bojar@ufal.mff.cuni.cz

Abstract. In this paper we present our attempt to im-
prove machine translation of named entities by using Wi-
kipedia. We recognize named entities based on categories
of English Wikipedia articles, extract their potential trans-
lations from corresponding Czech articles and incorporate
them into a statistical machine translation system as trans-
lation options. Our results show a decrease of translation
quality in terms of automatic metrics but positive results
from human annotators. We conclude that this approach
can lead to many errors in translation and therefore should
always be combined with the standard statistical translation
model and weighted appropriately.

1 Introduction

Translation of named entities (NE) is an often over-
looked problem of today’s machine translation (MT).
Particularly, most statistical systems do not handle
named entities explicitly, simply relying on the model
to pick the correct translation. Since most of NEs are
rare in texts, statistical MT systems are incapable of
producing reliable translations of them.

Moreover, many NEs are composed of ordinary
words, such as the term “Rice University”. In the at-
tempt to output the most likely translation, a statis-
tical system would translate this collocation word by
word.

In this paper, we attempt to address this prob-
lem by using Wikipedia1 to translate NEs and present
them already translated to the MT system.

1.1 Named entity translation task

The set of named entities is unbounded and there are
many definitions of named entities. In our project, we
work with a vague definition of a named entity being
a word or group of words which, when left untrans-
lated, are a valid translation anyway (despite the fact
that a “real” translation is usually better if it exists;
however, it does not exist in many cases).

⋆ This work has been supported by the grants Euro-
MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic), P406/11/1499, and
MSM 0021620838.

1 http://en.wikipedia.org/

Translation of named entities consists of several
subtasks. NEs have to be identified in the source text
and their translations must be proposed. These have to
be appropriately incorporated into the sentence trans-
lation — the sentence context must match the NE and
vice versa.

For the English-Czech language pair, match-
ing NEs to the sentence context consists mainly of
inflection of NE words. For example, while “London”
translates to Czech as “Londýn”, in the context of
a more comlex NE, the name has to be inflected in
Czech, such as “London airport” → “Londýnské
letǐste” (Londonadj airport).

Matching the sentence context to the named en-
tity is needed when some information, such as the
grammatical gender, comes from the NE. For exam-
ple, Czech verbs in past tense have different forms for
each gender — the verb “came” has to be translated as
“prǐsel” when the subject is masculine, as “prǐsla” for
feminine and as “prǐslo” for neuter subject. This infor-
mation needs to be taken into account in translation:
“Jeffry came.” → “Jeffry prǐsel.”.

1.2 Work outline

We experiment with English to Czech translation.

Named entity recognition is done in two steps.
First, all potential NEs are recognized using a simple
recognizer with a low precision but with a high recall.
Then, confirmation/rejection of named entities is done
— if there is an article with the corresponding title in
English Wikipedia, we try to confirm the potential NE
as a true NE based on the categories of the article.

The translation of a NE is done by looking up
the Czech version of the English Wikipedia article
about the named entity. Its title is considered the
“base translation”. Other potential translations (in
our case this means simply various inflected forms) are
then extracted from the text of the Czech article. Each
named entity found in the input text is then replaced
with a set of its potential translations, from which the
MT system then tries to choose the best one.

The matching of the sentence context to the NE is
not handled explicitly. We rely on target-side language
model to determine the most appropriate option.

24 Ondrej Hálek et al.

2 Recognition of potential named
entities

In our case, the goal of potential NE recognition is to
find as many potential NEs as possible (i.e. we favour
higher recall at the expense of precision), because the
candidates for NEs are still to be confirmed or rejected
in the next step. Thanks to the external world knowl-
edge provided by Wikipedia, our task is not a typical
NER scenario. NE recognition is not the focal point of
our experiment, so we limit ourselves to using two tools
for recognition of potential NEs: our simple named en-
tity recognizer and Stanford named entity recognizer.

2.1 Simple named entity recognizer

We created a simple rule-based named entity recog-
nizer for selecting phrases suspected to be named en-
tities. It looks for capitalized words and uses a small
set of simple rules for beginnings of sentences — most
notably, the first word of a sentence is a potential NE if
the following word is capitalized (except for words on
a stoplist, such as “A”, “From”, “To”. . .). Sequences
of potential NEs are always considered as a single one
multiword potential NE.

2.2 Stanford named entity recognizer

The Stanford NER [4] is a well-known tool with docu-
mented accuracy over 90% when analyzing named en-
tities according to CoNLL Shared Task [12]. However,
this classification does not match our named entity
definition, and we also use only a limited recognition
model.2

2.3 Evaluation of named entity recognizers

To evaluate the tools we use an evaluation text consist-
ing of 255 sentences rich in named entities, originally
collected for a quiz-based evaluation task [1]. The sen-
tences are quite evenly distributed among four topics
— directions, meetings, news and quizes.

We first performed a human annotation of NEs in
the evaluation text, where two annotators marked NEs
in the text according to our NE definition. The inter-
annotator agreement F-measure3 was only 83%, which
sets an upper bound on the value for our automatic
recognizers. We then picked one annotation as a stan-
dard, according to which we compare outputs of the
NE recognition tools.

2 ner-eng-ie.crf-3-all2008-distsim — a conditional
random field model that recognizes 3 NE classes (Lo-
cation, Person, Organization) trained on unrestricted
data, uses distributional similarity features

3 F = 2PR
P+R

, where P stands for precision and R for recall

To measure the precision of a NE recognizer, we
count the NEs on which the tool agrees with the stan-
dard annotation and divide it by the total number
of NEs recognized by the tool. Similarly, the recall
is measured as the number of NEs confirmed by the
standard divided by the number of NEs in the stan-
dard.

The performance of the two aforementioned tools
measured on the evaluation text is shown in Table 1.

Recognizer Precision Recall F-measure

Simple NER 0.57 0.73 0.64
Stanford NER 0.70 0.49 0.58

Tab. 1. Comparison of NE recognizers.

Our Simple NER has a significantly higher recall
than Stanford NER; it is actually capable of deliver-
ing most of the named entities. Its low precision is not
an issue for our experiment since in the next step we
confirm the named entities by using Wikipedia cate-
gories. Its F-measure is also higher than that of Stan-
ford NER, suggesting the Simple NER suits our NE
definition better.

Since the Stanford NER results are well docu-
mented, we assume that its poor results in our exper-
iment are mainly caused by a different NE definition
and the recognition model used — in this setup Stan-
ford NER recognizes only people, locations and organi-
zations, but e.g. named entities from the software class
(names of programs, programming language functions
etc.) are left out from the recognition.

On the other hand, with Stanford NER we are ca-
pable of correctly recognizing complex named entities,
and the recall of recognition of named entities at sen-
tence beginnings is higher than that of Simple NER.

3 Confirmation of NEs by Wikipedia

For each potential named entity we try to confirm it
as a true named entity using Wikipedia categories.

First we look for the article on English Wikipedia
with a title matching the potential NE. If it does not
exist, we reject it immediately.

We then get the categories of that article. For each
category we do a search for its superior categories (sev-
eral hard limits had to be introduced, because the
categories do not form a tree, not even a DAG; the
maximum depth of the search was set to 6).

In the end, the categories found are compared with
our hand-made list of named entity categories. If at
least one of the article categories or their super-cate-
gories is contained in the NE categories list, we confirm
the potential NE as a true NE; otherwise we reject it.

Named entities for machine translation 25

http://en.Wikipedia.org/w/api.php?action=query&prop=categories&redirects&clshow=!hidden

&format=xml&titles=Rice_University

<?xml version="1.0"?>

<api>

<query>

<pages>

<page pageid="25813" ns="0" title="Rice University">

<categories>

<cl ns="14" title="Category:Association of American Universities" />

<cl ns="14" title="Category:Educational institutions established in 1891" />

. . .

Fig. 1. Example of XML Response to a Request to Wikimedia API.

The following categories are considered to indicate
NEs:

– Places
– People
– Organizations
– Companies
– Software
– Transport Infrastructure

To get the information from Wikipedia we use the
Wikimedia API [7]. Figure 1 shows an example of the
API response.

4 Wikipedia translation

For each English Wikipedia article about a NE we
look if there is a corresponding Czech article (this is
provided by Wikipedia under the page section “Lan-
guages”). If there is one, we use its title as the base
translation.

We then try to find all inflected forms of the base
translation in the text of the Czech article to use as
alternative translations.

For each word in the base translation, we trim its
last three letters, keeping at least the first three letters
intact. This is considered a “stem”.

Then, the Czech article is fetched using Wikime-
dia API and wiki markup is stripped. We then search
the article text for sequences of words with the same
stems. If we find a match, we consider it an inflected
form of our base translation and include it in the list
of potential translations.

Finally, we estimate the probability of the various
forms from their counts of occurrences.

5 Translation process

In order to utilize the retrieved translation sugges-
tions, we had to find a way of incorporating them as

additional translation options for the decoder. This
can be generally done in several ways, such as by ex-
tending the parallel data, by adding new entries into
the translation model (i.e. the phrase table), or by pre-
processing the input data.

We use the Moses [6] decoder throughout our ex-
periments. Input pre-processing can be realized fairly
easily in Moses via XML markup of the input sen-
tences. It is simple to incorporate alternative trans-
lations for sequences of words and even to assign the
translation probability for each of the options. The
markup of input data is illustrated in Figure 2.

When scoring hypotheses, Moses uses several
translation model scores, namely p(e|f), p(f |e),
lex(e|f) and lex(f |e), i.e. translation probabilities in
both directions (where f stands for “foreign”
(English in this case) and e stands for Czech) and
lexical weights. The value specified in the markup (or 1
if omitted) replaces all of these scores.

Pre-processing of the input data also has the ad-
vantage of not requiring to retrain or modify exist-
ing translation models. Fully trained MT systems can
therefore be easily extended to take advantage of our
method.

Moses can treat the translation suggestions as ei-
ther exclusive or inclusive. If set to exclusive, only op-
tions suggested in the input markup are considered
as translation candidates. With the inclusive setting,
these options are included among the suggestions from
the translation model, competing with them for the
highest score. Depending on the quality of the trans-
lation model and the external translation suggestions,
this setting can either improve or hurt translation per-
formance.

When estimating the probability of our transla-
tions, we distribute the whole probability mass among
them. The scores of translation suggestions provided
by the translation model are typically much lower.
However, target language model usually has a signifi-
cant impact on hypothesis scoring, so even if the ex-

26 Ondrej Hálek et al.

They moved to <name translation="Londýn||Londýna" probs="0.6||0.4">London</name> last year.

Fig. 2. An example of including external translation options using XML markup of input.

ternal translation scores are set to unrealistically high
values, the language model makes the “competition”
with translation model options reasonably fair.

The default settings for common language models,
such as SRILM or KenLM, as used in Moses, assign
zero log-probability (i.e. the probability of 1) to un-
known tokens instead of the intuitive −∞. In most
cases, training data of the language model for the tar-
get language also include the target language part of
the translation model parallel data, so this is not an
issue. However, our translation suggestions often con-
tain tokens unseen in any data, including some noise
introduced by the imperfect suffix trimming heuris-
tic. Instead of penalizing such options, the language
model promoted them, since the unknown words were
ignored and therefore did not lower the overall ngram
probability (any known token has a probability < 1,
scoring inevitably lower). We were able to solve this
problem by setting a very low probability for unknown
tokens. Perhaps a more interesting option would be to
add the full texts of the Czech Wikipedia articles to
the language model. This would ensure the translation
of the NE is known to the language model and even
including some plausible contexts. We leave this for
future research.

6 Experimental results

We conducted a series of translation experiments, eval-
uating various setups of our method. We also carried
out a blind manual evaluation, in which the annota-
tors compared outputs of two MT setups which used
our method and of the baseline MT system.

6.1 Data sources

We used CzEng 0.9 [2] as the source of both parallel
and monolingual data to train our MT system. CzEng
is a parallel richly annotated Czech-English corpus.
It contains roughly 8 million parallel sentences from
a variety of domains, including European regulations
(about 34% of tokens), fiction (15%), news (3%), tech-
nical texts (10%) and unofficial movie subtitles (27%).
In all our experiments we used 200 thousand paral-
lel sentences for the translation model and 5 million
monolingual sentences for the target language model.
We also used CzEng as a source of a separate set of
1000 sentences for tuning the model weights and an-
other 1000 sentences for automatic evaluation.

Since manual evaluation would benefit from data
rich in terms of named entity occurrences, we used
the same set of sentences as in NER evaluation. These
sentences cover quite a wide range of topics, so they
seem suitable even for translation evaluation.

6.2 Tools

We used the common pipeline of popular tools for
phrase-based statistical MT, namely the Moses de-
coder and toolkit, SRILM language modelling
tool [11], an open-source implementation of IBM
models GIZA++ [8] for obtaining word alignments.
KenLM [5] was used instead of SRILM during decod-
ing for its better speed and simplicity.

We used the MERT (Minimum Error Rate Train-
ing) [9] algorithm to tune weights of the log-linear
model and BLEU [10] as the de-facto standard au-
tomatic translation quality metric.

6.3 Automatic evaluation

We evaluated a small subset of possible setups, all our
results are summarized in Table 2. The main goal of
these experiments was to determine which components
of our pipeline are actually important for achieving
good results.

We began with a simple scenario, only using the ti-
tles of the articles for translation (i.e. inflected occur-
rences of the title were not available to the decoder)
and forcing Moses to use only our suggestions when
translating a NE in a sentence.

In the very first case, we also kept unknown named
entities in their original form — by an unknown NE we
understand an entity for which the corresponding En-
glish Wikipedia article exists and its categories imply
that it is a named entity, but there is no corresponding
Czech article. Since the Czech version of Wikipedia is
much smaller, this case occurs quite often.

The BLEU score in these simple scenarios confirms
our expectations — in statistical machine translation,
forcing or limiting translation possibilities rarely helps.
More specifically, by excluding phrase table entries, we
forbid the log-linear model to use potentially more ad-
equate translations. The phrase table may well include
many variants of a given named entity translation,
providing more context and inherent disambiguation.
This information should be used and possibly even
preferred to a single translation or an enumeration of

Named entities for machine translation 27

NEs Suggested Regular Translations Unknown NEs NER BLEU

Only base forms Excluded Preserved Simple 25.13
Only base forms Excluded Translated Simple 25.38
Only base forms Included Translated Simple 25.80
All forms Included Translated Simple 25.97
All forms Included Translated Stanford 25.98

Baseline 26.62

Tab. 2. BLEU scores of our setups and the baseline system.

potential translations suggested by our tools (albeit
probabilistically weighted). On the other hand, pro-
moting phrase table entries too eagerly would result
in undesirable translations in some cases, for example
when a named entity is composed of common words.

It is also not surprising that keeping unknown en-
tities untranslated hurts (automatically estimated)
translation performance, as Czech tends to translate
most of frequent foreign names, and even NEs which
are used in their original form are usually inflected in
Czech. NEs that would remain completely unchanged
are quite rare. Sentences with some NEs left untrans-
lated may be more understandable, even considered
better translations in some cases, but BLEU score is
necessarily worse.

When we allowed translation model entries to com-
pete with our suggestions, the score improved further
to 25.80. The target language model was apparently
able to promote options from the phrase table in spite
of their low translation model scores compared to our
suggestions (see Section 5).

Our translations could have been inadequate for
two main reasons in this scenario:

– Lexically incorrect translation,
– Wrong surface form (only title translation used).

Adding a full list of all inflected forms of NEs along
with their estimated probabilities improved the trans-
lation quality slightly, presumably because the target
language model was able to determine which of our
suggestions fitted best into the sentence translation.

We can therefore conclude that our approach to in-
corporating named entity translations works success-
fully — the outputs contained some direct translations
of article titles, some inflected forms extracted from
the article content and some phrase table entries.

Using Stanford named entity recognizer brought
no further gains. The recognizer marked a differ-
ent (albeit smaller) set of NEs, but further filtering
based on Wikipedia article categories and the absence
of many Czech equivalent articles made the difference
negligible.

Finally, all our scenarios scored worse than the
baseline in terms of BLEU. While we believe that the
motivation behind our method is valid, we were not

able to avoid some errors in each of the steps that,
when combined, resulted in a loss in BLEU score.
A detailed analysis of errors is provided in Section 6.5.

On the other hand, we also achieved several no-
table improvements in translation quality even in the
CzEng test set, some of which are shown in Figure 3.

6.4 Manual evaluation

We had four annotators evaluate 255 sentences rich in
named entities, using QuickJudge4 which randomized
the input. In the input sentences there were approx-
imately 400 named entities, but the translations dif-
fered only in 78 sentences. QuickJudge automatically
skips sentences with identical translations, so the an-
notators only saw these 78 sentences.

Three setups were evaluated: the “Baseline” un-
modified Moses system, and two modifications of that
system, “Translate” and “Keep unknown”. The sys-
tem marked as “Translate” corresponds to the best-
performing setup, not using Stanford NER. “Keep un-
known” is the same system, however, unknown NEs
are handled differently — if a potential NE is con-
firmed by Wikipedia, but a Czech translation does not
exist, it is kept untranslated in the output.

The annotators were presented with the source
English sentence and with three translations coming
from the three different setups. Then they assigned
marks 1, 2 and 3 to them. Ties were allowed and only
relative ranking, i.e. not the absolute values, was con-
sidered significant.

Table 3 summarizes the results. The values suggest
a large number of ties — this is not surprising since
differences between systems were small, their outputs
often differed only in 1 word or inflection of a named
entity.

We find it promising that our setups won accord-
ing to all annotators. The inter-annotator agreement
was however surprisingly low — even though in to-
tal, the annotators’ preferences match, the individual
sentences that contributed to the results differ greatly
among them. All annotators agreed on a winner in
only 25% sentences.

4 http://ufal.mff.cuni.cz/euromatrix/quickjudge/

28 Ondrej Hálek et al.

Source It was Nova Scotia on Wednesday.

Baseline bylmasc to nova scotia ve stredu. (NE is left untranslated)
Our setup to byloneut nové skotskoneut ve stredu. (correct NE translation and gender agreement)

Source In August, 1860, they returned to the Victoria Falls.

Baseline v srpnu, 1860, se k vyjádreńı falls. (“Victoria” is left out, “falls” kept untranslated)
Our setup v srpnu, 1860, se na viktoriiny vodopády. (correct translation extracted from Wikipedia)

Fig. 3. Examples of translation improvements. “Our setup” denotes the best-performing setup in terms of BLEU.

Confirming our intuition, annotators usually pre-
ferred to keep unknown entities untranslated. The fact
that all of the annotators speak English certainly con-
tributed to this result, however we believe that keeping
unknown NEs in the original form is often the best so-
lution, especially in terms of preserved information.
Imagine a translation of a guidebook, for example —
if an MT system correctly detects NEs and keeps un-
known ones untranslated, the result is probably better
than if it attempts to translate them. Thanks to the
NER enhanced by Wikipedia, our system would pro-
duce more informative translations than a standard
SMT system, which tends to translate NEs in various
undecipherable ways.

Annotator Baseline Translate Keep unknown

1 46 56 51
2 38 45 54
3 41 39 47
4 35 43 49

Tab. 3. Number of wins (manual annotation).

6.5 Sources of errors

In order to explain the drop of BLEU in a more de-
tailed fashion, we examined the translation outputs
and attempted to analyze the most common errors
made by our best-performing setup.

Incorrect Wikipedia translation Quite often, the
Wikipedia article contained information about a dif-
ferent meaning of the term. When translated to Czech,
the difference in the meaning became apparent. For
example, the default Wikipedia article on “Brussels”
discusses the whole “Brussels Region”, therefore the
Czech translation is “Bruselský region”. This word ap-
peared several times in the test data and the default
interpretation was wrong in all cases.5

5 It is however noteworthy that the inflected form of this
particular name was always chosen correctly.

Suffix trimming error Suffix trimming also occa-
sionally matched words or word sequences completely
unrelated to the article name. As an example, the
name of the company Nestlé matched the word “ne-
správne” (“incorrectly”) in the Czech article. Because
this word is quite common, the language model score
ensured it to appear in the final translation. A simi-
lar example was matching “pole” (“field”) in the ar-
ticle about Poland (“Polsko” in Czech). We decided
to match case-insensitively in order to cover cases of
named entities that do not begin with a capital letter
in Czech (such as “Gulf War”, “válka v Zálivu”).

Wrong named entity form There are two possible
causes for an error of this kind — either the Czech ar-
ticle did not contain the inflected form needed in the
translation, or the language model failed to enforce
the correct option, mainly because the NE contained
words unknown to the model (never seen in the mono-
lingual training data).

Since BLEU does not differentiate between a wrong
word suffix and a completely incorrect word transla-
tion, these errors are equally severe in terms of au-
tomatic evaluation.6 On the other hand, human an-
notators consider a mis-inflected (otherwise correct)
translation to be better than a completely untrans-
lated named entity.

7 Wikipedia translations as a separate
phrase table

In order to incorporate weighting of our translations
into MERT, we also used a contrastive setup with an
alternative phrase table instead of the XML markup of
input sentences. The decoder was then working with
two translation tables — the standard one, generated
by GIZA++ from the parallel corpus, and the new
one, created by our tools. As is shown in Figure 4,

6 Metrics with paraphrasing (e.g. Meteor [3]) could solve
a part of the issue. Another option is to replace all
words with their lemmas in the hypothesis and the refer-
ence and use a standard n-gram metric like BLEU. This
would completely ignore errors in word forms, which is
inadequate as well and might seem manipulated.

Named entities for machine translation 29

NEs Suggested Regular Translations Unknown NEs NER BLEU

All forms (old) Included Translated Simple 27.11
All forms (new) Included Translated Simple 26.60

Baseline 26.62

Tab. 4. BLEU scores of two setups using alternative translation table and the baseline system.

there are two scores in our table — the first one is the
probability assigned by our tools (based on number
of occurrences of the form in the text of the Czech
Wikipedia article) and the second one is the “penalty”
for using our NE translation.7 It is up to MERT to
estimate the weight to assign to our translations.

London ||| Londýn ||| 0.4 2.718

London ||| Londýna ||| 0.2 2.718

Fig. 4. Example of phrase table entries.

7.1 Results

Although the results of this experiment look promis-
ing, they have not been fully evaluated yet and are
therefore only preliminary. There is an improvement
in BLEU score (see Table 4), but it is not a result of
better NE translation. The unstability of MERT pro-
cess results in different weights in both translations,
causing the baseline translation and our experiment
outputs to differ significantly in whole sentences, not
only in NE translation. Futher analysis and experi-
ments are therefore needed.

There are two results reported in Table 4 because
two different versions of the inflector were used to get
the inflected forms. The “old” one uses all text data
from the body of the article (including e.g. external
links), while the “new” one looks for the inflected form
only in the text of the article.

8 Conclusion

Our approach of automatically suggesting translations
of named entities based on Wikipedia texts leads to
drop in automatic evaluation but to a slight improve-
ment in manual evaluation of MT quality. Part of this
improvement is due to not translating identified enti-
ties at all.

While some deficiencies of the proposed method
of NE translation can be hopefully mitigated (poor
suffix trimming and search for various forms of target-
side NEs), the incorrectness of some Wikipedia trans-
lations is not easy to solve. It is therefore questionable
whether the named entity translations provided by our

7 This penalty is used in all Moses phrase tables; it is the
same for all entries and equals 2.718

.
= exp(1) = e.

system should be used for all named entities, or only
for entities not present (or very rare) in the training
data.

We described two methods of mixing the newly
proposed translations and the default translations of
the MT system. We studied the XML-input method
more and learned that it faces an imbalance in scoring
of hypotheses from the two sources. We also report
preliminary results of the other method: alternative
decoding paths, allowing the model to choose the best
balance automatically. While the automatic scores for
the second method increased slightly, the results are
not yet stable and a further analysis is needed.

In sum, we have shown that Wikipedia can serve as
a valuable source of bilingual information and there is
an open space for incorporating this information into
machine translation. However, Wikipedia should not
serve as the only source of information, and the ex-
tracted information should be confirmed e.g. by anal-
ysis of some other monolingual data.

References

1. J. Berka, M. Černý, and O. Bojar: Quiz-based evalu-
ation of machine translation. The Prague Bulletin of
Mathematical Linguistics, 95, April 2011, 77–86.

2. O. Bojar and Z. Žabokrtský: CzEng 0.9: large paral-
lel treebank with rich annotation. Prague Bulletin of
Mathematical Linguistics, 92, 2009, 63–83.

3. M. Denkowski and A. Lavie: METEOR-NEXT and
the METEOR paraphrase tables: improved evaluation
support for five target languages. In Proceedings of
the ACL 2010 Joint Workshop on Statistical Machine
Translation and Metrics MATR, 2010.

4. J.R. Finkel, T. Grenager, and C.D. Manning: Incorpo-
rating non-local information into information extrac-
tion systems by gibbs sampling. In ACL. The Associa-
tion for Computer Linguistics, 2005.

5. K. Heafield: Kenlm: faster and smaller language model
queries. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, Edinburgh, UK, July
2011. Association for Computational Linguistics.

6. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst: Moses: open source toolkit for statisti-
cal machine translation. In ACL. The Association for
Computer Linguistics, 2007.

7. MediaWiki. Mediawiki – mediawiki, the free wiki en-
gine, 2007. [Online; accessed 23-May-2011].

30 Ondrej Hálek et al.

8. F.J. Och and H. Ney: Improved statistical alignment
models. Hongkong, China, October 2000, 440–447.

9. F.J. Och: Minimum error rate training in statistical
machine translation. In ACL, 2003, 160–167.

10. K. Papineni, S. Roukos, T. Ward, andW.-J. Zhu: Bleu:
a method for automatic evaluation of machine trans-
lation. In ACL, 2002, 311-318.

11. A. Stolcke: Srilm – an extensible language modeling
toolkit. June 06 2002.

12. E.F. Tjong Kim Sang and F. De Meulder. Introduction
to the conll-2003 shared task: language-independent
named entity recognition. In Proceedings of the Sev-
enth Conference on Natural Language Learning at
HLT-NAACL 2003 - Volume 4, CONLL ’03, pp. 142–
147, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

Assessing the suitability of surrogate models
in evolutionary optimization?

Martin Holeňa and Radim Demut

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, 18207 Prague

Abstract. The paper deals with the application of evolu-
tionary algorithms to black-box optimization, frequently en-
countered in biology, chemistry and engineering. In those
areas, however, the evaluation of the black-box fitness is of-
ten costly and time-consuming. Such a situation is usually
tackled by evaluating the original fitness only sometimes,
and evaluating its appropriate response-surface model oth-
erwise, called surrogate model of the fitness. Several kinds
of models have been successful in surrogate modelling, and
a variety of models of each kind can be obtained through
parametrization. Therefore, real-world applications of sur-
rogate modelling entail the problem of assessing the suit-
ability of different models for the optimization task being
solved. The present paper attempts to systematically inves-
tigate this problem. It surveys available methods to assess
model suitability and reports the incorporation of several
such methods in our recently proposed approach to surro-
gate modelling based on radial basis function networks. In
addition to the commonly used global suitability of a model,
it pays much attention also to its local suitability for a given
input. Finally, it shows some results of testing several of
the surveyed methods in two real-world applications.

1 Introduction

An important application area of evolutionary opti-
mization algorithms [8, 31] is black-bock optimization,
i.e., optimization of an objective function (in evolu-
tionary terms called fitness) that cannot be described
explicitly, but is known only from its evaluations in
a finite number of points in the input space.
Frequently, the fitness is evaluated in some empirical
way, through measurements or testing. This is typical
for applications in biology, chemistry, or materials sci-
ence [1]. In those domains, however, the fact that evo-
lutionary algorithms rely solely on fitness evaluations
can be quite disadvantageous because the evaluation of
empirical functions encountered there is usually time-
consuming and costly. For example in the evolution-
ary optimization of catalytic materials [1, 12], where
a fitness describes the suitability of the material for
a particular chemical reaction, its evaluation in one
generation of the evolutionary algorithm needs sev-

? The research reported in this paper has been sup-
ported by the Czech Science Foundation (GA ČR) grant
P202/11/1368.

eral days to several weeks of time and costs several to
many thousands of euros.

The usual way of dealing with a time-consuming
and costly evaluation of an objective function is to
evaluate such a function only sometimes, and
evaluate its suitable response-surface model oth-
erwise [19, 25]. In the context of evolutionary opti-
mization, such a model is commonly called surrogate
model of the fitness, and the approach is called sur-
rogate modelling [10, 29, 32, 37] (occasionally also out-
side that context [3, 23]). Because fitness is typically
assumed to be highly nonlinear, nonlinear models are
used as surrogate models. So far most frequently en-
countered have been Gaussian processes [7, 28, 37]
(inspired by their success in response surface mod-
elling [20, 21, 23, 35]), radial basis function (RBF) net-
works [2, 37] and other kinds of feedforward neural net-
works [16, 18].

Due to the applicability of different kinds of models
to surrogate modelling, as well as due to the possibility
to construct a variety of models of each kind through
an appropriate parametrization, a large number of var-
ious surrogate models can always be employed. There-
fore, real-world applications of surrogate modelling en-
tail the problem of assessing the suitability of different
models for the optimization task being solved. Unfor-
tunately, no systematic attention seems to have been
paid to that problem so far in the area of surrogate
modelling, the research in this area being focused on
the integration of surrogate models with evolutionary
optimization algorithms, their adaptation to the opti-
mization tasks, and on increasing the accuracy of the
constructed models [11, 14, 17, 26]. The present paper
is an attempt to change the situation. We survey avail-
able methods to assess model suitability, concentrat-
ing in particular on local suitability of the model for
a given input. Moreover, we give some results of test-
ing several of the surveyed methods on two real-world
applications of surrogate modelling.

In the following section, the principles of surrogate
modelling are recalled and their usefulness for evolu-
tionary optimization is documented. The key section
of the paper is Section 3, in which the most important
methods for assessing model suitability are explained
and results of their testing are presented.

32 Martin Holeňa, Radim Demut

2 Surrogate modelling in evolutionary
optimization

In evolutionary optimization, surrogate modelling is
an approach in which the evaluation of the original
black-box fitness is restricted to points considered to be
most important in the search for its global maximum,
and its appropriate response-surface model is evalu-
ated otherwise. Important for searching the global ma-
ximum of a fitness function are on the one hand the
highest values found so far, on the other hand the di-
versity of current population. Therefore, the selection
of points in which the original fitness is evaluated is
always based on some combination of those two crite-
ria.

The different ways of interaction between the sys-
tem input/output interface, the generated evolution-
ary algorithm (EA) and the surrogate model can basi-
cally be assigned to one of the following two strategies:

A. The individual-based strategy consists in choosing
between the evaluation of the original fitness and
the evaluation of its surrogate model individual-
wise, for example, in the following steps:

(i) An initial set E of individuals is collected in
which the original fitness η was evaluated
(e.g., individuals forming several first genera-
tions of the EA).

(ii) The model is trained using pairs {(x, η(x)) :
x ∈ E}.

(iii) The EA is run with the fitness η replaced
by the model for one generation with a pop-
ulation Q of size qP , where P is the desired
population size for the optimization of η, and
q is a prescribed ratio (e.g., q = 10 or q = 100).

(iv) A subset P ⊂ Q of size P is selected so as to
contain those individuals fromQ that are most
important according to the considered criteria
for the progress of optimization.

(v) For x ∈ P, the original fitness is evaluated.

(vi) The set E is replaced by E ∪ P and the algo-
rithm returns to (ii).

B. The generation-based strategy consists in choosing
between both kinds of evaluation generation-wise,
for example, in the following steps:

(i) An initial set E of individuals in which the
original fitness η was evaluated is collected like
in the individual-based strategy.

(ii) The model is trained using pairs {(x, η(x)) :
x ∈ E}.

(iii) The EA is run with the fitness η replaced
by the model for a number gm of generations,
interactively obtained from the user, with pop-
ulations P1, . . . ,Pgm of size P .

(iv) The EA is run with the original fitness η for
a prescribed number ge of generations with
populations Pgm+1, . . . ,Pgm+ge (frequently,
ge = 1).

(v) The set E is replaced by E ∪ Pgm+1 ∪ · · · ∪
Pgm+ge and the algorithm returns to (ii).

The fact that surrogate modeling is employed in
the context of costly or time-consuming objective func-
tions effectively excludes the possibility to use those
functions for tuning surrogate modeling methods, and
for comparing different models and different ways of
their combining with evolutionary optimization. To
get around this difficulty, artificial benchmark func-
tions can be used, computed analytically but expected
to behave in evolutionary optimization similarly to the
original fitness. As an example, Fig. 1 shows the appli-
cation of surrogate modelling to a benchmark function
proposed in [34] for the application area of optimiza-
tion of catalytic materials (cf. [1]). The benchmark
function was optimized using the system GENACAT
[13, 15], one of several evolutionary optimization sys-
tems developed specifically for that application area.
The evolutionary algorithm employed by GENACAT
is a genetic algorithm (GA) taking into account the
composition and properties of catalytic materials. As
surrogate model, a RBF-network trained with data
from all previous generations was used, combined with
the GA according to the individual-based strategy.
The results shown in Fig. 1 clearly document that sur-
rogate modelling substantially accelerates the search
for the maximum of a fitness function.

3 Assessing the suitability of different
models

Instead of a single surrogate model, a whole set of mod-
els F an be used. Then it is necessary to decide how
suitable each of them is to be evaluated instead of the
original fitness η. Typically, the suitability of a model
F ∈ F is assumed to be indirectly proportional to
some error ε(F), defined on F and calculated using
a given sequence of data not used for the construction
of F . Consequently, the most suitable surrogate model
is the one fulfilling

F̂ = arg min
F∈F

ε(F). (1)

There are various ways how ε(F) takes into account
the evaluation η(x) by the original fitness and the eval-
uation F (x) by the model for given inputs x, e.g.,
mean absolute error, mean squared error, root mean
square error, relative entropy, Kullback-Leibler diver-
gence, There are also two basic ways how to assure
that the given sequence of data was not used for the

Assessing the suitability of surrogate models . . . 33

Fig. 1. Comparison of the highest values of the benchmark fitness function from [34] found by the evolutionary opti-
mization system GENACAT [13, 15] without surrogate modeling and with an RBF network used as surrogate model,
according to the individual-based strategy.

construction of F : single split and cross-validation, the
latter having the important advantage that all avail-
able data are used both for model construction and
for the estimation of model error.

Let us exemplify the calculation of ε(F) by recall-
ing the definition of the root mean squared error on
an input data sequence D:

RMSE(F) = RMSED(F) = (2)

=

√
1

|D|
∑
x∈D

(F (x)− η(x))2,

where |D| denotes the cardinality of D. Thus the over-
all root mean squared error of F based on a k-fold
crossvalidation with folds D1, . . . , Dk is:

RMSE(F) =
1

k

k∑
i=1

RMSEDi(F) = (3)

=
1

k

k∑
i=1

√
1

|Di|
∑
x∈Di

(F (x)− η(x))2,

Observe that the most suitable model F̂ in (1) de-
pends on the considered set of surrogate models F ,
but does not depend on the inputs in which it has to
be evaluated. Therefore, it can be called globally most
suitable with respect to the given sequence of data. Its
obvious advantage is that it needs to be found only
once, and then it can be used for all evaluations, as
long as the set F does not change.

Global suitability of surrogate models based on
cross-validation was tested in more than a dozen evo-
lutionary optimization tasks. Here, we show results of
testing it in a task where F was a set of multilayer per-
ceptrons (MLPs) with two hidden layers and different
architectures. They were restricted to have nI = 14
input neurons, no = 3 output neurons, and the num-
bers of hidden neurons nH1 in the first and nH2 in
the second layer fulfilling the heuristic pyramidal con-
dition: the number of neurons in a subsequent layer
must not exceed the number of neurons in a previous
layer. Consequently,

14 ≥ nH1 ≥ nH2 ≥ 3, (4)

34 Martin Holeňa, Radim Demut

Fig. 2. Comparison of the RMSE of 21 surrogate models on test data, i.e., data from the 7th generation of a genetic
optimization, with the RMSE-estimate obtained for those models by means of leave-one-out cross-validation on data
from the 1st–6th generation.

which yields 78 different MLP architectures. They were
tested as follows:

1. The employed GA was run for 6 generations using
the original fitness.

2. For each of the considered 78 architectures, one
surrogate model was trained using all the available
data from the 1st–6th generation.

3. The RMSE of each surrogate model on the data
from the 1st–6th generation was estimated using
leave-one-out cross-validation, according to (3).

4. The 7th generation G7 of the genetic algorithm
was produced.

5. The models obtained in step 2 were used to predict
the fitness of x ∈ G7.

6. For x ∈ G7, also the original fitness was evaluated.
7. From the results of steps 5–6, the RMSE of each

surrogate model on the data from the 7th genera-
tion was calculated according to (2), with D = G7.

8. For each surrogate model, the RMSE calculated in
step 7 was compared to the RMSE estimate from
step 2.

Figure 2 visualizes the results of comparisons in
step 8 for a subset of the considered surrogate models,

namely for the 21 MLP architectures that, in addition
to (4), fulfil 6 ≤ nH1, nH2 ≤ 11. The visualized re-
sults indicate that the rank of models according to the
RMSE-based suitability estimated by means of leave-
one-out cross-validation on the data from the 1st–6th

generation correlates with their rank according to the
RMSE on the data from the 7th generation. We also
quantified the extent of that correlation, using:

(i) Kendall’s rank correlation coefficient τ between
the ranks of models according to the suitability
based on RMSE and estimated using leave-one-
out cross-validation, and according to the RMSE
on test data from the 7th generation,

(ii) achieved significance level pτ of the test of rank
independence based on the correlation coefficient τ
obtained in (i).

The results were

τ = 0.77 and pτ = 1.7 · 10−8, (5)

which clearly confirm a strong correlation between the
rank of the model suitability and the rank of model
RMSE on test data.

Assessing the suitability of surrogate models . . . 35

3.1 Local suitability

Needless to say, the fact that a globally most suitable
model achieves the least value of an error ε calculated
using a given sequence of data does not at all mean
that it yields the most suitable prediction for every x
in which fitness η can be evaluated. Therefore, we in-
troduce the model F̂x locally most suitable for x as

F̂x = arg min
F∈F

λ(F, x). (6)

Like ε in (1), λ in (6) denotes some error. Dif-
ferently to ε, however, λ is defined on the cartesian
product F × X , where X denotes the set of points in
which η can be evaluated.

Recall that a surrogate model is evaluated in points
x ∈ X in which η has not been evaluated yet. Hence,
the calculation of the error λ(F, x) must not depend on
the value of η(x). Though in the context of surrogate
modelling, using such errors has not been reported yet,
a number of error measures exist that could be used
to this end, most importantly:

– widths of confidence intervals [33];

– transductive confidence [9, 27, 36];

– estimation of prediction error relying on density
estimation [4];

– sensitivity analysis [5];

– several heuristics based on the nearest neighbours
of the point of evaluation [4, 30];

– heuristic based on the variance of bagged mod-
els [6];

We are currently extending the surrogate model
presented in [2], which is based on RBF-networks, with
three of the above error measures:

(i) Width of prediction intervals for x ∈ X , i.e., of
confidence intervals for F̂x(x) in (6) based on the
linearization of the surrogate models and on the
assumption of independent normally distributed
residuals. First, each F ∈ F is replaced with its
Taylor expansion of the 1st order, which is a lin-
ear regression model FLIN with d + 1 parame-
ters, where d is the dimensionality of points in X .
Hence, F is replaced with

FLIN = {FLIN : F ∈ F}. (7)

Then for each considered x∈X , the element F̂MLE
x

of FLIN corresponding to the maximum-likelihood
estimate of the d + 1 parameters is found using
a given training sequence of input-output pairs
(x1, y1), . . . , (xp, yp). That allows to calculate for
each F ∈ F the error in (6) as

λ(i)(F, x) =

∣∣∣∣∣∣
p∑
j=1

(yj − F̂MLE
x (xj))

2−

−
(

1 +
F1−α[1, p− d]

p− d

) p∑
j=1

(yj − F (xj))
2

∣∣∣∣∣∣ , (8)

where F1−α[1, p− d] denotes the 1− α quantile of
the Fisher-Snedecor distribution with the degrees
of freedom 1 and p− d.

(ii) Difference between the predicted value and the nea-
rest-neighbours average is for k nearest neighbours
xn1

, . . . , xnk
calculated according to

λ(ii)(F, x) =

∣∣∣∣∣
∑k
j=1 ynj

k
− F (x)

∣∣∣∣∣ . (9)

(iii) Bagged variance requires to have some set B of
basic models and to find, in B, a given numberm of
models bagged with respect to (x1, y1),. . . ,(xp, yp),
i.e., globally most suitable with respect to boot-
strap samples from (x1, y1), . . . , (xp, yp). Recall
from (1) that to find such a bagged model, an er-
ror ε(B) is needed, calculated using the respective
bootstrap sample. In our implementation, we al-
ways use RMSE to this end. In its calculation ac-
cording to (3), hence, D1, . . . , Dk are folds of the
bootstrap sample. Using the bagged models, the
final set of considered surrogate models is defined
as

F =

F : F =

m∑
j=1

BFj & BF1 , . . . , B
F
m ∈ B

 ,

(10)

and the bagged variance is calculated according to

λ(iii)(F, x) =
1

m

m∑
j=1

BFj (x)− 1

m

m∑
j=1

BFj (x)

2

.

(11)

Because the extension of the surrogate model
from [2] with those three error measures has been im-
plemented very recently, it is now in the course of test-
ing in a second evolutionary optimization task. Here,
a part of the results from the first task will be shown,
concerning the optimization of catalytic materials for
high-temperature synthesis of HCN [24]. In that task,
F was a set of five RBF networks, each with a different
number of hidden neurons in the range 1–5. Those five
networks were tested in a similar way as was employed
in the above MLP-case. In particular:

36 Martin Holeňa, Radim Demut

Fig. 3. Juxtaposition of the errors of predictions by RBF networks with 1–5 hidden neurons for 30 catalysts randomly
selected from the 7th generation of a genetic optimization of catalytic materials for high-temperature synthesis of
HCN [24], with the choices of the networks locally most suitable according to λ(i), λ(ii) and λ(iii), and with the globally
most suitable model.

1. The employed GA was again run for 6 generations
using the original fitness.

2. For each of the 5 possible numbers of hidden neu-
rons, one surrogate model was trained using all the
available data from the 1st–6th generation.

3. The RMSE of each surrogate model on the data
from the 1st–6th generation was estimated using
10-fold cross-validation, according to (3).

4. Based on the result of step 3, the globally most
suitable model was determined.

5. The 7th generation G7 of the genetic algorithm
was produced.

6. The models obtained in step 2 were used to predict
the fitness of x ∈ G7.

7. For F ∈ F and x ∈ G7, the errors λ(i)(F, x),
λ(ii)(F, x), λ(iii)(F, x) were calculated.

Assessing the suitability of surrogate models . . . 37

8. The surrogate models locally most suitable for
x ∈ G7 according to λ(i), λ(ii) and λ(iii) were de-
termined.

9. For x ∈ G7, the original fitness was evaluated.
10. For x ∈ G7, the absolute errors of the considered

surrogate models were calculated from the results
of steps 6 and 9.

Figure 3 visualizes the locally most suitable models
determined in step 8 for a subset of 30 randomly se-
lected catalytic materials from the 7th generation. The
fact that for those catalysts the absolute errors of all
five RBF networks were calculated in step 10 allows
to juxtapose the choices of the locally most suitable
models and the globally most suitable model (model
with 2 hidden neurons) with the achieved absolute er-
rors. The juxtaposition shows that the model with the
lowest absolute error was nearly always assessed as the
locally most suitable by some of the three implemented
error measures. Unfortunately, no one of them could
be relied on in a majority of all cases.

4 Conclusion

This paper is, to our knowledge, a first attempt to sys-
tematically investigate available methods for assessing
the suitability of surrogate models in evolutionary op-
timization. In addition to the commonly used global
suitability of a model, it paid much attention also to
its local suitability for a given input. We have incorpo-
rated three methods for assessing local suitability into
our recently proposed approach to surrogate modelling
based on RBF networks. The paper not only surveyed
available methods for assessing suitability, but also de-
scribed their testing and presented some of the testing
results.

The presented results clearly confirm the useful-
ness of methods for assessing the suitability of surro-
gate models: there is a strong correlation between the
ranks of models according to the RMSE-based global
suitability estimated by means of leave-one-out cross-
validation on data from the 1st–6th generation and ac-
cording to the RMSE on the data from the 7th gen-
eration, and for nearly every unseen input, the model
with the lowest absolute error is indeed assessed as
the locally most suitable by some of the implemented
methods. Unfortunately, none of the methods is able
to correctly assess the locally most suitable model for
a majority of the 7th generation, which shows that fur-
ther research in this area is needed. We want to take
active part in such research, pursuing the following
three directions:
(i) Implement and test further methods for assessing

local suitability, listed above in Subsection 3.1. We
consider particularly interesting the transductive

confidence machine [9, 27, 36] because it is a novel
method and has solid theoretical fundamentals.

(ii) Investigate whether the success of some of the
tested methods for assessing local suitability de-
pends on the kind of dataset (in terms of the num-
ber of nominal attributes, number of continuous
attributes, etc.) on which the surrogate models
have been trained, or on their descriptive statis-
tics. To this end, we want to make use of the
GAME system [22], which collects a large amount
of meta-data about the kind of the processed da-
taset and about its descriptive statistics.

(iii) Modify and combine the tested methods, using
the results obtained in (ii), to increase their suc-
cess in assessing the local suitability of surrogate
models.

References

1. M. Baerns and M. Holeňa: Combinatorial development
of solid catalytic materials. Design of high-throughput
experiments, data analysis, data mining. Imperial Col-
lege Press, London, 2009.

2. L. Bajer and M. Holeňa: Surrogate model for contin-
uous and discrete genetic optimization based on RBF
networks. In C. Fyfe, P. Tino, C. Garcia-Osorio, and
H. Yin, (eds), Intelligent Data Engineering and Au-
tomated Learning. Lecture Notes in Computer Sci-
ence 6283, pp. 251–258. Springer Verlag, Berlin, 2010.

3. A.J. Booker, J. Dennis, P.D. Frank, D.B. Serafini, Tor-
czon V., and M. Trosset: A rigorous framework for
optimization by surrogates. Structural and Multidisci-
plinary Optimization, 17, 1999, 1–13.

4. Z. Bosnić and I. Kononenko: Comparison of ap-
proaches for estimating reliability of individual regres-
sion predictions. Data & Knowledge Engineering, 67,
2008, 504–516.

5. Z. Bosnić and I. Kononenko: Estimation of individual
prediction reliability using the local sensitivity analysis.
Applied Intelligence, 29, 2008, 187–203.

6. L. Breiman: Bagging predictors. Machine Learning,
24, 1996, 123–140.

7. D. Büche, N.N. Schraudolph, and P. Koumoutsakos:
Accelerating evolutionary algorithms with gaussian
process fitness function models. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 35, 2005, 183–194.

8. C.A.C. Coello, G.B. Lamont, and D.A. van Veld-
huizen: Evolutionary algorithms for solving multi-
objective problems, 2nd Edition. Springer Verlag,
Berlin, 2007.

9. A. Gammerman, V. Vovk, and V. Vapnik: Learning by
transduction. In Uncertainty in Artificial Intelligence,
pp.148–155. Morgan Kaufmann Publishers, San Fran-
cisco, 1998.

10. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene,
and K. Crombecq: A surrogate modeling and adaptive
sampling toolbox for computer based design. Journal of
Machine Learning Research, 11, 2010, 2051–2055.

38 Martin Holeňa, Radim Demut

11. D. Gorissen, T. Dhaene, and F. DeTurck: Evolution-
ary model type selection for global surrogate modeling.
Journal of Machine Learning Research, 10, 2009, 2039–
2078.

12. M. Holeňa and M. Baerns: Computer-aided strategies
for catalyst development. In G. Ertl, H. Knözinger,
F. Schüth, and J. Weitkamp, (eds), Handbook of Het-
erogeneous Catalysis, pp. 66–81. Wiley-VCH, Wein-
heim, 2008.

13. M. Holeňa, T. Cukic, U. Rodemerck, and D. Linke:
Optimization of catalysts using specific, description
based genetic algorithms. Journal of Chemical Infor-
mation and Modeling, 48, 2008, 274–282.

14. M. Holeňa, D. Linke, and U. Rodemerck: Evolu-
tionary optimization of catalysts assisted by neural-
network learning. In Simulated Evolution and Learn-
ing. Lecture Notes in Computer Science 6457, pp.220–
229. Springer Verlag, Berlin, 2010.

15. M. Holeňa, D. Linke, and U. Rodemerck: Generator
approach to evolutionary optimization of catalysts and
its integration with surrogate modeling. Catalysis To-
day, 159, 2011, 84–95.

16. M. Holeňa, D. Linke, and N. Steinfeldt: Boosted neural
networks in evolutionary computation. In Neural In-
formation Processing. Lecture Notes in Computer Sci-
ence 5864, pp. 131–140. Springer Verlag, Berlin, 2009.

17. Y. Jin: A comprehensive survery of fitness approxima-
tion in evolutionary computation. Soft Computing, 9,
2005, 3–12.

18. Y. Jin, M. Hüsken, M. Olhofer, and B. Sendhoff: Neu-
ral networks for fitness approximation in evolution-
ary optimization. In Y. Jin, (ed.), Knowledge Incor-
poration in Evolutionary Computation, pp. 281–306.
Springer Verlag, Berlin, 2005.

19. D.R. Jones: A taxonomy of global optimization meth-
ods based on response surfaces. Journal of Global Op-
timization, 21, 2001, 345–383.

20. D.R. Jones, M. Schonlau, and W.J. Welch: Efficient
global optimization of expensive black-box functions.
Journal of Global Optimization, 13, 1998, 455–492.

21. J.P.C. Kleijnen, W. van Baers, and I. van Nieuwen-
huyse: Constrained optimization in expensive simu-
lation: Novel approach. European Journal of Opera-
tional Research, 202, 2010, 164–174.

22. P. Kord́ık, J. Koutńık, J. Drchal, O. Kovář́ık,
M. Čepek, and M. Šnorek: Meta-learning approach
to neural network optimization. Neural Networks, 23,
2010, 568–582.

23. S.J. Leary, A. Bhaskar, and A.J. Keane: A derivative
based surrogate model for approximating and optimiz-
ing the output of an expensive computer simulation.
Journal of Global Optimization, 30, 2004, 39–58.

24. S. Möhmel, N. Steinfeldt, S. Endgelschalt, M. Holeňa,
S. Kolf, U. Dingerdissen, D. Wolf, R. Weber, and
M. Bewersdorf: New catalytic materials for the
high-temperature synthesis of hydrocyanic acid from
methane and ammonia by high-throughput approach.
Applied Catalysis A: General, 334, 2008, 73–83.

25. R.H. Myers, D.C. Montgomery, and C.M. Anderson-
Cook: Response surface methodology: proces and prod-
uct optimization using designed experiment. John Wi-
ley and Sons, Hoboken, 2009.

26. Y.S. Ong, P.B. Nair, A.J. Keane, and K.W. Wong:
Surrogate-assisted evolutionary optimization frame-
works for high-fidelity engineering design problems.
In Y. Jin, (ed.), Knowledge Incorporation in Evolu-
tionary Computation, pp. 307–331. Springer Verlag,
Berlin, 2005.

27. H. Papadopoulos, K. Poredrou, V. Vovk, and A. Gam-
merman. Inductive confidence machies for regression.
In Proceedings of the 13th European Conference on
Machie Learning, pp. 345–356, 2002.

28. A. Ratle: Kriging as a surrogate fitness landscape in
evolutionary optimization. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 15,
2001, 37–49.

29. T. Ray and W. Smith: A surrogate assisted parallel
multiobjective evolutionary algorithm for robust engi-
neering design. Engineering Optimization, 38, 2006,
997–1011.

30. S. Schaal and C.G. Atkeson: Assessing the quality of
learned local models. In Advances in Neural Informa-
tion Processing Systems 6, pp. 160–167. Morgan Kauf-
mann Publishers, San Mateo, 1994.

31. R. Schaefer: Foundation of global genetic optimization.
Springer Verlag, Berlin, 2007.

32. H. Ulmer, F. Streichert, and A. Zell: Model assisted
evolution strategies. In Y. Jin, (ed.), Knowledge Incor-
poration in Evolutionary Computation, pp. 333–355.
Springer Verlag, Berlin, 2005.

33. E. Uusipaikka: Confidence intervals in generalized re-
gression models. CRC Press, Boca Raton, 2009.

34. S. Valero, E. Argente, V. Botti, J.M. Serra, P. Serna,
M. Moliner, and A. Corma: DoE framework for cat-
alyst development based on soft computing techniques.
Computers and Chemical Engineering, 33, 2009, 225–
238.

35. J. Villemonteix, E. Vazquez, and E. Walter: An
informational approach to the global optimization of
expensive-to-evaluate functions. Journal of Global Op-
timization, 44, 2009, 509–534.

36. V. Vovk, A. Gammerman, and G. Shafer: Algorithmic
learning in a random world. Springer Verlag, Berlin,
2005.

37. Z.Z. Zhou, Y.S. Ong, P.B. Nair, A.J. Keane, and K.Y.
Lum: Combining global and local surrogate models to
accellerate evolutionary optimization. IEEE Transac-
tions on Systems, Man and Cybernetics. Part C: Ap-
plications and Reviews, 37, 2007, 66–76.

Gene finding with complex external information?

Marcel Kuchaŕık, Jakub Kováč, and Broňa Brejová

Department of Computer Science, Faculty of Mathematics, Physics, and Informatics
Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia

Abstract. The goal of gene finding is to locate genes,
which are important segments of DNA encoding proteins.
Programs solving this task are based on hidden Markov
models (HMMs) capturing statistical features extracted
from known genes, but often also incorporate hints about
the correct gene structure extracted from experimental
data. Existing gene finding programs can use such external
information only in a limited way. Typically, they can pro-
cess only simple hints describing a single part of the gene
structure, because these are relatively easy to incorporate
to standard HMM algorithms, but cannot cope with com-
plex hints spanning multiple parts. We have developed an
efficient algorithm able to process such complex hints. Our
experiments show that this approach slightly increases the
accuracy of gene prediction. We also prove that a more
general class of hints leads to an NP-hard problem.

1 Introduction

In this paper we study a combinatorial optimization
problem arising in computational biology. Although
we were originally motivated by a very specific appli-
cation, we formulate the problem quite generally and
explore its variants that admit efficient polynomial-
time algorithms as well as those that are NP hard.

Our motivation comes from the problem of gene
finding. Here the goal is to locate segments of a DNA
sequence that encode proteins produced by the organ-
ism. On a more abstract level, we are given a string
X = x1 . . . xn and the goal is to produce a string
A = a1 . . . an over some output alphabet Σ of possible
labels, such that ai is a label of xi, corresponding to its
functional role. In gene finding, X is the input DNA
sequence (over alphabet {A,C,G, T}) and the output
alphabet could be Σ = {0, 1} where 1 stands for genes
and 0 for non-genic regions. We will call A a labeling
or annotation of the input string X.

The desired mapping fromX to A is in gene finding
often characterized by a probabilistic model defining
probability distribution P (A|X). We then output the
labeling with the highest probability. Frequently used
models are hidden Markov models (HMMs) or their
variants such as hidden semi-Markov models and con-
ditional random fields [3, 5]. These models take into

? This research is funded by European Community FP7
grant IRG-231025, VEGA grant 1/0210/10, and APVV
grant SK-CN-0007-09.

account statistical properties of genic and non-genic
regions of DNA, such as frequency of k-tuples, length
distribution of genes, and characteristic sequence mo-
tifs at gene boundaries. Genes found by HMMs are of-
ten imprecise, and to increase the accuracy, statistical
models of DNA are often combined with additional ex-
ternal information provided by biological experiments.
External information is often in the form of individual
hints, each hint giving a probable location of one gene
or a part of a gene.

To combine an HMM with hints, we can manipu-
late probabilities of individual labelings A so that the
labeling gets a bonus for each hint agreeing with it.
Different gene finders define the set of possible hints
and their influence on the probability space differently,
but the possibilities are restricted by the need for ef-
ficient algorithm finding the annotation with highest
probability in the modified space. The simplest form
of a hint is a point-wise hint which increases or de-
creases probabilities of all annotations that have a cer-
tain label at a certain position in the sequence [2, 16].
Such hints can be easily incorporated to the standard
Viterbi algorithm for finding the most probable anno-
tations in HMMs.

However, a single piece of evidence often suggests
labels for a longer interval of the sequence. Splitting
such information into multiple point-wise hints leads
to information loss, because some labelings can get the
bonus even if they do not agree with the evidence over
the whole interval. Therefore, some gene finders [14, 5]
use hints in the form of intervals such that the proba-
bility of a labeling is increased only if it has the label
prescribed by the hint throughout the whole extent
of the interval. We call such hints interval hints. The
main focus of our paper is to study further generaliza-
tions of interval hints.

For most of the time we will abstract away both
the HMM and the input string X and consider only
a set of hints. Indeed, probabilities from the HMM can
be expressed as special hints of length 2, as we explain
in Section 2. Therefore in the most general setting, we
can formulate our problem as follows:

Definition 1 (Optimal labeling with hints prob-
lem). Given is positive integer n, finite alphabet Σ,
and a set of hints. Each hint is a pair (γ, b) where
γ ⊆ Σn is a set of labelings and b ∈ R is a bonus. We

40 Marcel Kuchaŕık, Jakub Kováč, Broňa Brejová

say that a labeling A ∈ Σn agrees with hint (γ, b) if
A ∈ γ. The score of a labeling A ∈ Σn is the sum of
bonuses of all hints that agree with A. The goal is to
find a labeling with the maximum score.

In our work the hints will assume a special form
allowing compact representation of a potentially large
set γ. In particular, a complex hint is a four-tuple
(s, e, Y, b) such that 1 ≤ s ≤ e ≤ n and Y ∈ Σe−s+1

is the labeling suggested for xs . . . xe (see Figure 1).
Set γ for this hint is γ = Σs−1Y Σn−e. Interval hints
are a special case of complex hints with Y = ak for
some a ∈ Σ and point-wise hints are a special case of
interval hints with s = e.

h1 = (1, 4, 0001, 2) 0001...

h2 = (2, 3, 00, 1) .00....

h3 = (2, 6, 00100, 1) .00100.

h4 = (3, 6, 0001, 1) ..0001.

h5 = (6, 7, 02, 1)02

A 0001002

Fig. 1. A set of complex hints for n = 7 and Σ = {0, 1, 2}
and an optimal labeling with score 5, agreeing with hints
h1, h2, h3 and h5. Note that h2 is an interval hint.

In this work we describe an efficient algorithm for
finding the optimal labeling for a set of complex hints,
which is a non-trivial extension of algorithms for in-
terval hints (Section 2). We also show that additional
natural generalization of the problem where some po-
sitions between s and e are allowed to vary, leads to
an NP-hard problem (Section 3). Finally in Section 4,
we describe the use of our algorithm in the context
of gene finding and show experimental results on real
and simulated data.

2 An algorithm for complex hints

In this section we give a polynomial-time algorithm
which finds the optimal labeling for a set of complex
hints. We will first discuss several simpler cases, later
generalizing the algorithm to the full problem.

Interval hints. Gene finders employing interval hints
typically proceed by dynamic programming. For each
prefix x1 . . . xi of the input string X, they consider all
possibilities for the last region of this prefix labeled by
one label (that is, all possible j ≤ i and a ∈ Σ such
that aj = aj+1 = · · · = ai = a and aj−1 6= a). For
each such interval (j, i), it is easy to compute the sum
of bonuses of all interval hints agreeing with label a.

This type of algorithm is dictated by the fact that
gene finders combine hints with hidden semi-Markov
models or their variants [14, 5] and the Viterbi algo-
rithm for inference in these models already has this

form with running time O(n2|Σ|2). With appropriate
data structures, it is possible to implement the algo-
rithm so that processing of hints adds only an additive
term O(m) where m is the number of hints. However,
a more efficient algorithm would be desirable if we
wanted to use hints with regular HMMs, where the
Viterbi algorithm is linear in n. Running time of our
algorithm for complex hints with positive bonuses will
not depend on the sequence length, only on the num-
ber and total length of hints.

Complex hints with positive bonuses. In order to in-
troduce our algorithm for a set of complex hints with
positive bonuses, we start with several necessary def-
initions. Let h = (s, e, y1 . . . ys−e+1, b) be a complex
hint. Then for i ∈ [s, e] expression `(h, i) denotes la-
bel suggested by h for xi, that is, `(h, i) = yi−s+1.
Now let us consider two hints h1 = (s1, e1, Y1, b1) and
h2 = (s2, e2, Y2, b2). We say that h1 and h2 are com-
patible if they agree in the intersection of their inter-
vals, that is, if for every i ∈ [s1, e1] ∩ [s2, e2] we have
`(h1, i) = `(h2, i) (non-intersecting hints are always
compatible). Hint h1 is a subset of hint h2 if they are
compatible and [s1, e1] ⊆ [s2, e2]. Hint h2 is an ex-
tension of h1 if they are compatible and e2 > e1 and
s2 > s1. Note that if s1 = s2, e1 = e2, and Y1 = Y2,
these two hints can be replaced by a single hint with
bonus b1 + b2. We will assume that such a transforma-
tion is done on all applicable pairs.

In our algorithm, we transform the input to create
a weighted directed acyclic graph (DAG) such that the
optimal labeling corresponds to the path with maxi-
mum weight between given two vertices s and t. Such
longest paths can be found in DAGs efficiently, in
O(|V | + |E|) time [4]. Our algorithm could be also
expressed directly as dynamic programming, but the
graph representation is more convenient for proving
correctness and considering variants of the algorithm.

Our graph has one vertex for each hint and two spe-
cial vertices s and t. There is an edge from h1 to h2 if
and only if h2 is an extension of h1. The weight of this
edge is the sum of the bonus of h2 and bonuses of all
hints that are subset of h2 but are not a subset of h1
(see Figure 2). Vertices s and t are connected with
other vertices as if they corresponded to sentinel inter-
vals beyond the end of the sequence, namely (0, 0, a, 0)
and (n + 1, n + 1, a, 0). Clearly the graph created in
this way is acyclic, because vertices on each path have
increasing coordinates of their endpoints. Correctness
of the algorithm is given by the following theorem.

Theorem 1. The weight W ∗ of the maximum-weight
path from s to t in the graph described above is equal
to the score S∗ of an optimal labeling for the input set
of hints.

Gene finding with complex external information 41

s t

0 0 0 1

0 0

0 0 1 0 0

0 0 0 1

0 2

3

1

2

1

1

0

0

0

0

0

1

1

1

Fig. 2. Directed acyclic graph created by our algorithm for
hint set from Figure 3. Vertices for hints are shown as grey
boxes.

Proof. First, we will prove that for every labeling A
with score S there is a path with weight S and there-
fore W ∗ ≥ S∗. Let H be the set of hints that agree
with A. Let HS be the set of all hints from H that are
a subset of another hint from H, and let HR = H\HS .
Let h1 and h2 be two different hints fromHR such that
s1 < s2. Then also e1 < e2 because no hint in HR is a
subset of another, and these two hints are compatible
because they both agree with A. Therefore, h2 is an
extension of h1.

Our path will start in s, pass through all vertices
in set HR ordered from left to right by their left end-
points and end in t. As we have shown, all necessary
edges on the path exist. Bonus of hint h ∈ HR is in-
cluded in the weight of the edge entering h and bonus
of hint h ∈ HS is included in the weight of the edge en-
tering the leftmost hint h′ ∈ HR such that h is a sub-
set of h′. Bonuses of no other hints are included in
the weight of the path, and therefore its weight is ex-
actly S.

Now we will prove that for any path π from s
to t with weight W , there is a labeling with score at
least W , implying that W ∗ ≤ S∗. Let H′ be the set of
all hints corresponding to vertices of π except s and t.
We will construct a labeling A = a1 . . . an as follows.
If a position i is not covered by any hint in H′, its
label ai can be chosen arbitrarily. If i is covered by
some hints h1, . . . , hk from H′, they suggest the same
label for position i and this label is chosen as ai.

Now let H′′ be the set containing all hints from H′
and all hints that are subsets of hints from H′. The
score S of path π is the sum of bonuses of hints
from H′′. Also, each hint from this set agrees with A.
The score of A is the sum of all bonuses that agree
with it, therefore S ≤W . ut

We have proved that the weight of the optimal path
is equal to the score of the optimal labeling and the
proof also implies an algorithm to convert the optimal
path to a labeling with the same score. Note however
that weights of some suboptimal paths do not corre-
spond to the score of any labeling, as a labeling that
agrees with all vertices on a path may also agree with
other hints that the path avoids.

Our graph has O(m) vertices and O(m2) edges
where m is the number of hints. As we will show be-
low, it can be constructed in O(m2 + `) time, where `
is the sum of lengths of all hints. The running time of
the whole algorithm is therefore O(m2 + `+ n) where
the dependence on n comes only from the necessity to
produce a labeling of length n (using arbitrary labels
for parts of the sequence not covered by any hint).

Running time improvement for practical instances. In
practical gene finding instances, we expect hints to
be much shorter than n and to be spread along the
length of the sequence. We can modify the graph so
that it has fewer edges if every position is covered by
at most d hints for some d < m. The construction
shown above will create edges even between hints that
are far apart, and those can be eliminated. The weight
of an edge from hint h′ to hint h depends on mutual
position of these hints, because we include only those
subset hints of h that end after the end of h′. However,
the weight will be the same for all hints h′ that do not
intersect h. Our goal is to remove such edges from
the graph and replace them with a smaller number of
edges linear in m.

We will say that a hint h2 is a strict extension of
a hint h1 if h1 is an extension of h2 and the two hints
overlap. Our new graph will have a vertex for each
hint, two special vertices s and t for sentinel hints
and a skipping vertex vi for every position i which
is a right endpoint of at least one hint (including po-
sition 0 where the sentinel hint for s ends). Skipping
vertices are connected to a chain going from left to
right with edges of weight 0. Vertex for a hint h is
connected to all hints that are its strict extensions,
with the same edge weights as before. It is also con-
nected to the skipping vertex for its right endpoint
with an edge of weight 0. Finally, each skipping ver-
tex vi is connected to all hints that start in the interval
(i, j] where vj is its neighbor in the chain of skipping
vertices. The edge from vi to h will contain the bonus
of h and all its subset bonuses. Paths in this new graph
have 1-1 correspondence with the paths in the origi-
nal graph, where an edge between two non-overlapping
hints is now replaced by a path through skipping ver-
tices. The number of vertices is O(m) and the number
of edges O(md), since from a vertex for hint h there
are at most d outgoing edges: one to a skipping ver-
tex and at most d− 1 to other hints, because all these
hints cover the right endpoint of h. Similarly the num-
ber of incoming edges is at most d. Finally, the num-
ber of edges between skipping vertices is O(m). The
overall time of the algorithm with this graph will be
O(md+ `+ n); we still need to demonstrate that the
graph can be constructed within this running time.

42 Marcel Kuchaŕık, Jakub Kováč, Broňa Brejová

The critical ingredient is the ability to check in con-
stant time whether two hints are compatible. This can
be achieved by building a suffix tree of the strings asso-
ciated with individual hints and preprocessing the suf-
fix tree for longest extension queries. These queries al-
low us to take two suffixes of any of the strings and de-
termine the length of their common prefix. In our sce-
nario we take two hints (s1, e1, Y1, b1), (s2, e2, Y2, b2)
and if they overlap by some length d > 0, we de-
termine the positions of the start of the overlap in
strings Y1 and Y2. If the suffixes starting at these two
positions have a common prefix of length at least d,
the two hints are compatible. They are also compati-
ble if d = 0. The preprocessing of necessary structures
can be done in O(`) time, and compatibility of each
pair of hints can be then assessed in O(1) time [8].

To find the edges between hint vertices, we first
sort all hints by left endpoints. This can be done in
O(n+m) time by counting sort. Next, we traverse the
sorted list and maintain a set of active hints. A hint
is active if it overlaps the left endpoint of the current
hint in the list. In every step, the list contains at most
d hints, and therefore we can in each iteration traverse
the list and remove hints that are no longer active.
The current hint h is a strict extension of any active
hint h′ such that h′ and h are compatible and h is not
a subset of h′. This can be checked in O(1) time per
pair of hints. If the current hint h is a subset of some
active hint h′, we will append h to a list of subsets
of h′.

At the end of traversal, we have for each hint h the
list of its subset hints and the list of incoming edges
from other hint vertices. We sort both these lists by
right endpoints by counting sort in time proportional
to the length of h (the right endpoints of all these
hints are within h). Now we use a merge-like algorithm
with two pointers to the two lists to find for every
incoming edge from hint h′ the bonus sum of subset
hints that end after the end of h′. Edges incident to
skipping vertices can be easily constructed within the
desired running time. The overall running time of the
graph construction is thus O(md + ` + n) where the
n term comes from sorting and can be replaced by
O(m logm).

Complex hints with arbitrary bonuses. The algorithm
described above is efficient, but can only handle hints
with positive bonus values. If a hint h has a nega-
tive bonus value, the path could skip its vertex in the
graph, even if other visited vertices imply that the la-
beling agrees with h and its bonus should be counted.
The graph may thus contain paths with weight higher
that the score of the optimal labeling.

As we will show, we can transform a set of hints
with arbitrary bonuses to an equivalent set of hints

with positive bonuses. Each hint (s, e, Y, b) with a neg-
ative bonus b is transformed to a set of hints of the
form (s, e′, Y ′, |b|) such that s ≤ e′ ≤ e and Y ′ is
the same as Y on the first e′ − s positions and differs
from Y on its last position. We create all (|Σ| − 1)
(e − s + 1) combinations of e′ and Y ′ of this form.
Clearly, these hints are mutually incompatible, and
therefore at most one of them will agree with any an-
notation. An annotation A agrees with one of these
hints if and only if it does not agree with the original
hint h. This transformation increases the score of ev-
ery annotation by |b|: the annotations agreeing with h
will increase by |b| because hint h is omitted from the
set and all other annotations agree with one of the new
hints, thus getting an additional bonus of |b|. When we
transform all hints with negative values in this way,
we increase the total score of every labeling by the
sum of absolute values of all negative bonuses. This
is a constant and therefore the optimal labeling will
remain the same and can be found by the algorithm
described above. Unfortunately, the number of hints
m as well as their total length ` increase by a factor
of L|Σ| where L is the length of the longest negative
hint, but the running time is still polynomial.

Combination of complex hints with an HMM. In gene
finding, we typically (although not exclusively [1])
combine the score from hints with a probability value
from some model capturing typical sequence features
of genes and their constituents. Probability of a par-
ticular labeling A in hidden Markov models or condi-
tional random fields can be written as

P (A) =

n∏
i=1

p(i, ai, ai+1, X),

where factors p(i, ai, ai+1, X) depend only on two ad-
jacent labels ai and ai+1 (and some portion of the
input string X). They are computed from the emis-
sion and transition probabilities of the model. We will
consider the case when the total score of A has the
form

B + logP (A) = B +

n∑
i=1

log p(i, ai, ai+1, X),

where B is the sum of bonuses of all agreeing hints. The
log values in the sum can be written as hints of length 2
of the form (i, i+ 1, aiai+1, log p(i, ai, ai+1, X)). Over-
all, we will need n|Σ|2 such hints and they typically all
have negative score. After applying the transformation
described in the previous paragraphs and combining
together hints with the same values of s, e and Y, we
get O(n|Σ|2) additional hints of length 1 and 2 with
positive bonuses.

Gene finding with complex external information 43

This generic procedure works only if the states of
the HMM correspond exactly to the symbols of the
output alphabetΣ. Gene finding HMMs typically have
a much larger state space, with several states cor-
responding to the same output label. This situation
could be expressed using more general subset hints de-
scribed in Section 3. Although subset hints lead in gen-
eral to NP-hard problems, special cases necessary for
handling large state spaces can be solved efficiently, as
discussed at the end of the next section. Moreover, it is
also possible to create specialized algorithms for com-
bining complex hints with a hidden Markov model [12].
By taking the special structure of the problem into ac-
count, we may obtain more efficient solutions than by
converting the HMM to a collection of hints.

3 NP-hardness for subset hints

A subset hint is a four-tuple h = (s, e, Y, b) such that
numbers s, e, and b are defined as for a complex hint
and Y is a string of length e− s+ 1 over an extended
alphabet Σ+ containing all non-empty subsets of Σ.
Expression `(h, i) now denotes the set of labels sug-
gested by h for xi and a labeling A agrees with h if for
every position i ∈ [s, e] the label ai is in the set `(h, i).
Unfortunately, our algorithm for complex hints can-
not be straightforwardly extended to this scenario, be-
cause the relation of extension is not transitive, which
is crucial for the existence of a labeling satisfying all
hints on a path in our graph.

As we will prove, it is unlikely that the problem
can be solved efficiently in the full generality by other
methods, since it is NP-hard.

Theorem 2. The problem of testing whether there is
a labeling A with score at least t for a set of subset
hints is NP-complete, even for a binary alphabet Σ.

Proof. Clearly the problem is in NP (if the size of in-
put is much smaller than n, we can specify only por-
tions of A covered by hints and this is sufficient for
efficient computation of the score).

To prove NP-hardness, we will use a reduction from
the 3-SAT problem. Consider a 3-SAT instance with
N variables y1, . . . , yN and M clauses, each clause con-
sisting of three literals. We will encode it as a set of
hints over the alphabet Σ = {0, 1} such that the for-
mula has a satisfying assignment if and only if there
is a labeling with score at least M +MK where K =
3M + 1.

The length of the annotated sequence will be n =
N + 3M . The first N labels correspond to a truth as-
signment to all variables, that is, ai = 1 corresponds
to yi being true. Each of the remaining labels cor-
responds to one literal from the formula, namely api,j

corresponds to jth literal from ith clause, where pi,j =
N+3(i−1)+j. For each such literal we will add an as-
signment hint of the form (k, pi,j , z{0, 1}pi,j−k−11, 1)
where k is the index of the variable forming this literal
and z = 1 if the literal is yk and z = 0 if the literal
is ¬yk. Notation {0, 1}c represents c copies of the set
{0, 1} ∈ Σ+. In other words, the hint connects the lit-
eral with its satisfying variable assignment, and if the
literal is selected by api,j

= 1 and the variable yk has
the satisfying assignment, the labeling gets a bonus 1.
We will also add three selector hints for every clause,
that enforce that exactly one literal from the clause
is selected by api,j

= 1. These hints have the form
(pi,1, pi,3, Y,K) where Y is a binary string of length
three containing exactly two zeroes. Note that for each
clause at most one of the selector hints can agree with
a given labeling.

In order to achieve total score M + MK, the an-
notation has to agree with one selector hint for ev-
ery clause. The loss of even one such selector could
not be compensated because the sum of bonuses of all
assignment hints is only 3M , which is less than K.
Selector bonuses that contribute bonus MK enforce
that exactly one literal in each clause is selected. The
selected literal has a potential to contribute bonus 1
if it is indeed satisfied in the assignment specified by
the labeling of the first N symbols. If the formula has
score at least M +MK, every clause has exactly one
literal which is simultaneously selected and satisfied.
Note that multiple literals per clause may be satisfied,
but if they are not selected, they will not influence
the score. Annotation with score M +MK thus corre-
sponds to a satisfying assignment of the formula and
vice versa. ut

This proof is a slight modification of our earlier
proof for the use of RT-PCR queries in gene find-
ing [10]. In this earlier work we have considered hints
of a special form that suggest a specific label at both
ends and allow arbitrary labels in the middle. How-
ever the output labeling was constrained to obey an
additional DAG of possible gene structures. Here we
have adapted the proof for the simpler case where the
annotation can be arbitrary.

Partition subset hints. Subset hints often occur in
practice because our methods for obtaining additional
information about the labeling cannot distinguish be-
tween some labels from Σ. In some situations we can
represent subset hints as complex hints over an alpha-
bet Σ′ ⊆ Σ+ that forms a partition of Σ into equiva-
lence classes (in other words, every two elements in Σ′

are disjoint subsets of Σ). We will now consider a situ-
ation where every hint contains only characters fromΣ
or only characters from Σ′ (but cannot use charac-
ters from both). We will show that optimal labeling

44 Marcel Kuchaŕık, Jakub Kováč, Broňa Brejová

(over Σ) for such hint sets can be found in polynomial
time.

Briefly, we first create a directed acyclic graph G
for hints over Σ similarly as in Section 2. We add new
hints of the form (i, i, a, 0) for all positions i and labels
a ∈ Σ. Both the original hints and these new hints
will be vertices. We will have an edge from hint h1
to hint h2 if h2 is an extension of h1 and they ei-
ther overlap or h2 starts immediately after h1 ends.
In this graph, every path consists of hints that com-
pletely cover the sequence. In the same way we also
build a graph G′ for hints over Σ′. Finally, we create
graph G′′ in which each vertex is a pair (h, h′) such
that h is a vertex in G, h′ is a vertex in G′, hints h
and h′ overlap and are compatible. If hint h′ ends be-
fore h, this vertex will be connected to vertices of the
form (h, h′′) where (h′, h′′) is an edge in G′, the weight
of the edge is also copied from G′. Similarly, if h ends
before h′, (h, h′) will be connected to vertices of the
form (h′′, h′) where (h, h′′) is an edge in G. Finally,
if the two hints end together, they will be connected
to vertices of the form (h′′, h′′′) where (h, h′′) is an
edge in G and (h′, h′′′) is an edge in G′. The weight of
the new edge will be the sum of the two source edges.
The best path in G′′ then corresponds to the optimal
annotation (proof omitted due to space).

The algorithm can be extended to several groups
of hints, each over a different partition of Σ, but the
running time would increase exponentially in the num-
ber k of such groups, because the vertices in the final
graph will be k-tuples of vertices of graphs for individ-
ual groups of hints.

4 Use of complex hints in gene finding

We have implemented a variant of the algorithm from
Section 2 and applied it to the problem of gene finding.
Recall that the goal of gene finding is to find genes,
regions encoding proteins in DNA sequences. A gene
in eukaryotic organisms can be divided into several
segments called exons and introns, and only exons en-
code the protein (see Figure 3). Thus the goal of gene
finding is to find the position of each gene and its ex-
act partitioning to exons and introns. We use output
alphabet Σ = {C, I,X}, where C stands for coding
exons, I for introns, and X for intergenic regions.

The algorithm was implemented in C++ as a stan-
dalone console application called grapHMM. In order
to process long DNA sequences, we implemented sev-
eral practical improvements. For example, the graph
is generated on the fly and unnecessary information is
immediately deleted to free up memory.

We have tested the program on genomic data from
Drosophila melanogaster (fruit fly). This species is an
important model organism in genetics and its genome

is relatively well sequenced and annotated. Genomic
sequences and reference annotations were downloaded
from the UCSC genome browser [7]. We have used
44 MB of DNA sequence containing 5 164 genes. They
were split to 2 MB parts and divided to train-
ing (≈ 28 MB, 3368 genes) and testing (≈ 16 MB,
1796 genes) data sets.

The HMM has been taken from the work of [15]
and retrained on our training data set by standard
procedures [6]. It has 265 states, but it is quite simple
compared to state-of-the-art gene finders. For exam-
ple, it does not allow arbitrary length distributions of
exons, introns and intergenic regions and uses simpler
models of sequence motifs at exon boundaries. In our
experiments we compare the accuracy achieved on the
testing set by the HMM alone and with different sets
of hints.

1226000 1227000 1228000 1229000

 No hints

 Complex hints

 Interval hints

 Reference

 Protein hints

Gene 1 Gene 2

Fig. 3. Example of a prediction obtained with different
protein hint sets in a region containing two genes. Lines de-
pict introns, rectangles exons (gene 1 has one exon, gene 2
has four exons). Four identical complex hints span the
whole length of gene 1 and suggest short intergenic re-
gion beyond its boundary. Prediction with complex hints is
correct. Prediction with interval hints does not agree with
the intergenic hint at the right end of the gene. Prediction
without hints predicts a long gene extending beyond the
displayed region.

Experiment with protein hints. In the first experiment,
we have used a real set of hints originating from
a database of known proteins. We have downloaded all
known proteins from several insect species (D. melano-
gaster, D. simulans, D. pseudoobscura, Anopheles
gambiae, and Bombyx mori) from the NCBI RefSeq
database [13] (67, 893 protein sequences in total). We
have used the BLAT program [9] and scripts from Ex-
onHunter distribution [2, 11] to find regions in the test-
ing set that could encode identical or similar proteins
to those in the database. Weak matches were were
filtered out to increase the specificity. As a result of
this strict filtering, only 11% of the sequence is cov-
ered by hints, whereas genes cover almost 45% of the
sequence. Hints contain exon and intron labels (ex-
ons are regions where the protein seems to be encoded

Gene finding with complex external information 45

and introns are separating parts encoding the same
protein). If the whole source protein could be aligned
to the genome, a single intergenic position is added
to the beginning and to the end of the complete gene
hint.

Our goal was to compare prediction accuracy ob-
tained using complex hints with accuracy obtained us-
ing simpler interval and point-wise hints. Therefore we
have converted our hint set to these simpler forms by
splitting each complex hints to several shorter hints
as necessary. Overall we have thus used three different
hint sets:

– complex hint set (15,057 training hints, 5,545 test-
ing hints)

– interval hint set (39,900 training hints, 14,358 test-
ing hints)

– point-wise hint set (8,651,653 training hints,
4,042,685 testing hints)

Bonuses of hints have great influence on the gene
prediction accuracy: if they are too low, the hints will
be ignored; if they are too high, wrong hints will de-
crease the gene prediction accuracy. For simplicity, all
hints in one hint set have the same bonus b, and we
choose optimal value of b to maximize the accuracy on
the training set for each set of hints separately. The
exception are complex hints, where the bonus of a hint
is bk where k is the number of contiguous regions in the
hint labeled by one label (or in other words the number
of interval hints comprising this complex hint). Again
the value of b was optimized using the training set.

Evaluation of these three hints sets on the test se-
quences is shown in Table 1. Complex hints slightly
increase the number of completely correctly predicted
genes compared to the interval hints, but the differ-
ence is less than 1%. On the other hand, difference in
accuracy between prediction without hints and with
one of the hint sets is quite significant.

Figure 3 shows an example of a gene where com-
plex hints lead to a better prediction than interval
hints. The algorithm with interval hints chooses an
annotation agreeing with only two out of three parts
comprising a single complex hint. With complex hints
only annotations agreeing with the whole hint get the
bonus, and one such annotation is indeed the opti-
mum.

Experiment with simulated hints. To better control
various parameters of the hint set, we have also gen-
erated artificial hints. All hints in this set have the
length 1000, and the number of hints was chosen so
that the sum of their lengths is approximately n/2.
Half of the hints were created so that they start at
a random place within some exon and agree with the
reference annotation along their whole length. The sec-
ond half of hints was generated so that they start at

Hint set No hints Point-wise Interval Complex

Bonus – 8 8 6
Gene sn. 48.83% 61.08% 61.30% 61.86%
Gene sp. 40.40% 46.00% 46.42% 46.61%
Exon sn. 71.18% 75.89% 76.20% 76.14%
Exon sp. 69.01% 71.73% 72.31% 72.29%
Base sn. 92.81% 94.35% 94.15% 94.14%
Base sp. 91.86% 92.00% 92.10% 92.08%

Tab. 1. Comparison of hint sets created from protein se-
quences. For each set, we show the trained value of the
bonus parameter as well as several standard measures of
gene finding accuracy. Gene sensitivity (sn.) is a fraction of
real genes that were predicted completely correctly. Gene
specificity (sp.) is the fraction of predicted genes that are
completely correct. Similarly, we measure sensitivity and
specificity at the exon and base level, where we count com-
pletely correctly predicted exons and individual symbols in
coding exons.

a random place in the sequence and suggest label for
intergenic regions along their whole length. Some of
these hints are correct, since by chance they are con-
tained in real intergenic regions, whereas others over-
lap real genes. Note that we have chosen intergenic
hints, because it is non-trivial to randomly generate
other reasonable wrong hints that have a non-zero
probability in the HMM. Overall, 74% of hints in our
set were correct. In this experiment, we have compared
complex and interval hints, again training their bonus
on the training set and testing their performance on
the testing set. Results shown in Table 2 are analogous
to the protein hint experiment – slight improvement in
the prediction accuracy at the gene level for complex
hints compared with interval hints.

Hint set Interval Complex

Bonus 6 12
Gene sensitivity 60.75% 61.53%
Gene specificity 49.43% 50.41%
Exon sensitivity 77.31% 77.92%
Exon specificity 76.51% 76.92%
Base sensitivity 94.98% 94.69%
Base specificity 93.52% 93.39%

Tab. 2. Comparison of gene prediction accuracy with ar-
tificial hints sets, using the same accuracy measures as in
Table 1.

5 Conclusion and open problems

In this paper, we have explored several variants of the
problem of finding optimal sequence annotation that
agrees with hints with the highest total score. If the
hints completely specify annotation within some in-
terval and all hints have positive scores, the problem

46 Marcel Kuchaŕık, Jakub Kováč, Broňa Brejová

can be solved quite efficiently, in time O(md+ `+ n)
where n is the length of the annotated sequence, ` is
the total length of all hints, m is the number of hints
and d is the maximum number of hints overlapping
a single position. If some hints have negative scores,
the problem can still be solved in polynomial time. Fi-
nally, we can also solve the case where hints are over
two different alphabets, one being a partition of the
other. These algorithms can be also extended to com-
bine hints with hidden Markov models or conditional
random fields. We have also shown that if we allow
wildcards in hints, the problem becomes NP-hard even
for binary output alphabet.

Our results might be applicable in various fields
where HMMs and their variants need to be combined
with external information. However, our original mo-
tivation stems from gene finding, where complex and
subset hints are the most natural form of express-
ing hints from various sources. Our experiments with
a simple gene finder show that compared to simpler
interval hints used before, complex hints may lead to
slight increases in prediction accuracy. More experi-
ments with different information sources or in different
species may lead to more significant improvements.

Several open problems remain in this area. Our al-
gorithms are in the worst case quadratic in the number
of hints. The question is whether more efficient algo-
rithms exist at least for the case of interval hints. It
might be also useful to consider special classes of sub-
set hints that can be processed in polynomial time. For
example in our earlier work the RT-PCR hints were
NP-hard in general but solvable efficiently if their rel-
ative position was constrained [10]. Finally, one could
also generalize complex hints in other ways, for ex-
ample, allowing some uncertainty in the exact place
where labeling changes from one label to another.

References

1. J.E. Allen, and S.L. Salzberg: . JIGSAW: integra-
tion of multiple sources of evidence for gene prediction.
Bioinformatics, 21(18), 2005, :3596–3603.

2. B. Brejová, D.G. Brown, M. Li, and T. Vinař: Ex-
onHunter: a comprehensive approach to gene finding.
Bioinformatics, 21 Suppl 1:, 2005, 57–65.

3. C. Burge, and S. Karlin: Prediction of complete gene
structures in human genomic DNA. Journal of Molec-
ular Biology, 268(1), 1997, 78–94.

4. T.H. Cormen, C.E. Leiserson, and R.L. Rivest: Intro-
duction to algorithms, second edition. The MIT Press
and McGraw-Hill Book Company, 1989.

5. D. DeCaprio, J.P. Vinson, M.D. Pearson, P. Mont-
gomery, M. Doherty, and J.E. Galagan: Conrad: gene
prediction using conditional random fields. Genome
Research, 17(9), 2007, 1389–1398.

6. R. Durbin, R. Eddy, A. Krogh, and G. Mitchison: Bio-
logical sequence analysis. Cambridge University Press,
1998.

7. P.A. Fujita, B. Rhead, A.S. Zweig, et al. (2011). The
UCSC Genome browser database: update 2011. Nucleic
Acids Research, 39(Database issue), 2011, D876–882.

8. D. Gusfield: Algorithms on strings, trees and se-
quences: computer science and computational biology.
Cambridge University Press, 1997.

9. W.J. Kent: BLAT – the BLAST-like alignment tool.
Genome Research, 12(4), 2002, 656–664.

10. J. Kováč, T. Vinař, and B. Brejová: Predicting gene
structures from multiple RT-PCR tests. In Algorithms
in Bioinformatics, 9th International Workshop, WABI
2009, volume 5724 of LNCS, pp. 181–193. Springer,
2009.

11. P. Kováč: Implementácia externých zdrojov dát v
hl’adańı génov. Bachelor Thesis, Department of Com-
puter Science, Comenius University in Bratislava,
2010.

12. M. Kuchaŕık: A new algorithm for using external in-
formation in gene finding. Master’s Thesis, Depart-
ment of Computer Science, Comenius University in
Bratislava. Submitted 2011.

13. K.D. Pruitt, T. Tatusova, and D.R. Maglott: NCBI
reference sequences (RefSeq): a curated non-redundant
sequence database of genomes, transcripts and pro-
teins. Nucleic Acids Research, 35(Database issue),
2007, D61–65.

14. M. Stanke, M. Diekhans, R. Baertsch, and D. Haussler:
Using native and syntenically mapped cDNA align-
ments to improve de novo gene finding. Bioinformat-
ics, 24(5), 2008, 637–644.

15. R. Šrámek, B. Brejová, and T. Vinař: On-line Viterbi
algorithm for analysis of long biological sequences. In
Algorithms in Bioinformatics: 7th International Work-
shop (WABI), volume 4645 of Lecture Notes in Com-
puter Science, pp. 240–251. Springer.

16. R.F. Yeh, L.P. Lim, and C.B. Burge: Computational
inference of homologous gene structures in the human
genome. Genome Research, 11(5), 2001, 803–806.

Web application for recognition of mathematical formulas?

Jan Stria1 and Daniel Pr̊uša2

1 Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech Republic
stria.jan@gmail.com

2 Czech Technical University, Center for Machine Perception
Karlovo nám. 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz

Abstract. We present a system for on-line mathematical
formulas recognition. The main principles of the method
we applied for recognition are explained. It is based on the
structural construction paradigm and utilizes a sort of two-
dimensional grammars called coordinate grammars. Gram-
mar productions are used to model spatial relationships
among mathematical symbols. The system itself has been
developed as a web application in HTML5. We give details
on its client-server architecture and user interface. We also
discuss advantages of the chosen approach.

1 Introduction

Mathematical formulas recognition is a task of grow-
ing importance. There are two domains in which it
can be applied. The first one covers scanned math-
ematical texts (books or notes) we want to convert
into an electronic form automatically. We speak about
off-line formulas recognition. Another situation arises
when we need to support entering formulas into ap-
plications in a natural way, i.e. by drawing them by
hand. This can be done on a tablet or simply using
a mouse. In such a case, we do not recognize raster
images but rather sets of strokes and we speak about
on-line recognition.

Several approaches to formulas recognition have
been described in the literature [20, 8, 6]. A tax-
onomy of the methods can be found in [2].
Only few published papers offer a publicly avail-
able implementation for evaluation. We mention
three known applications giving good results. Infty
project [17, 16] targets primarily off-line recognition,
however, it includes a module for on-line recognition
as well. xMathJournal [27] is a commercial software
product which serves as a sophisticated calculator for
handwritten mathematics. Microsoft Windows 7 pro-
vides a simple tool calledMath Input Panel. It allows to
draw a formula, recognize it, copy the result into the
clipboard and paste it to other programs (e.g. Micro-
soft Word).

The approach we chose is motivated by the struc-
tural construction paradigm presented by M.I. Schle-

? The authors were supported by the Grant Agency of the
Czech Republic under project P103/10/0783.

singer and V. Hlavac in [15]. It is a general framework,
suitable for recognition of objects exhibiting a rich
structure. It has been also applied for musical
scores [14] and electric circuits [5]. The power of the
structural construction is in driving symbols segmen-
tation by the structural analysis, avoiding thus er-
rors that could be normally done during a standalone
segmentation. Some of the known methods solve this
by error recovery techniques, but such techniques are
more complicated and less natural.

Our work is incremental. We started with the sim-
plistic subset of formulas and the proof-of-concept re-
cognition system implemented in Java [10, 11]. Later
we adopted the system to on-line inputs written on
a tablet and we also extended the set of supported
formulas [12].

This paper reports our recent results. We focus
on two topics. Principles of the developed recogni-
tion method are outlined in Section 2. We introduce
a revised formalism of the previously used two-dimen-
sional grammars – so called coordinate grammars. The
grammars model relationships among formula sym-
bols. The system itself has been completely rewritten
in C# and includes several improvements. The new
priority was also make the system accessible by a web
application in which the user draws a formula and re-
ceives the output in TeX or MathML format. The web
application architecture, implementation in HTML5
and user interface design are described in Section 3.

2 Method proposed for formulas
recognition

The method consists of two phases which are com-
mon in pattern recognition – elementary symbols de-
tection and structural analysis. In our case, the first
phase does not make any final decision what the ele-
mentary symbols are. Instead of it, only candidates to
such symbols are selected. It is completely up to the
structural analysis to decide then, which of the candi-
dates are really parts of the formula and what is their
meaning in the formula structure.

We have chosen grammar based structural analy-
sis, since it allows to express the syntax of the whole

48 Jan Stria, Daniel Pr̊uša

formula and fits thus well to the structural construc-
tion pattern. Non-grammar based approaches usually
recognize local configurations among symbols only and
transform them to graphs. We introduce a (2D) coor-
dinate grammar which can be viewed as an extension
of the grammar described by R. Anderson in his sem-
inal work [1]. The productions have context-free form
and are assigned by spatial constraints on the right-
hand side elements. The parsing is a bottom-up process
(not the top-down one like in [1]), since it allows bet-
ter control the number of derived elements and reduce
them by pruning. Moreover, our formalism is stochas-
tic and penalty oriented – each derivation is assigned
by a real number, which determines its quality.

The grammar is designed to recognize structures
formed of terminal elements freely located in a plane.
This is something different comparing to picture lan-
guages [13] consisting of rectangular grids over finite
alphabets. We have to deal with the time complex-
ity of parsing. In general, it can grow exponentially in
the number of elementary symbols. The well known
Cocke-Younger-Kasami algorithm [4, 19] recognizes
context-free languages in time O (

n3
)
and can be gen-

eralized to a sort of 2D context-free grammars [15].
It both cases, the algorithm can rely on the sequen-
tial ordering of characters in strings or pictures. When
working with coordinate grammars, we are forced to
restrict the set of sentential forms allowed to be de-
rived during the process to some sort of continuous
areas. The task how to parse 2D structures in a plane
effectively has been studied by others, especially by P.
Viola and E. Miller [9, 7]. Some of the techniques we
employ in our method coincide with their proposals.

2.1 Elementary symbols detection

By a stroke s we mean a finite, non-empty sequence
of points in a plane, i.e. s = ((x1, y1), . . . , (xk, yk)),
where xi, yi ∈ R, k ≥ 1.

Let S = (s1, . . . , sn) be a sequence of strokes en-
tered to the system by the user. For i < j, we assume
si has been entered before sj . Moreover, we assume
the following condition is fulfilled:

– one stroke is not a part of two or more different
symbols in the input formula

The goal of the elementary symbols detection phase is
to find each subset S′ ⊆ S which, taken separately, is
recognized by an Optical Character Recognition tool
(OCRtool) as an elementary symbol from a set of
known symbols denoted VT (alphabet letters, num-
bers, mathematical operators, Greek letters, etc.).
Note that there can be even more interpretations for
one subset S′, the OCRtool can return several hypoth-
esis for it. The detection is performed without any

1
2

3

symbol variable V num. 6 frac. line minus square root

stroke(s) 1 3 2 2 1, 2

Fig. 1. Elementary symbol candidates: The input is a se-
quence of three strokes, each denoted by a number in the
circle. The table lists subgroups of strokes recognized as
a symbol.

knowledge of the formula structure. An example of
possible candidates is given in Figure 1.

In general, there are 2|S| subsets of S. It is obvious
that not all these subsets have the potential to repre-
sent a symbol. For performance reasons, we propose
several strategies that select and evaluate only some
of the subsets:

1. A reasonable restriction is to limit the number
of strokes that form one symbol: |S′| ≤ K. This
leaves O (|S|K)

subsets to be evaluated by the
OCRtool. K = 4 should fully comply with all the
symbols in VT .

2. Construct a graph G where vertices correspond to
strokes and two vertices are connected iff the two
related strokes are ,,close enough” (various metrics
can be applied: the smallest distance between two
points, the greatest distance, the average distance,
etc.). Consider only those S′ ⊆ S, where |S′| ≤ K
and all vertices in the graph that correspond to
strokes in S′ are located in the same component
of connectivity.

3. Label each edge in G by the distance between the
related strokes. Find minimum spanning tree T .
Search for subsets S′ using T instead of G.

4. If we assume the user does not make any correc-
tions in the already written symbols, we can even
consider only the subsets of consecutive strokes
S′ = {si, si+1, . . . , si+k}, where k < K.

If the OCRtool finds a match of a subset S′ to some
symbol, it provides a record consisting of the following
items:

– recognized symbol identifier l ∈ VT

– a penalty p expressing reliability of the recognition
(p ∈ R+, a lower value implies a bigger confidence)

– metricsM of the recognized symbol (a record stor-
ing base line and mean line given relative within
the bounding box, see Figure 2)

We denote tuple (S′, l, p,M) as a terminal unit.

2.2 Coordinate grammars

Before we can describe how mathematical relation-
ships are modeled by a coordinate grammar, we need

Formulas recognition 49

base line

mean line

ascent

descent

Fig. 2. Character metrics.

to define a structure to represent partial derivations
(an analogy to the sentential form). We denote this
structure a labeled group of strokes (over an input se-
quence of strokes S, a set of elementary symbols – ter-
minals VT and a set of non-terminals VN). It is a tuple
(S1, l1, p1, T) such that S1 ⊆ S, S1 6= ∅, l1 ∈ VN ∪ VT ,
p1 ∈ R+ and T = (S2, l2, p2,M) is a terminal unit,
where S2 ⊆ S1 and l2 ∈ VT . The interpretation is as
follows:

– there is a sequence of derivations which result in
assigning l1 to S1

– penalty p expresses a confidence in the derivations
– T determines so called leading symbol in S1; it is

a terminal recognized by the OCRtool as l2, con-
sidered as the main (root) symbol among other
symbols in S1; the leading symbol is determined
by applied grammar productions

A coordinate grammar G is a tuple (VT , VN , I, P),
where I ∈ VN is the initial non-terminal and P is
a set of productions of the form

N → A1 ¯A2 ¯ . . .¯Ak, (1)

where N ∈ VN and each Ai ∈ {VT ∪ VN}. Moreover,
each production is assigned by three functions: spatial
constraint σ, penalty π and leading symbol selector µ.
To explain their meaning and define their parameters
and functional values, let us consider k labeled groups
of strokes S1, . . . ,Sk such that

Si = (Si, li, pi, Ti).

Production (1) can be applied to derive

S =

(
k⋃

i=1

Si, N, p, T

)

iff the following conditions are fulfilled:

– Si’s are pairwise disjunct
– ∀i ∈ {1, . . . , k} : li = Ai

– σ(S1, . . . ,Sk) = true

– p = π(S1, . . . ,Sk) +
∑k

i=1 pi
– T = µ(T1, . . . , Tk)

Boolean function σ determines whether the produc-
tion can be applied at all, π penalizes the application
of the production and µ selects the resulting leading
symbols. In the implementation, σ is strongly based on

Fig. 3. A spatial constraint evaluation example: Two con-
straining rectangles C1 and C2 are computed having the
size and position given relative to symbol + which is the
leading symbol in group S2. The circled point in S1, resp.
S3 (so called a reference point) is required to be located
in the C1, resp. C2. The constraint is fulfilled. Symbol +
becomes the leading symbol of the newly derived group of
strokes.

the mutual positions of leading symbols and bound-
ing boxes of labeled groups of strokes corresponding
to Si’s. Figure 3 shows a constraint function evalua-
tion example for the production that models a binary
operation of the form:

BinOperation → Expression¯ BinOperator¯ Term.

The parsing algorithm starts with terminal units
produced by the terminals detection phase (they are
transformed to labeled groups of strokes first). Larger
groups of strokes are incrementally derived then. The
input is recognized iff (S, I, p, T) is among the deriva-
tions. When there are more such groups, the resulting
one is the group with the lowest penalty. More details
on the parsing process can be found in [12].

2.3 Notes on method implementation

One of the weaknesses in the former Java implemen-
tation was the quality of OCR results. We used own
implementation based on the elastic matching tech-
nique [18, 3]. The OCRtool in the current version is
a combination of two methods. We benefit partially
from the OCR provided by Microsoft .NET API which
is quite robust. However, it does not support recog-
nition of all mathematical symbols, thus we are still
forced to maintain and use our OCR to detect certain
symbols. Nevertheless, we have made additional im-
provements to it and the overall OCRtool accuracy is
better now.

The form of σ and π is designed based on a sta-
tistical model. Mutual placements of labeled groups of
strokes are expressed by a normal distribution which
of parameters are extracted from the training data for
each production. This is another progress comparing
to Java version where we set up constraints manually.

Grammar productions support constructs as sub-
scripts, superscripts, brackets, common unary and bi-
nary operators, fractions, integrals, sums, exponentia-
tion, square roots, functions and binomial coefficients.

50 Jan Stria, Daniel Pr̊uša

The related syntax is expressed by 200 productions
stored in a text file. A sample from the file follows.

BinOperation->BinOp|Expression@L|Term@R

BinOp->[+]

BinOp->[-]

Fraction->[line]|Expression@T|Expression@B

Power->Factor|Expression@TR

Root->[root]|Expression@TL|Expression@I

Each line represents one production. On the left-
hand side of the production, there is a source nonter-
minal symbol. On the right-hand side, there is a mix-
ture of nonterminal and terminal target symbols sep-
arated by vertical lines. To distinguish the nonter-
minal and terminal symbols, we enclose the termi-
nals in brackets. The first of the target symbols is
a mandatory leading symbol. Potential following sym-
bols are always denoted by special characters deter-
mining their spatial relation to the leading target sym-
bol (e.g. @L stays for left which means that the appro-
priate symbol is located on the left with respect to the
leading target symbol).

The parameters defining σ, π and µ more precisely
are saved in a separate data file.

3 Web application

We have developed two web applications, both utiliz-
ing the well known client-server architecture. The first
application serves for sample mathematical formulas
collection. It allows to insert a mathematical formula
together with a name of the writer and store it at
the server. Formulas collected by this application are
then used to train and test our recognizer. The second
application provides a functionality of the recognizer
itself. It continuously recognizes the formula during
its insertion and provides the recognition result to the
user.

Both these applications comprise an user inter-
face running in a web browser at the client side that
communicates with web services at the server side.
The web interface was developed in HTML5 [22] and
Javascript. The web services were written in C# pro-
gramming language using WCF (Windows Communi-
cation Foundation) technology and they run on Mi-
crosoft Windows Server 2008 R2. The client and the
server communicate via Ajax. The main reasons for
choosing such an architecture were accessibility and
easy maintenance.

Both applications are accessible from an every
modern web browser supporting HTML5. They were
successfully tested in the latest versions of Internet
Explorer, Mozilla Firefox, Google Chrome, Apple Sa-
fari and Opera. They also work in the default mobile

web browsers found in Android and iOS operating sys-
tems. However despite of some optimizations editing
of formulas in these mobile web browsers in not al-
ways as smooth as in desktop browsers. It is caused by
a poorer performance of mobile devices which is not
sufficient for a frequent rendering of formulas. But as
the performance of these mobile devices grows rapidly
there is a well-founded reason to believe this will go
better soon.

Our application for formulas recognition can be
started using immediately. This is especially impor-
tant in that case when the potential user has only
several formulas to recognize and installing a new soft-
ware would cost more time than writing the formula
in TeX of MathML format by a hand. We have also
tried to make the user interface simple and friendly so
usage of our application should be intuitive enough.

The recognition engine itself runs at the server so it
can be easily updated. It is especially important in the
development phase when we can continuously provide
enhanced versions of the recognizer. We can also eas-
ily collect all formulas supplied by users for a further
analysis which helps us to improve the recognition.

The disadvantage of choosing an implementation
as a web application is a permanent need of an Inter-
net connection to work with it. In addition this con-
nection should have a low latency to ensure a true
real-time recognition during a formula insertion. On
the other hand, high throughput of the connection is
not demanded as not much data is transferred between
the client and the server.

3.1 jQueryInk widget

For both the data collection application and the recog-
nition application the core part of the web user in-
terface is a canvas that allows to insert mathemati-
cal formulas in the form of strokes. It supports writ-
ing new strokes, selecting and editing previously writ-
ten groups of strokes, erasing strokes or clearing the
whole canvas. The component representing the canvas
was developed in HTML5 and Javascript as a jQuery
UI [24] widget. It is called jQueryInk [23] and it is pub-
licly available for download as an open-source project.

The jQueryInk widget internally uses a <canvas>

element introduced by HTML5. It has a specified
width and height and provides a Javascript interface to
access and modify its surface dynamically. The inter-
face comprises functions for drawing and transforma-
tion of 2D shapes and bitmaps. These functions are
used by our widget to render strokes and additional
annotations (as selection polygon). The jQueryInk
widget can be easily created over a specified <div>

element by creating a jQuery object representing the
element and calling ink() method on it.

Formulas recognition 51

<div id="myInk"></div>

$("#myInk").ink(/* settings */);

Calling the ink() method creates a new <canvas>

element inside the <div> element and initializes a new
jQueryInk object with the settings specified by the
method parameters. These settings can be changed
later by calling the ink() method again. The most
important setting is a mode in which the widget is
operating. Depending on this mode strokes are writ-
ten, erased or selected while the mouse interacts with
the <canvas> element. The operating mode can be set
independently for left and right mouse buttons. The
settings parameters also specify handler functions for
events generated by the widget which are fired when
something important happens as writing a new stroke,
erasing a stroke etc. Depending on the usage of the in-
troduced jQueryInk widget, these handler functions
can react on the events properly.

The jQueryInk widget also defines supporting data
structures representing strokes, their collections etc.
These data can be accessed either directly through
the widgets interface or as a parameters of the pre-
viously described events. The handler functions can
utilize the data, e.g. send it to the recognizer located
on the server.

As it has been stated, our jQueryInk widget can
operate in three modes:

Writing: When it is in the writing mode and the user
is writing a stroke, our widget has to repeatedly render
the stroke. However, because rendering of all strokes
would be time consuming, only added points are ren-
dered. After finishing writing the stroke the whole can-
vas is rendered once again to avoid artifacts.

Erasing: In the erasing mode there are two meth-
ods how to determine which strokes should be erased
when the user moves a mouse. The first method serves
for testing short strokes comprising only a few points
and having a small bounding rectangle. These strokes
are tested for proximity to a mouse path. The second
method tests longer strokes by checking their intersec-
tion with a mouse path. We have to incorporate both
these methods because its quite difficult for the user
to intersect short strokes such as dots.

Selection: When in the selection mode the closed path
of a mouse is continuously approximated by a poly-
gon which determines the selection region. Also the
strokes themselves are approximated by polylines to
reduce the count of their vertices. Each time the selec-
tion polygon changes, its bounding rectangle its com-
puted. This rectangle is then tested for intersection
with bounding rectangles of all strokes to determine
potentially selected strokes. It is determined, how

many vertices of a polyline approximating the stroke
lie inside the selection polygon. To speed up these
tests, results from the previous selection polygon tests
are reused. Finally, when at least 2/3 of stroke approx-
imating vertices lie in the selection polygon, the stroke
is selected. The described algorithm allows the user to
draw a shape of a selection region freely. This is im-
portant because using a simple rectangular selection
region would not be sufficient due to a spatial com-
plexity of the formula. The described optimizations
ensure then a smooth selection.

3.2 Data collection

The data collection application employs the described
jQueryInk widget on the client side to enable insertion
of a mathematical formula. The user is also asked to fill
his name to help us identify who wrote which formula.
Then the formula can be sent and stored at the server.
This is archieved by serializing objects representing
strokes to a JSON format and sending them via an
Ajax request. The receiver of this request is a WCF
service which stores the strokes together with the filled
username and IP address of the sender.

We have already collected approximately 200 for-
mulas. To use these data to train and test our rec-
ognizer we have to assign some semantics to them at
first. Unfortunately as far as we know there is no stan-
dard file format for storing handwritten mathematical
formulas with annotations denoting their meaning. So
we have developed our own XML file format based
on the Presentation MathML [28] which is commonly
used for representing math in web pages and other
documents. The first part of our annotated MathML
file comprises coordinates and timestamps of points
forming individual handwritten strokes. Each of these
strokes is also assigned an unique numeric identifier
that can be referenced in the second part of the doc-
ument that comprises MathML description of the for-
mula. To allow referencing strokes we have extended
MathML by tags denoting single symbols and having
identifiers of appropriate strokes as their attributes.

Before the MathML description of the formula can
be annotated by identifiers of strokes, the MathML
notation itself has to be created. To accomplish that
we have developed a fairly simple desktop application.
It loads the strokes as they were stored at the server
and passes them to the Math Input Control [25] which
is a COM control in Microsoft Windows 7. This con-
trol is a panel on which surface the formula can be
written by hand. The control continuously tries to rec-
ognize the formula and shows the recognition result.
Simply said, the control does almost the same thing
as our recognition application. The recognition result
can be accessed as a string containing Presentation

52 Jan Stria, Daniel Pr̊uša

MathML notation. Unfortunately, the strokes to be
recognized cannot be passed programmatically to the
control. Thus we developed an algorithm that utilizes
coordinates of the loaded strokes to move a mouse cur-
sor over the control simulating a real user interaction.

Besides obtaining a meaning of the handwritten
formula in a MathML, the presented mechanism can
also be used for a comparison of our recognizer with
the Math Input Control. Although their recognizer
performs quite well its not definitely perfect. But when
used by a real user it allows to erase and rewrite arbi-
trary strokes or assign a meaning to a group of strokes
by a hand. So when the recognition of automatically
written strokes fails we input it to the panel by hand
using the mentioned editing possibilities to always ob-
tain their correct description in MathML notation.

Once we have the MathML notation of the formula,
we process it by adding special tags for each symbol
and we can start annotating it. It has to be done by
a hand as the Math Input Control gives us only one
MathML string describing the whole formula. Using
our application, each symbol included in the formula
has to be selected and bound with the appropriate
symbol tag.

The data collection application is available at [21].

3.3 Data recognition

The web interface of the formulas is shown in the
figure 4. It also utilizes presented jQueryInk widget
for strokes insertion. Besides that it also comprises
a field showing the recognition result which is a for-
mula represented in the Presentation MathML for-
mat. Although MathML is intended for incorporat-
ing mathematics in web pages, its support in the cur-
rent browsers is quite poor. Among the most used web
browsers only Mozilla Firefox and Opera support it.
Moreover, even these two browsers do not render ev-
erything correctly. Remaining browsers (Internet
Explorer, Google Chrome and Apple Safari) still do
not support it at all. However, the MathML support
is planned in future versions of all mentioned browsers.

To ensure a correct rendering of the recognized
formulas in all current browsers, we incorporated the
MathJax library [26]. It is written in Javascript and
it serves for a correct displaying of mathematics in all
major web browsers. It can display mathematics in
both the MathML and TeX format. While displaying
mathematics in the MathML format, it automatically
detects whether the browser supports the MathML na-
tively. If so, it lets the browser to render the MathML.
If the browser lacks a MathML support, it converts
the MathML to an image and lets the browser display
this image instead. While displaying mathematics in

Fig. 4. User interface of the recognizer: Shows the selec-
tion (number 1) and the editing of a meaning (variable q).
Result of the recognition is at the top.

the TeX format, the MathJax always converts it to an
image that is then shown by the browser.

Our goal was to develop a truly interactive appli-
cation for formulas recognition. We wanted the user
to see partial results of a recognition as he inserts the
formula. We also wanted to provide a possibility of se-
lecting a group of strokes and determining its meaning.
This can help the recognizer a lot when a part of the
formula is not recognized correctly, e.g. one of the sym-
bols is recognized wrong. Then strokes forming this
symbol can be selected and the recognizer proposes all
alternative meanings of that group of strokes. Assum-
ing that the correct meaning is present among these
alternatives, the user can choose it. Then the correct
meaning is assigned to that group and the recognizer
has to respect it in a following recognition process.

To achieve the described interactivity, the
Javascript client and the WCF service running at the
server have to communicate a lot. Figure 5 gives us
a closer look at that communication and it also shows
how the user affects it. Each time the user enters the
web interface, a new asynchronous Ajax request is sent
to the service. The service generates a unique session
id and initializes a new instance of the recognizer for
this id. The session id is then sent back to the client
for a further communication.

Meanwhile the user could start inserting the for-
mula, so it has to be checked whether he performed
some actions that need to be sent to the server. These
actions comprehend insertion of a new stroke, erasing
an existing stroke, clearing the whole canvas, selection
of a group of strokes or determining a meaning of the
previously selected group of strokes. Every time one of
these actions is performed by the user, it is added to
a queue of actions waiting to be sent to the server. We
use this queue to ensure that there is always only one
request from the client to the server being processed.

Formulas recognition 53

Fig. 5. Client-server architecture of the recognizer: Shows
how user actions are handled by the client script and how
the client script communicates with the service running on
a server.

When the session is initialized and the queue of actions
is non-empty or every time a new action is performed
and there is no request being processed, the queue of
actions is emptied and a new request containing all
actions from the queue is sent to the server.

The request with the recent actions is sent as an
asynchronous Ajax request so the user can keep editing
the formula meanwhile. The request always contains
a forementioned session id so the service could pass
the actions to the appropriate recognizer. The recog-
nizer updates its set of strokes and provides the best
estimation of what these strokes mean. When there
is an action denoting selection of a group of strokes,
the recognizer also offers all possible meanings of these
strokes to allow the user to determine their meaning.
And finally, when there is an action denoting a mean-
ing determination of some group of strokes, the recog-
nizer uses it.

After that, a response containing a recognition re-
sult is sent back to the client. The response can also
contain possible meanings of a selected group of
strokes if the request comprised a strokes selection ac-
tion. The client script receives the response and shows
the recognition result. It can also show possible mean-
ings of a previously selected group of strokes to let the
user to select the correct meaning. Then the queue of
actions is checked and if it is non-empty a new request
is generated. This goes over and over.

Besides the request for a session initialization and
the request containing a queue of performed actions,
there is also the third one. It is sent synchronously
when the user leaves our web interface and it notifies
the service that the sessions ends and the recognizer
can be released.

Unfortunately, sending an Ajax request when
a web page is being left or a web browser is being
closed is not fully reliable. We have adopted an an-
other mechanism for releasing unused resources. The
service periodically checks all the sessions and if it
finds a session without any requests for some time, it
releases the recognizer allocated for it. This can lead to
releasing a recognizer for a session that has not been
accessed for a long time but has not truly ended at
the client side. When a request is received from such
a session, a new recognizer for a specified session id is
created and the client is asked to send all its strokes
to restore an original state of the recognizer.

4 Conclusions

We have described a grammar based approach
to mathematical formulas recognition. Our previous
results [11, 12] show that the proposed method is prac-
tical and can be implemented effectively. The imple-
mentation is responsive and gives acceptable results.
It is true that some OCR errors usually occur during
the recognition and even the structural analysis does
not help to prevent them all. We have addressed this
problem in the new user interface which allows to cor-
rect OCR results interactively.

We have redesigned the architecture of the whole
system and realized it as a web application. This gives
new possibilities for further improvements. Our prior-
ity now is to assemble a sufficiently large set of formu-
las, which will include samples from all common areas
of mathematics, written by different users. We want
to analyze such data and use it for tuning parameters
of the grammar productions. We also plan to publish
a database of annotated formulas to be used by others
for testing purposes. We have not found any set of on-
line formulas publicly available. There are only off-line
formulas [16] or samples of single on-line characters,
so this kind of contribution could be valuable for the
community.

References

1. R. Anderson: Syntax-directed recognition of hand-
printed two-dimensional mathematics. In Interac-
tive Systems for Experimental Applied Mathematics,
pp. 436–459, London, 1968. Academic Press.

2. K.F. Chan and D.Y. Yeung: Mathematical expression
recognition: a survey. In IJDAR, vol. 3, pp. 3–15, 2000.

3. S. Hellkvist: On-line character recognition on small
hand-held terminals using elastic matching. Master’s
Thesis, Royal Institute of Technology, Department of
Numerical Analysis and Computing Science, 1999.

54 Jan Stria, Daniel Pr̊uša

4. T. Kasami: An efficient recognition and syntax analy-
sis algorithm for context-free languages. Scientific Re-
port AFCLR-65-758, Air Force Cambridge Research
Laboratory, Bedford, Mass., USA, 1965.

5. V.M. Kiyko: Recognition of objects in images of paper
based line drawings. In Third International Conference
on Document Analysis and Recognition, pp. 970–973,
Montreal, Canada, 1995.

6. S. Lavirotte and L. Pottier: Mathematical formula
recognition using graph grammar. In Proceedings of
the SPIE 1998, vol.3305, p p.44–52, San Jose, CA,
1998.

7. P. Liang, M. Narasimhan, M. Shilman, and P. Vi-
ola : Efficient geometric algorithms for parsing in two
dimensions. International Conference on Document
Analysis and Recognition, pp. 1172–1177, 2005.

8. N. Matsakis: Recognition of handwritten mathematical
expressions. Master’s Thesis, Massachusetts Institute
of Technology, Cambridge, MA, May 1999.

9. E.G. Miller and P.A. Viola: Ambiguity and constraint
in mathematical expression recognition. In AAAI
’98/IAAI ’98, pp. 784–791. American Association for
Artificial Intelligence, 1998.

10. D. Pr̊uša and V. Hlaváč: 2D context-free grammars:
Mathematical formulae recognition. In J. Holub and
J. Zdarek, (eds), Proceedings of the Prague Stringol-
ogy Conference, pp. 77–89, Czech Technical University
in Prague, Czech Republic, 2006.

11. D. Pr̊uša and V. Hlaváč: Mathematical formulae recog-
nition using 2d grammars. In Proceedings of the
9th International Conference on Document Analysis
and Recognition, vol. II, pp. 849–853, Curitiba, Brazil,
2007.

12. D. Pr̊uša and V. Hlaváč: Structural construction for
on-line mathematical formulae recognition. In Pro-
ceedings of the Iberoamerican Conference on Pattern
Recognition, pp. 317–324. Springer Verlag, September
2008.

13. A. Rosenfeld: Picture languages - formal models of
picture recognition. Academic Press, New York, 1979.

14. B. Savchynsky, M.I. Schlesinger, and M.O. Anochina:
Parsing and recognition of printed notes. In Proceed-
ings of the Conference Control Systems and Com-
puters, pp. 30–38, Kiev, Ukraine, 2003. in Russian,
preprint in English available.

15. M.I. Schlesinger and V. Hlaváč: Ten lectures on sta-
tistical and structural pattern recognition. Vol. 24 of
Computational Imaging and Vision. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2002.

16. M. Suzuki: Infty project.
http://www.inftyproject.org/en/index.html.

17. M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and
T. Kanahori: Infty: an integrated ocr system for math-
ematical documents. In DocEng ’03: Proceedings of
the 2003 ACM Symposium on Document Engineering,
pp. 95–104, New York, NY, USA, 2003. ACM.

18. C.C. Tappert: Cursive script recognition by elastic
matching. IBM J. Res. Dev., 26, November 1982, 765–
771.

19. D.H. Younger: Recognition of context-free languages in
time n3. Information and Control, 10, 1967, 189–208.

20. R. Zanibbi, D. Blostein, and J.R. Cordy: Recogniz-
ing mathematical expressions using tree transforma-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(11), 2002, 1455–1467.

21. Data collection apllication.
http://mfr.aspone.cz/DataCollector.html.

22. HTML5 working draft.
http://www.w3.org/TR/html5.

23. jQueryInk widget.
http://plugins.jquery.com/project/Ink.

24. jQuery UI library. http://jqueryui.com.
25. Math Input Control reference.

http://msdn.microsoft.com/en-us/library/

dd317324.aspx.
26. MathJax library. http://www.mathjax.org.
27. MathJournal 2.1.

http://www.xthink.com/MathJournal.html.
28. MathML2 recommendation.

http://www.w3.org/TR/MathML2.

