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Preface


The 10th workshop ITAT’10 (Information Technology – Applications and Theory, http://itat.ics.upjs.sk/)
was held in Hotel Smrekovica (http://www.vzsmrekovica.sk/), located 1428 meters above the sea level in
Vel’ká Fatra, Slovakia, September 21–25, 2010.


ITAT is a place of meeting for scientists and experts working in computer science mainly from the Czech
Republic and Slovakia. The emphasis is on exchange of information between the participants and infor-
mal communication, a big space is devoted to discussions. Workshop thus offers a possibility for young
researchers and students, mainly PhD students, to present their work and to discuss with more experienced
colleagues. The conference languages are Slovak and Czech, proceedings papers are in English. The place
is traditionally chosen at least 1000 meters above the sea level in a location not directly accessible by public
transport.


ITAT is a broad scope conference that ranges from foundations of computer science, security, through data
and semantic web to software engineering.


Each from the 47 submissions was refereed by at least two independent referees. The proceedings consists
of two invited lectures and 9 original scientific papers.


ITAT’10 was organized by


Institute of Informatics of University of P.J. Šafárik in Košice
Faculty of Mathematics and Physics, Charles University in Prague
Institute of Computer Science of Academy of Sciences of the Czech Republic, Prague
Slovak Society for Artificial Intelligence.


We would like to thank invited speakers Mária Bieliková and Peter Vojtáš, the authors of presented papers,
all PC members and reviewers for keeping high scientific level of ITAT as well as organizers led by Peter
Gurský for organizing this jubilee event.


Special thanks go to our sponsors:


Profinit (http://www.profinit.eu/)


Dana Pardubská
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Towards a formal model of natural language description based on restarting automata with parallel DR-structures . . 25
M. Lopatková, F. Mráz, M. Plátek


On the denotational semantics of XML-Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
P. Loupal, K. Richta


Clairvoyance versus cooperation in scheduling of independent tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
T. Plachetka


Reversal of regular languages and state complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
J. Šebej


Implementation of a data layer for the visualization of component-based applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
J. Šnajberk, P. Brada


Estimating effective DNA database size via compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Mária Bieliková


Institute of Informatics and Software Engineering, Slovak University of Technology
Ilkovicova 3, 842 16 Bratislava, Slovakia


maria.bielikova@fiit.stuba.sk


WWW home page: http://fiit.stuba.sk/~bielik


Abstract. The current Web is not only a place for the
content available in any time and location. It is also a place
where we actually spend time to perform our working tasks,
a place where we look for not only interesting informa-
tion, but also entertainment, and friends, a place where
we spend part of our rest. The Web is also an infrastruc-
ture for applications which offer various services. There is
so many aspects of the Web that this diverse organism is
a subject of study of researchers from various disciplines.
In this paper we concentrate on information retrieval aspect
of the Web, which is still prevailing. How we can improve
information retrieval, be it goal-driven or exploratory? To
which extent we are able to give our machines means for
helping us in information retrieval tasks? Is there any level
of semantics, which we can supply for the Web in general,
and it will help? We present some aspects of information
acquisition by search on the “wild” Web together of exam-
ples of approaches to particular tasks towards the improve-
ment of information search, which were proposed in last
two years within the Institute of Informatics and Software
Engineering at the Slovak University of Technology, espe-
cially within the PeWe (Personalized Web) research group.


1 Introduction


The Web is amazing by the amount of diversity of its
stuff, by the conception of so much thoughts, discus-
sions, opinions that all show in many cases wisdom
and creativity of people. This is also the bottleneck
of current web – it is its nature, which involves “web
objects” of various type (text, multimedia, programs)
representing conceptually different entities (the con-
tent, people, things, services) and constantly chang-
ing. Particular objects are not formally defined, e.g.
the content is semistructured, which leads to the com-
plexity considering machine processing.


Obvious sentences are expected here – how is the
Web important for our lives (both work and private),
how the Web grows, how it is dynamic and constantly


? This work was partially supported by the projects
VEGA 1/0508/09, KEGA 028-025STU-4/2010, and it
is the partial result of the Research & Development Op-
erational Programme for the project SMART II, ITMS
26240120029, co-funded by the ERDF.


changing, how it absorbs people with their opinions,
ratings and tags1. Especially its dynamic nature pre-
vents us from a direct employing of the most methods
developed for closed information worlds (even though
big or actually present on the Web). And its size re-
quires automatic (or semiautomatic) approaches for
information acquisition from this large heterogeneous
information space.


The Web is undergoing constant development with


– the Semantic Web initiative, which aims for a ma-
chine readable representation of the Web [3],


– the Adaptive Web initiative, which stresses the
need for personalization and broader context
adaptation on the Web [6],


– the Web 2.0 initiative called also the Social Web,
which focuses on social and collaborative aspects
of the Web [14].


Development in this area matures to the point whe-
re the Web is becoming so important and in fact still
unknown phenomenon that is identified as a separate,
original object of investigation, and there are even ini-
tiatives which want to establish the Web Science as
a new scientific discipline [7].


Considering information retrieval based on search
(be it goal-driven or exploratory) includes also effec-
tive means for expressing users’ information needs –
how should a user specify his query or a broader aim
of the search (be it a concrete requirement for expla-
nation of particular term or an abstract need for find-
ing out what is interesting or new in some domain).
The “effective” here means that the user gets what he
expects, even if his expectations are not completely
known – this is pretty similar to the software require-
ments specification, but within the “wild” Web we
have so much and so diverse users with various needs
that we are not able to do this manually as software
engineers do with the software specification.


In general, user’s information needs usually come
into existence while the user solves a task. Information
needs can be classified into three categories [5]:


1 We do not mention and elaborate further another impor-
tant view on the Web as an infrastructure for services
and software applications.
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– Informational. The user’s intent is to get specific
information assumed to be present on the Web.
The only assumed interaction is reading.


– Navigational. The user’s intent is to reach a par-
ticular web page. It is assumed that a user will
“travel” through the Web space taking advantage
of getting a starting point.


– Transactional. The user’s intent is to perform
some activity enabled by the Web, i.e. the use of
a service offered by particular web page.


These categories cannot be directly inferred from
the user’s query. However, good search engine should
consider various information needs as this implicates
a move from a static information retrieval (first two
categories) to the third category, which integrates not
just data stored on the Web, but also services that can
provide right information (e.g. planning a flight).


2 Web and semantics


I do not feel a need for putting here well-known ar-
guments about the importance of semantics for auto-
matic reasoning. Yes, it is important! This fact was
stated already many times from its first publishing
in [3] even though what we give a machine actually is
not the semantics; for the machine it is only a syntax
– formal description of a resource.


The question is not what we can do with the se-
mantics when it is perfect, but how to acquire it. How
much semantics we can acquire for constantly chang-
ing world of the Web, or what amount is already useful
to such extent that we can report an improvement in
fulfilling our information needs.


With the Web development several sources for the
semantics come into existence. Except the


– web content as a fundamental source for the se-
mantics,


there are other sources of the semantics that can be
mined:


– web structure with the focus on links analysis, and
– usage logs with the focus on a user activity on the


Web mainly by an analysis of clickstreams.


As a special case of the content source we consider


– web annotations,


when viewing the annotations as a layer above the
content created either automatically [11] or manually
(in particular by user interactions and social tagging).
The web annotations can be viewed also as a result of
the users’ activity and as such considered as a source
for the web usage mining.


2.1 Considering the web content


The content, or resources in general are basically de-
scribed by metadata. Metadata were used by libra-
rians already before the Web era. They typically rec-
ognize three categories of metadata: administrative,
structural, and descriptive [21]. Considering the Web
and it content we focus on descriptive metadata re-
lated to the content. Moreover, metadata for the Web
comparing to libraries resources should conform the
fact that we cannot predict all kinds of the Web ob-
jects and their evolution.


The semantics of the content can be expressed
many ways ranging from


– the set of keywords (or tags) through
– the Resource Description Framework or topic


maps as a general model for conceptual descrip-
tion of resources to


– ontologies with all power resultant from formal
logic where the ontology consists of concepts, rela-
tions, attributes, data types, a concept hierarchy,
and a relation hierarchy.


Having ontologies that cover (almost) “complete”
semantics which we are presently able to specify seems
to be a solution for the Semantic Web. But it is not,
at least now. Considering the complexity of defining
such semantics recalls the situation some more than
40 years back when people tried devise general sol-
ving machines. Even though they moved later to ex-
pert knowledge capturing, the results were still limited
mainly due to the ability of people to specify know-
ledge explicitly. So the situation repeats in some sense.


Right after the Semantic Web establishment we
have witnessed a boom of various approaches to rep-
resenting semantics for specific domains and methods
for reasoning including mapping ontologies. However,
ontology-based semantics is spreading slowly because
we obviously have solutions just for very specific and
rather static domains. It is perfect way for the appli-
cation architecture as knowledge bases were in 70ties.
But it does not fit well with the “wild” Web.


Even if we would have formally represented knowl-
edge that would be sufficient for the best part of our
needs (knowledge representation problem in Artificial
Intelligence), and would have strong reasoning me-
chanisms, it is not enough for the changing Web – we
still miss a component for matching this knowledge to
particular web objects. Moreover, the Web is evolving
as we people evolve in unpredictable way. New infor-
mation and knowledge is constantly added to the Web
either as semistructured content or as services or ap-
plications running on the Web.


Web 2.0 brought or vitalized a role of people in
the whole process. We witness the power of crowd and
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its limitations. Folksonomy is simply a returning back
to the most elemental way to enrich a resource with
semantics employing a set of keywords. Fundamental
difference lays in the process of keywords acquisition.
Folksonomy is created by users through the process
of social tagging [12]. The advantage is real power of
users, so keywords attached to the resource by social
tagging represent rather objective notation of a web
page content. The problem is that folksonomies are
coarse-grained, informal and flat.


Following this trend we proposed a model of light-
weight semantics of the web content referred to as the
resource metadata [17]. It is promising in the sense
of its automatic acquisition for open corpus, or vast
and dynamic domains. It provides a meaningful ab-
straction of the Web content, i.e. provides a metadata
model, and a mapping between web pages and this
metadata model.


The model consists of interlinked concepts and
relationships connecting concepts to resources (sub-
jects of the search) or concepts themselves (see Fig-
ure 1). Concepts feature domain knowledge elements
(e.g., keywords or tags) related to the resource content
(e.g., web pages or documents). Both the resource-to-
concept and the concept-to-concept relationships are
weighted. Weights determine the degree of concept re-
latedness to the resource or to other concept, respec-
tively. Interlinked concepts result in a structure resem-
bling lightweight ontology, and form a layer above the
resources allowing an improvement of the search.


Resources


(web content)


Metadata


(keywords, tags,


concepts)


rn


r5
r4


r3


r2
r1


Fig. 1. Content model based on lightweight semantics.


The advantage of modeling domain knowledge as
described above lies in its simplicity. Hence, it is pos-
sible to generate metadata enabling lightweight se-
mantic search for a vast majority of resources on the
Web. We have already performed several experiments
of automatic metadata extraction with promising re-


sults [15]. This models conforms also with existing and
evolving folksonomies that can supplement extracted
metadata, and can be fully captured within the model.


We believe that proposed model can improve infor-
mation search. Our confidence is supported by partial
results achieved (some of them are briefly mentioned
in the Section 3). There are still some issues related to
the proposed model. As the most serious we consider:


– extracting the right terms (concepts);
– creating and typing relationships between con-


cepts;
– multilingual and multicultural aspects as for ex-


ample some terms can have completely different
meaning in dependence of culture.


Especially term extraction is well developed field
with term-indexing approaches and named entity res-
olution. Considering the model alone, the semantics
is still rather low as we cannot recognize properly im-
portant terms for particular user in particular context.
That is why there is the need to combine all sources for
the semantics [13]. We mention here except the con-
tent also web users’ activity (web structure and web
annotation are out of the scope of this paper).


2.2 Considering web users’ activity


Monitoring a user’s activity can serve as important
source for semantics. Utilizing an implicit user feed-
back we can recognize which web pages (or even their
parts) are interesting in particular context, and thus
adjust or enrich metadata related to that content. User
related metadata (i.e., a user model) allow personal-
ization. Considering the “wild” Web with its light-
weight semantics the spreading the personalization to
the whole Web becomes possible (to some extent).


Resource metadata model introduced above serves
also as a bottom layer for an overlayed user model. As
we operate in open corpus it is not possible to have ei-
ther of the models in advance. We propose to represent
user’s interests (discovered via web usage mining) by
the same means as the resource metadata, and provide
constant mapping between these two models.


If we want to employ such models for the purpose
of information retrieval on the “wild” Web, we need to
acquire terms (keywords, tags, concepts) from the web
pages visited by the users. Because the Web is an open
information space, we need to track down and process
every page the user has visited in order to update his
model appropriately.


To achieve this, we developed an enhanced proxy
server, which allows for realization of advanced oper-
ations on the top of requests flowing from a user with
responses coming back from the web servers, all over
the Internet [2]. Figure 2 depicts the schema how the
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s e r v e r
User


request


p r o x y


request


.js
+


user model


readability (main textual content extraction)


translate


metadata extraction


metadata extraction


metadata extraction


. . . . . . . . . . . .


.js


Fig. 2. Monitoring a user based on an enhanced proxy platform.


proxy server operates. When the web server sends the
response to the required resource back to the user, the
proxy server enriches the resource by a script able to
capture the user activities (due evaluation of the user
feedback). In parallel we run a process of extracting
the meta-data and concepts from the web page. To-
gether with the user feedback, these are stored in the
user profile. Before the extraction phase based on var-
ious algorithms to semantic annotation and keywords,
and category extraction, we realize main content de-
tection (relevant textual part of the HTML document)
and machine based translation into English, which is
required by the extraction algorithms.


The aforementioned process gathers metadata for
every requested web page, and creates a basic (ev-
idence) layer of a user model. Naturally, as the time
flows, the keywords which represent long-term user in-
terests occur more often than the others. Therefore, by
considering only top K most occurring keywords, we
get a user model which can be further analyzed, and
serves as a basis for personalization.


We deployed our enhanced proxy platform to de-
termine the efficiency of the solution in real-world us-
age. The proxy solution can be, apart from user ac-
tivity logging, used to improve user experience with
ordinary web pages by adapting them according ac-
tual user needs. More, we provide users with a wordle-
based visualization (Wordle tag cloud generator,
http://www.wordle.net/) of their user profiles, and col-
lected a precious feedback, which helped us to deter-
mine “web stop-words”, i.e., words which occur often
on web pages but do not make any sense from the
user’s interests point of view. An example of such
a user profile of one of the proxy authors is displayed
in Figure 3.


3 Examples


We present several examples of approaches to par-
ticular tasks towards the improvement of information
search, which were proposed and evaluated in last two
years within the Institute of Informatics and Software
Engineering at the Slovak University of Technology in
Bratislava, especially within the PeWe (Personalized
Web) research group.


3.1 Gaming as a source of semantics


Computer games are potential sources of metadata
that are hard to extract by machines. With game rules
properly set and sufficient motivation, players can in-
directly solve otherwise costly problems.


Little Google Game. We proposed a method for
term relationship network extraction via analysis of
the logs of unique web search game [19]. Our game
called Little Google Game focuses on web search query
guessing. Players have to formulate queries in a spe-
cial format (using negative keywords) and minimize
amount of results returned by the search engine (we
use Google at the moment). Afterwards we mine the
game logs and extract relationships of terms based on
their frequent common occurrence in the Web.


3.2 Domain dependent approaches


In spite of domain independence of proposed models,
knowing the domain allows for more accurate models.
This is common approach also used by the most pop-
ular web search engines, which blend data from mul-
tiple sources in order to fulfil the user’s need behind
his query using the advantage when domain is known
(e.g. flight planning or cooking a meal).
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Fig. 3. Michal’s tag cloud.


ALEF, Adaptive Learning Framework. We pro-
posed a schema for adaptive web-based learning and
based on it we developed ALEF (Adaptive LEarning
Framework), a framework for creating adaptive and
highly interactive web-based learning systems [16].


ALEF domain model follows the resource meta-
data model described above. The content includes lear-
ning objects that can be of three types: explanation,
question and exercise. The domain model covers for
every learning object: actual content (text and me-
dia), and additional metadata that contain informa-
tion which is relevant for personalization services (con-
cepts, tags, comments). Comparing to other existing
approaches, the notion of metadata in ALEF is quite
simplified, which allows for automatic construction of
domain model, and on the other hand, it still provides
a solid basis for reasoning resulting in advanced opera-
tions such as metadata-based personalized navigation.


News recommendation. We proposed content
based news recommendation based on articles simi-
larity. Considering high dynamic and large every day
volume of news we devised and evaluated in real set-
tings two representations for effective news recommen-
dation:


– efficient vector comprising title, term frequency
of title words in the article content, names
and places, keywords, category and readability
index [9],


– balanced tree built incrementally; it inserts articles
based on the content similarity [23].


Different approach to news recommendation pro-
vided on the same e-news portal (www.sme.sk) is pre-
sented in [20]. It employs k-nearest neighbor collab-
orative filtering algorithm based on generic full text
engine exploiting power-law distributions Important
property of proposed algorithm is that it maintains
linear scalability characteristics with respect to the
dataset size.


Adaptive faceted browser.We devised a faceted se-
mantic exploratory browser taking advantage of ada-
ptive and social web approaches to provide person-
alized visual query construction support and address
guidance and information overload [22]. It works on
semantically enriched information spaces (both data
and metadata describing the information space struc-
ture are represented by ontologies). Our browser facili-
tates user interface generation using metadata describ-
ing the presented information spaces (e.g., photos).


3.3 User centric approaches


Monitoring users and implicit feedback is promising
approach for the “wild” Web. Even though an explicit
user feedback (filling forms by a user) is easy to im-
plement, it has serious problems with credibility, dis-
turbing the user and dependence on his will.


Query expansion by social context. We proposed
a method which implicitly infers the context of search
by leveraging a social network, and modifies the user’s
search query to include it [10]. The social network is
built from the stream of user’s activity on the Web,
which is acquired by means of our enhanced proxy
server.


User interest estimation. We proposed a method
for adaptive link recommendation [8]. It is based on an
analysis of the user navigational patterns and his be-
havior on the web pages while browsing through a web
portal. We extract interesting information from the
web portal and recommend it in the form of personal-
ized calendar and additional personalized links.


Search history tree. We proposed an approach in-
tended to reduce user effort required to retrieve and/or
revisit previously discovered information by exploit-
ing web search and navigation history [18]. It is based
on collecting streams of user actions during search
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sessions. We provide the user with a history map –
a scrutable graph of semantic terms and web resources
with full-text search capability over individual history
entries. It is constructed by merging individual session
history trees and the associated web resources.


Discovering keyword relations from Crowd. We
proposed an approach of determining keyword rela-
tions (mainly a parent-child relationship) by leverag-
ing collective wisdom of the masses, which is present
in data of collaborative (social) tagging systems on
the Web [1]. We demonstrated the feasibility of our
approach on the data coming from the social book-
marking systems delicious and CiteULike.


4 Conclusions


In this paper we described just particular aspects of
the whole picture. It is not in any sense complete. It
should be viewed as a discussion on certain aspects
and possible partial solutions.


At the moment we have more questions as the an-
swers. How the Web should be described? What prop-
erties are important? How to discover interesting in-
formation for particular individual? Is there any emer-
gent phenomena? What we could do? How we can
really connect people in such a way that it will be
convenient and useful? Can we trust the Web? Is its
infrastructure right?


One day maybe we people will discover silver bul-
let for the Web. Meantime we should be open for var-
ious small enhancement, try to understand the Web
as much as possible, and try to integrate all particular
successes.


Acknowledgements. Figures and parts of descrip-
tions in the Section 3 are taken from published papers,
which present particular examples, all mentioned in
References.


The author wish to thank colleagues from the Insti-
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In this lecture we give several examples and lessons
learned from research, development and experiments
in the area of theory and applications of information
technology. We will try to describe a possible synergy
of theory and application too. Namely, to describe
where practical needs bring new problems for theory
and where theory helps to formulate methods, which
should be verified in practice.


In the theoretical part we will mention research on
correctness and completeness of fuzzy logic program-
ming [1,2] and various measures for evaluating success.
In applications we mention acquaintance with devel-
opment and experiments of preferential querying and
user dependent top-k answers [3]. In all of these it also
depends on whether our task is deductive (querying),
inductive (learning) or abductive. In practice, it is im-
portant to have a user behavior model (for many dif-
ferent users). To see what is (can be, must be) done au-
tomatically (trained, assisted, unsupervised, . . . ) and
what by human, what is domain dependent and what
is generic. Our fuzzy model is not a mere generaliza-
tion from two values to many values. The key point of
our study here is our understanding of fuzzy value as
preference degree. Using fuzzy as preferences enlight-
ens phenomena which in a two valued world are not
visible at all.


From mathematical point of view one can general-
ize LP to many valued logic. Also here we face several
challenges. Should our rules be implications or clauses,
should our computation be refutation or query answer-
ing, is unification touched by this or not? In two valued
logic these are equivalents, in [1] we have developed a
model of ([0,1] valued) fuzzy logic programming FLP
with implicative rules and computation based on back-
ward usage of modus pones (and possible extension
with fuzzy similarity in [4]).


Concerning implementation of this system,
M. Lieskovsky has constructed in [5] a fuzzy War-
ren abstract machine. Our system enables new form
of cuts for threshold queries (see [1]).


Further development went in two directions.
(First) What happens in finitely valued case when dif-
ferent attributes take different number of truth val-


⋆ This work was partially supported by Czech Grant
Agency GA CR under number 202/10/0761.


ues (see [2])? (Second) In our model we have a con-
tinuous semantic, on the other side in [6] GAP was
not continuous (and general connection between these
two models was also an open problem). This was all
solved in [2], introducing a model based on left con-
tinuous conjunctors, with a weak form of border con-
dition (without associativity and commutativity) and
with body aggregation . We have shown that FLP is
(in a sense) equivalent to GAP.


In the application part we make difference between
case studies and use cases. Case studies include de-
scriptions of systems that have been deployed within
an organization, and are now being used within a pro-
duction environment. Use cases include examples
where an organization has built a prototype system,
but it is not currently being used by business func-
tions [18]. Repeatability of experiments is also an is-
sue, see e.g. [19]. So our applications here are not true
deployed applications, they are rather experiments
(use case prototypes) and repeatability is not always
fully satisfactory enabled.


Main impulse for these considerations came from
a referee refuting our paper in an application oriented
conference. He/She asked – where from do you have
rules of your FLP? So far main motivation in fuzzy
were toy examples with tall Swedes and young bas-
ketball players. Our motivation was real life examples
where fuzzy degree is the degree of user preference
(and no more fuzzy linguistic variables with modifiers
like very tall . . . ). A well developed counterpart of this
is already in preferential querying, where only top-k
most preferred answers are interesting. Main contri-
bution here was made by R. Fagin (see e.g. [10]), who
(in a datalog setting, without function symbols) as-
sumed we have objects in several lists repeatedly or-
dered by different attributes (local) preferences and
gave an original optimal algorithm for top-k for this
setting. This direction was further investigated
by P. Gurský who has implemented and experimented
with several heuristics (see e.g. [7]). V. Vaneková has
developed several knowledge representation models for
this ([8]).


But referee asked where from do you have those
rules (Fagin assumes we have the (query) rules, with
local preferences and global aggregation (in good con-
cordance with our result FLP = GAP)? So now the
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question is, where from we have local preferences (user
preferences on attributes represented by a fuzzy (rank-
ing) set) and where from do we have combination (ag-
gregation] function giving the global preference? This
is an inductive task. With T. Horváth, A. Eckhardt we
have developed several inductive models (see e.g. [9]).


Moreover a practical problem occurred. Well, as-
sume we have different users (with different attribute
preferences and aggregation). What are and where
from are inputs? Do we assume user implicit inputs
(e.g. click stream behavior) or (some form of) user
explicit inputs. User aspects of these problems are de-
veloped in[3,11,12] and we have to admit that exper-
iments are mostly done with an artificially generated
user, very few human user experiments were done (and
we have a problem how to evaluate them). Supporting
data storage for these tasks is challenged too, we gave
a model of fuzzy relational algebra for flexible query-
ing in [13] and an index structure for multiple user
preferential queries in [14].


For theoretical part it is now clear that equality
of fuzzy sets (correct answers and computed answers)
is not a good measure and correctness and complete-
ness results have to be reconsidered with some order
violation/concordance measures.


Further, from an experimental point of view, we
went in direction of web information extrac-
tion ([16,17]), because it is also interesting to know
where are all these data from (after where are rules
from). Situation connecting web and user is heavily
influences by uncertainty, starting research is done
in [15].


We can conclude, that synergy between theoretical
and applied (experimental) research and development
was beneficial for both of them.
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user profile annotated rules for fuzzy preference top-k
querying. SUM 2007, 116–130.


10. R. Fagin, A. Lotem, M. Naor: Optimal aggregation al-
gorithms for middleware. J. Comput. Syst. Sci. 66 (4),
2003, 614–656.
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16. J. Dědek, P. Vojtáš: Fuzzy classification of web re-
ports with linguistic text mining. Web Intelligence/IAT
Workshops 2009, 167–170.


17. R. Novotný, P. Vojtáš, D. Maruščák: Information ex-
traction from web pages. Web Intelligence/IAT Work-
shops 2009, 121–124.


18. Semantic Web Case Studies and Use Cases,
http://www.w3.org/2001/sw/sweo/public/UseCases/.


19. S. Manegold et al.: Repeatability & work-
ability evaluation of SIGMOD 2009. SIG-
MOD Record 38 (3), 2009, 40–43, see e.g.
http://www.sigmod08.org/sigmod call papers.shtml


sub 6.








Automatic source code reduction⋆
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Abstract. The aim of this paper is to introduce Reductor,
a program that automatically removes unused parts of the
source code of valid programs written in the Mercury lan-
guage. Reductor implements two main kinds of reductions:
statical reduction and dynamical reduction. In the statical
reduction, Reductor exploits semantic analysis of the Mel-
bourne Mercury Compiler to find routines which can be re-
moved from the program. Dynamical reduction of routines
additionally uses Mercury Deep Profiler and some sam-
ple input data for the program to remove unused contents
of the program routines. Reductor modifies the sources of
the program in a way, which keeps the formatting of the
original program source so that the reduced code is further
editable.


1 Introduction


Mercury [1] is a fast logic and functional programming
language with advanced error detection features, de-
veloped for writing large real-world programs. Its syn-
tax builds upon Prolog syntax (Prolog predicate clau-
ses), adding some new declarations. These declarations
are used for error checking and to speed-up the exe-
cution of a compiled program. Another great feature
of Mercury is that it can compile to C or Java and
thus it easily interfaces with foreign code. Motivations
behind the design of Mercury are very well summed
up in [2].


Reductor [3] is mainly intended for programmers
who wish to understand and/or reuse code of a big
program or start an independent project based on just
a few features of an existing one. This is why Reductor
modifies the sources of the program in a way, which
preserves the original formatting, so that the reduced
code is further editable. But there are also other uses,
like reduction of the size of executables, decreasing
the compilation time of reduced programs or releasing
only a subsection of a huge project.


We suggest the reader gets acquainted with basics
of Mercury language by reading one of the following
summaries: Ralph Becket’s tutorial [4] and Seriál Mer-
cury on ROOT.CZ [5] (in Czech).


⋆ This work has been supported by the grants Euro-
MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic) and MSM 0021620838.


1.1 Features of Reductor


Reductor implements two different kinds of reductions
— statical reduction and dynamical reduction. The
user chooses between the statical and dynamical re-
duction, not both at the same time. There is also
a trivial module reduction, which is done implicitly.


The module reduction takes all modules from
the current directory that are (transitively) imported
by the main module of the program and copies them
without any change in their contents into specified des-
tination directory.


The statical reduction takes as an input a Mer-
cury program and removes some inaccessible routines
from the sources of the program. Inaccessible routines
are the routines that program would never call and
that can be deleted, because they do not appear in
any definition of any of the remaining routines.


The dynamical reduction removes parts of rou-
tines that were never used on several inputs to the pro-
gram. The reduction is based on profiling data from
the runs of the program on some specified input. The
deep profile is generated by Mercury Deep Profiler.


The dynamically reduced program can be compiled
but Reductor guarantees that the reduced program
will generate the same output only for inputs the deep
profile was obtained on.1 On different inputs, the re-
duced program may terminate with an exception.


Reductor tries to preserve the original formatting
of the original program to as much as possible. Code
segments corresponding to goals or routines of the pro-
gram to be removed are commented out using /*red:


... :red*/, any comments of the kind /* ... */ in
such a segment are transformed into /nested:* ...


*: nested/. If Reductor needs to add some code, then
it is done by delimiting the inserted term by two new-
lines and a comment indicating that the term was in-
serted by Reductor.


2 Overview of Reductor


Reductor consists of the following parts.


1 We assume that the output of the original program is
determined solely by its input data.
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1. Intermodule Representation of the Program (IMR).
This structure represents the entire Mercury pro-
gram on various levels of representation (see Sec-
tion 2.1). It is used by all three remaining parts of
Reductor and it is based on the results of the se-
mantic analysis of Melbourne Mercury Compiler
(MMC) which we reuse and modify to suit our
needs.


2. I/O Interface. (Section 3) This part handles the
representation of the changes in the program on
the term level (see below) and offers an interface
for making the changes proposed by the statical
and dynamical reduction modules. It also outputs
the reduced sources.


This representation is designed for storing the
source changes while preserving the original source
and its formatting as much as possible.


3. Dynamical Reduction. (Section 4) Using the data
from IMR, this module dynamically reduces the
program and submits the changes to the I/O in-
terface. This module also extracts the data from
the deep profile.


4. Statical Reduction. (Section 5) Using the data from
IMR, this module statically reduces the program
and submits the changes to the I/O interface.


2.1 Levels of representation of a module


Reductor utilizes the results of the semantic analysis
of Melbourne Mercury Compiler (MMC) [1]. We thus
extracted the part of MMC code responsible for the
compilation up to the end of semantic analysis and we
based the Reductor on the extracted code.


The mentioned part of the compilation of
a module consists of the following four main stages.
At these stages, the program is represented in certain
data structures. We call these data structures the level
of representation of the program.


Mercury program is composed of declarations and
clauses, we will use the term item for either those.
The first stage is lexical analysis, after which a mod-
ule is represented as a list of lists of tokens. Each such
list of tokens corresponds to an item. We call this rep-
resentation Token-Level Representation (ToLR).


Each item in a program corresponds to what can be
considered the standard ISO Prolog term for the pur-
poses of this paper. The second stage consists of pars-
ing of the tokens into terms. After this stage a mod-
ule is represented as a list of terms. We will refer to
this as the Term-Level Representation (TeLR).
The parts of a term that are themselves terms may
be called subterms and the term that corresponds to
an item may be sometimes called base term to avoid
confusion.


After the third stage, each term is converted into
a syntax tree of the item.2 We will call this the Item-
Level Representation (ILR) of a program. After
this stage, each item is categorized based on the in-
formation extracted solely from its corresponding
term(s), not from other terms of the module. The parse
tree still contains most of the syntactic details of the
item in the program.


Finally, after the fourth stage, the data structure
called by the designers of MMC the High Level Data
Structure (HLDS) is constructed and filled with the
results of the semantic analysis of a module. This in-
cludes the following: Declarations from imported mod-
ules are added, predicates and their goals and subgoals
are annotated with inferred determinisms and modes,
variables in scopes of each subgoal of each predicate
are annotated with their modes and types, goals are
reduced to a certain equivalent subset of the original
goals from the code and thus lot of syntactic detail ir-
relevant to the semantic analysis of the module source
is lost.


After this stage, still most of the items from the
source have their corresponding structures in HLDS,
but not vice-versa—e.g. there are structures for pred-
icates that were automatically generated. We call the
described state of HLDS the High-level Represen-
tation (HLR).


As a part of the fourth stage, based on the mode
analysis of the program, a procedure is constructed
for each mode of the predicate/function because clau-
ses have to be reordered for each mode independently.


Also, in HLR, all clauses of a single procedure are
combined into one goal. Similarly as for term, we de-
fine the subgoal and the top-level goal (base goal).


From now on, we will usually ignore the difference
between functions and predicates calling them simply
predicates.


Finally, we define the call site as a goal which can
call a procedure (this includes goals that call lambda
expressions).


2.2 Inter-module representation


Considering the program representation, there is a big
difference between the needs of Reductor and the
needs of Compiler in the way modules are handled.
Compiler compiles each module of the program inde-
pendently but Reductor’s statical reduction needs to
gather semantic analysis for all modules at once and
store it for later uses. This fact has also some implica-
tion on memory requirements of Reductor.


Our approach to combining MMC’s data struc-
tures of each module into IMR is quite simple. We use


2 Some terms may be combined to form as single item.
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map data types to map fully qualified module names
to these structures. There are also a few structures
which are combined in a more sophisticated way to
improve efficiency, but these details are unnecessary
for the purposes of this paper.


From the beginning, it was clear that we will have
to reuse some of the MMC source. The question was
whether to use only ILR or use also HLR of the pro-
gram. We decided to use MMC’s semantic analysis
in order to achieve powerful enough reductions, es-
pecially in the case of dynamical reduction. On the
other hand, the use of HLR makes Reductor more de-
pendent on MMC and makes it harder to understand,
which is among other things caused by the fact that
MMC is designed for other purposes than simplicity
and reusability of the semantic analysis alone.


As a part of IMR, there is also a structure that
stores information about the module dependencies
(imports) and the source files that they came from.
This structure is extracted from the make-like part of
MMC that directs compilation.


3 I/O interface


The I/O interface allows both the statical and dynam-
ical reductions to specify changes on the term level by
adding, deleting or changing a particular term that
corresponds to an item of a module. Each change is
specified in a data type called term change, see be-
low.


The I/O interface performs the following steps:


1. For each module in a program, the TeLR and a cor-
responding modified ToLR (MToLR) is con-
structed. MToLR extends ToLR by storing the
exact position of the first character of the token in
the corresponding source file.


2. A blank structure to hold term changes is set up
for each module.


3. At this point, changes are submitted by the reduc-
tions. The I/O interface provides the association
of items in TeLR with items in ILR, but the term
change itself has to by provided by the reduction.


4. From the collected changes, we construct
a change list for each module of the program,
which represents the changes to be made in the
sources in terms of list of string insertions and
deletions. The algorithm for this is explained in
Section 3.2.
Each element of the change list represents either
the range of positions in the sources which is to
be removed or a string and the position where to
insert it.


5. We copy the original sources and apply the
changes specified by change lists.


3.1 Specifying the changes in a term


The changes in a term are represented by a term
change. This structure mirrors the original term struc-
ture and stores, for each subterm of the term, how the
subterm is changed. The change can be (1) replacing
the term with the string, (2) enclosing the subterm by
two strings or (3) replacing the term with one of its
subterms.


Formally, the term change can have one of the fol-
lowing values:


no change: The corresponding term and all of its
subterms are not modified.


no lvl change(list(term change)): The term is
not modified at the level of its functor, the
term change list stores information about the sub-
terms.


subst ins(string, list(term change), string): The
term is to be preceded by the string given as the
first parameter and followed by the string in the
third parameter. The second argument represents
the changes made on the term’s arguments.


replace(string): The corresponding term is to be re-
placed by the given string.


subst del(list(term change)): The substructures
of this term change, i.e. the lit of term changes
have restricted set of allowed constructors here.
There can be only no change constructors, except
that one orig constructor has to be present. The
substructures of the orig constructor have no re-
strictions.
The term that corresponds to this term change is
substituted by the term that corresponds to the
term change with the orig constructor (which may
be changed further).


orig(list(term change)): This is applicable only if
contained in substructure with subst del con-
structor as described.


3.2 Construction of change lists


For each source file we need to construct a change list
which specifies what will be modified in the file. This
is done by constructing the change list for each term
in the same order as they appear in the module, and
concatenating the change lists. We briefly describe our
approach to the problem of constructing the change
list for a term.


We observed that each subterm consists of contigu-
ous block of tokens in the MToLR. The block of tokens
is not affected by any subterms other than its own.


Our algorithm is based on a synchronous traversal
of a base term and its term change and identifying
the lists of consecutive tokens that correspond to the
subterms. This gives us for each term its beginning
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and end positions in the list of tokens. From this we
compute the subterm’s beginning and end positions in
the source file.


We determine the list of tokens that correspond to
each subterm by finding how a given base term can
be written using tokens, while matching it against the
actual list of tokens in the MToLR. This gives us the
beginning and ending token of each subterm.


While we traverse the subterm and the correspond-
ing term change in the mentioned way, we additionally
mark (according to the term change) which segments
of token lists are to be removed and at which posi-
tions to insert the strings given in the term change.
The change list of the term is then constructed from
the position information associated with the tokens.


4 Dynamical reduction


The idea of the dynamical reduction is to take the
data collected by Mercury Deep Profiler (MDP) [1]
on multiple runs of the program with various input
data (we will call them test data in the following)
and based on the profile, remove most of unused code.
This is achieved by cleverly substituting goals of un-
used branches of code with calls to the throw predicate
(which throws an exception) so that we preserve the
syntactic correctness of the program.


We will illustrate the basic idea on a simplified
model. Imagine a simplified version of the execution
model, which executes goals in top-down, left-to-right
order. In this model we collect the information from
the profile, which indicates for each atomic goal
whether it was called during the execution of the runs
on the test data. We then reduce each procedure by
substituting topmost subgoals that do not contain any
called subgoals with a call to the throw predicate. The
resulting program will have same outputs for the runs
of input data used to construct the profiling data. On
different data the program may exit with an exception.


The problem with this description is that MMC
does not create programs that execute goals in this
simple top-down, left-to-right sequence. For example,
MMC reorders conjuncts to satisfy mode declarations
of the calls in the conjunction. However these issues do
not prohibit a similar approach to the one described.


4.1 Overview of dynamical reduction


We present the main steps Reductor goes through to
dynamically reduce a program. These steps and addi-
tional details are then discussed further in the sections
below:


1. Load the profile created on the test data: We inte-
grated MDP into the Reductor and we use it to
collect and read the profiling data.


2. Determine which goals were called in HLR: (Sec-
tion 4.4) We collect the data from MDP for some
of the call sites in the program. The data we col-
lect tells us which ports of the standard box model
were used on those call sites. We then use the infor-
mation from MMC semantic analysis to improve
this information, as the data transfer from MDP
to HLR is inaccurate.


3. Determine which predicates will be reduced: (Sec-
tions 4.2 and 4.3) Any procedures may be excluded
from the reduction, if necessary, because our dy-
namical reduction has a local character—the re-
ductions made in a predicate do not depend on re-
ductions made on any other predicates. Currently,
predicates that have multiple modes and typeclass
methods are unsupported and thus we do not at-
tempt to reduce them. As it will be seen later,
the reduction of multi-moded predicates can be
achieved by trivially combining the data of their
individual procedures in HLR.


4. Transfer the data about called atomic goals into
the corresponding clauses in ILR.


5. Reduce the goals of an item: Identifying the sub-
goals of the processed item clause that are to be
substituted with an exception.


6. Transfer the changes from ILR to TLR: (Sec-
tion 4.5) Construct the term change for the term
that corresponds to the item being processed and
submit the information to the I/O interface de-
scribed in Section 3.


4.2 Finding goals substitutable with
exceptions


This algorithm for computing removable goals is based
on the observation that in Mercury, the programmer
can substitute any goal with a call to throw predicate
without compromising the syntactic correctness of the
program, i.e. the resulting program compiles, but it
may give lot of warnings (e.g. about the presence of
singleton variables, various determinism warnings).


The algorithm processes goals of clauses in the ILR
to identify removable goals in program clauses. By re-
movable goals, we mean some subset of goals that
can, but does not have to, be substituted with an ex-
ception, while preserving the program semantics on
the test data. By non-removable goals, we mean the
complement of the subset. We describe the algorithm
here and we discuss its correctness in Section 4.3.


As an input to this algorithm, we assume that we
are given the information about which atomic goals
were called on the test data. More precisely, we assume
that we get a superset of the called atomic goals. We
define atomic goals as the goals that do not have any
subgoals, i.e. calls and unifications.
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If we consider the ordering of goals that is given by
traversing the goal tree in top-down, left-to-right or-
der, we mark all goals that are preceded by any called
atomic goal (called goals included) as non-removable.


This means that some goals might not contain any
called goals and still be non-removable. The reason for
this is the fact that if we substituted those goals with
a call to throw, we would change the way the goal is re-
ordered and this could cause premature termination of
the reduced program by an exception. Code reordering
was the major challenge in the design of the dynamical
reduction and we discuss it in Section 4.3.


The algorithm traverses the goal in the opposite
order to the one described earlier. Each goal gets an-
notated with information saying if it is non-removable.
We call this information removal status:


All goals that contain a single subgoal: The re-
moval status is the same as the removal status of
its subgoal.


‘and’, ‘implication’, ‘equivalence’: If the second-
argument goal is non-removable, then the first-
argument goal and all its subgoals are considered
non-removable.


‘or’: Removable if both of its subgoals are removable,
otherwise non-removable.


‘if then else’: The ‘if then else’ goal inherits removal
status from its ‘if’ subgoal.


Atomic goals: They are non-removable if they are
called, otherwise they are removable. This can be
overridden with in ‘and’, ‘implication’, ‘equivalen-
ce’, ‘or’.


4.3 Issues with code reordering


In this section, we discuss the problems associated
with the fact that MMC may reorder goals. We dis-
cuss our assumptions about the compilation model of
MMC and conditions that need to be satisfied for the
algorithm for computing removable goals, introduced
in Section 4.2, to be correct.


We note that by default, MMC reorders conjunc-
tions to satisfy mode declarations of the calls in the
conjunctions. Additionally, MMC may reorder dis-
junctions and optimize away some calls and do other
optimizations as discussed in [6].


In a nutshell, in order for algorithm from Sec-
tion 4.2 to work correctly, we need to assure that in
both the original program, compiled to produce deep
profile, and the reduced program, the executed goals
are identical in both programs and that they are exe-
cuted in the same order (all with respect to particular
input data).


Strict sequential operational semantics. For the
dynamical reduction we need the following three as-
sumptions. We believe that using strict sequential op-
erational semantics in MMC (explained in [6]) ensures
them.


1. No calls are optimized away. Our implementation
of dynamical reduction assumes that the data from
the deep profile are accurate in the “semantic”
sense. If some calls were optimized away, the col-
lected profile would indicate that the goal was not
called, which then might cause the goal to be con-
sidered removable, and as such it could be poten-
tially substituted with an exception. This could
then make the reduced program to incorrectly
throw an exception on the test data.


2. Conjunctions are reordered minimally, every time
the ordering of conjuncts is the same. This restric-
tion will be clarified later in this section, for now
we just note that the if we created two profiles
on the same test data with different conjunction
orderings, we may get different information about
which atomic goals are called, which could again
potentially lead to different output of the algo-
rithm from Section 4.2, which can be problematic.


3. Disjunctions are not reordered. The reason is same
as in (2).


Correctness of dynamical reduction. It is guar-
anteed that a program dynamically reduced for a given
input will give the same results as the original one, if
both are compiled with strict sequential operational
semantics and the following conditions hold:


1. The conjuncts that were called in the original pro-
gram have the same ordering in the reduced pro-
gram with respect to each other as in the original
program and the call goals call the same modes of
the called predicates.


2. The originally uncalled conjuncts are not re-
ordered in front of any originally called conjuncts.


3. In the reduced program, only originally uncalled
conjuncts may be substituted with call to throw.


The first two conditions ensure that each proce-
dure is called with the same inputs as in the original
program. We did not determine, if the condition (1)
is necessary, but we suspect that if we would not re-
quire it, there might be problems with goals with the
determinism multi.


The failure to comply with the 2nd or 3rd condition
causes the reduced program to terminate by exception
on the test data.


We assume that these restrictions are satisfied by
the default mode reordering algorithm of MMC as
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reused in Reductor, if strict sequential operational se-
mantics are used. We also believe that the use of any
algorithm that performs minimal reordering as speci-
fied in Mercury Reference Manual [6] should also sat-
isfy our restrictions. If not, the use of other mode re-
ordering algorithms in MMC might cause problems.


4.4 Collecting data from the deep profiler


Data from the profiler. The MDP consists of two
parts: (1) the code inserted by MMC for collecting
profiling information into the Deep.data file, and (2)
a web interface that presents the collected informa-
tion to the user. We call the information stored in
Deep.data the deep profile and use it in Reductor.


The deep profile contains for each call site in each
procedure the list of ports of the standard box model
that were used by the procedures called from the call
site. More precisely in addition to the standard box
model (call, exit, fail, redo), Mercury has one addi-
tional port for the procedure throwing an exception.


Transferring data into the IMHLDS. We need to
transfer the information about the used ports from the
deep profile to the corresponding call sites in IMHLDS.


Unfortunately, the data about call sites from the
deep profile do not correspond 1:1 with the HLDS,
because the deep profiling code is generated after the
construction of HLR (i.e. the semantic analysis or the
4th stage of the compilation). Also the data do not gen-
erally contain enough information for an unambiguous
pairing of the two call-site structures. We thus had to
design a mechanism that accounts for this.


Improving the information on called goals. Be-
cause the information from the deep profile that we
collected into the HLR is not accurate and it does not
give us much information about unifications, we im-
prove our information about which atomic goals are
called using the information obtained from MMC se-
mantic analysis.


4.5 Changing the individual items of the
program


At this point it is decided which predicate goal will be
changed and everything from now on is done locally
on individual clauses of the program. We describe the
design of the process of transforming each clause of
a predicate by constructing term change for a term,
given the original term and item that correspond to
the clause and HLR with the information about call
status of atomic goals.


Transfer of the call status from atomic goals in
HLR to atomic goals in ILR. The algorithm for
identifying non-removable goals (Section 4.2) operates
on the ILR, but we have the information about called
goals in the HLR. Therefore, we need to transfer the
data to the item level representation.


Also, it should be noted that we reasoned about
correctness of the algorithm based on the ILR, but
the actual mode reordering algorithm of MMC oper-
ates on the HLR. Thus we should make sure that the
transition between ILR and HLR does not cause any
trouble. Unfortunately this is very technical and we
omit it for brevity.


One atomic goal in ILR can have multiple corre-
sponding atomic goals in HLR. We designed an algo-
rithm based on an approximate matching of the atomic
goals of the two representations, where the lost infor-
mation about call status is partially reconstructed. In
short, any ILR’s atomic goal is marked as called, if
there is a called goal in HLR which corresponds to the
ILR goal.


The matching of the atomic goals of the two repre-
sentations is based on the fact that throughout all four
stages of compilation we reuse, MMC associates with
each goal the information about what source file and
line number the goal is located on (for the purposes
of error messages). We use this as an (ambiguous) tag
of each goal. The matching of the atomic goals of the
two representations thus consists of the matching of
these tags3.


Constructing the term change for the clause.
As an input to this, for each subgoal of the clause goal
(in ILR), we know if the subgoal is removable.


The ILR of a clause corresponds reasonably well to
the TeLR of a clause. This fact allows us to construct
the term change by simultaneously recursively travers-
ing the clause goal in ILR and its corresponding term
while building the term change for the I/O interface.
If at any point we are not able to pair the ILR goal
with its corresponding term, we just drop the change
leaving the problematic term unreduced. This is based
on the observation, that changing the removal status
of a goal from removable to non-removable is never
harmful, we only reduce less.


4.6 Final remarks on dynamical reduction


There remains some unexploited potential for dynam-
ical reduction if we allowed code reordering: reorder
for mode constraints and maximum dynamical reduc-
tion. On the other hand, the implementation of this


3 Interestingly, the matching of items to terms in I/O in-
terface is based on a similar principle.
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extension would be rather difficult and we believe that
we would not gain much by this because (1) usually,
the programmers write predicates in the “correct” or-
der and (2) if we did major reordering, the reordering
might confuse the programmer.


Recently, we learned about the new Profiler Feed-
back Framework in MMC, which might perhaps have
saved us some work. The framework feeds back the
information from the deep profile into the MMC. Un-
fortunately this new and still hidden4 feature is not
available in the version of Mercury the Reductor is
based on.


5 Statical reduction


This section describes how Reductor identifies inac-
cessible procedures to decide which clauses and dec-
larations to remove. As indicated by the name, this
analysis is performed statically, without the need to
run the program in question.


First, we precisely define the notion of accessible
procedures. Procedure B is accessible from pro-
cedure A, if there is a call site that can call proce-
dure B in a goal of some procedure that is accessible
from A. We call accessible procedure any proce-
dure in a program that is accessible from the predicate
main. It is not generally possible to say what proce-
dures can be called from a call site. Reductor thus
determines only superset of accessible procedures (el-
ements of the superset may be further called accessible
procedures, for brevity).


There are four steps that are taken in the process
of statically reducing the procedures of a program:


1. Calculate the superset of accessible procedures of
the program. Consider the call graph, which we
define as an oriented graph, where the set of ver-
tices is the set of all procedures in a program
and set of oriented edges is defined by relation R.
(A,B) ∈ R if and only if B is called from a call
site of A.
We use a depth-first search on the call graph start-
ing from the predicate main. Each procedure that
is processed is added to the set of accessible pro-
cedures. Processing one node of the search graph
consists of finding its call sites (i.e. constructing
the edges for the depth-first search). This is done
by another depth first search on the goal tree of
the procedure, where subgoals are the vertices of
the tree and atomic goals (i.e. call goals and uni-
fications) are the leaves of the tree.
There are two types of call sites: static and dy-
namic. For static call sites, the procedure to be


4 For more details see deep profiler/feedback.m in
newer versions of MMC source package.


called is known (in HLR). For dynamic call sites,
the procedure is determined at runtime. They are
two kinds of a dynamic call site: (a) call sites for
lambda expressions, and (b) call sites for instances
of a class method.
Call sites (b) can be considered static, because the
class method called is known (the instance is not).
Procedures that can be called from (a) are deter-
mined by treating the unification that declares the
lambda expression as a call site of its lambda ex-
pression.


2. Identify further non-removable procedures. All ac-
cessible procedures are naturally non-removable.
Unfortunately, there are cases when even an inac-
cessible procedure cannot be removed. One exam-
ple are procedures whose removal would require
us to to remove additional declarations (beyond
the obvious pred, func and mode declarations and
procedure’s clauses). Another example are predi-
cates exported from Mercury to the C interface—
for these we cannot be sure if they are ever called
from some C code.


3. Recalculate the superset of accessible procedures.
Marking some procedures as non-removable may
require the non-removability for further proce-
dures. We use the same depth-first search as above,
except that we start in all non-removable proce-
dures instead of main.


4. Remove the items that correspond to the removable
procedures. The removal is done separately for each
module of the program through finding their cor-
responding items and submitting them for deletion
to the Reductor’s I/O interface.


6 Remarks on the interfacing
compilers


We think that in future, Reductor can be extended to
be able to remove more declarations and to lift most of
the limitations it places on the input program. There
are however several areas where we are bounded by the
current design of MMC. The most notable thing is that
it is very problematic to make changes in the contents
of clauses and declarations in the general case, unless
we give up the aim of preserving the original format-
ting of the code, i.e. the major goal of Reductor.


One possible solution would be to extend Reduc-
tor’s I/O interface so that the reductions could submit
changes directly to the HLR instead of just TeLR. Al-
though we did not design such an interface, we believe
that it would be reasonable to try to build it, if the
MMC had not such an unfavorable design with regard
to this proposal. Certainly in the presence of such an
interface, the reductions would be quite easy transfor-
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mations of HLR. This would, at the very minimum,
save us lot of work on dynamical reduction.


We also believe that this proposed enhanced I/O
interface could be easily reused for e.g. automatic code
restructuring or refactoring (see e.g. [7]) or intelligent
syntax highlighting. These two kinds of software can
make a meaningful use of semantic analysis provided
by the compiler. The need for such an interface can be
illustrated by the fact that the task as simple as func-
tion renaming requires type analysis (which is a part
of the semantic analysis) to distinguish data construc-
tors of discriminated unions from function calls of the
same name and arity.


7 Conclusion


We described two main automatic methods for source
code reduction of Mercury programs aimed at under-
standing and reusing parts of Mercury projects. The
statical reduction removes predicates that are never
called (based on the statical analysis of the source
code). The dynamical reduction removes parts of pred-
icates that were never used on some sample input data.
The formal correctness of the code is preserved by in-
serting exceptions at these places. The dynamically re-
duced code is guaranteed to return the same outputs
on the inputs it was reduced for. On different outputs,
the reduced program may exit with an exception.


The implemented tool called Reductor performs
both types of the reduction while preserving the orig-
inal formatting of the source code as much as possible
to enable further development. This is a unique fea-
ture that complicated the design of Reductor by far
the most.


Reductor has been tested on few medium-sized
programs and a large set of small programs (mostly
from the MMC test suite). The reductions are suffi-
ciently powerful. There are few imposed constraints
on the Mercury language for statical reductions which
concern rather rare features. Moreover, the presence of
such unsupported constructs usually does not prevent
Reductor from reducing the program. While in these
cases the reduced program may become uncompilable,
it is still useful for manual inspection. In the case
of dynamical reduction, the tests did not reveal any
substantial quantitative degradation in the amount
of code reduced by the implemented method as com-
pared to what can be potentially reduced by a similar
method without the mentioned approximations.


The utility of Reductor for large scale projects has
to be confirmed yet. We believe that use of dynamical
reduction5 on the well chosen subset of all possible


5 The dynamical reduction can also be viewed as coverage
testing tool that “visualizes” its results by commenting
out the unused parts of code.


input data sets, combined with statical reduction and
some subtle changes in the original code, can be useful
in understanding and/or reusing code of big programs.
This was the main motivation behind building this
tool.


We have also commented on some limitations of
the design of MMC, briefly explored the possibilities
for extending Reductor and gave some thoughts on
commonalities of Reductor code with some other de-
velopment tools like automatic code refactoring and
intelligent syntax highlighting.
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Abstract. In the application area of chemical materials,
data mining methods have been used for more than a de-
cade. By far most popular have from the very beginning
been methods based on artificial neural networks. However,
they are frequently used without awareness of the difference
between the numeric nature of knowledge obtained from
data by neural network regression, and the symbolic nature
of knowledge obtained by some other data mining meth-
ods. This paper explains that within the surrogate model-
ling approach, which plays an important role in this area,
using numeric knowledge is justified. At the same time,
it recalls the possibility to obtain symbolic knowledge from
neural networks in the form of logical rules and describes
a recently proposed method for the extraction of Boolean
rules in disjunctive normal form. Both ways of using neural
networks are illustrated on examples from this application
area.


1 Introduction


The search for new chemical materials, e.g., catalytic
materials for a plethora of chemical reactions, pro-
duces large amounts of data. To discover useful knowl-
edge from those data, statistical as well as machine-
learning data mining methods have been used in this
area since the late 1990s, the former represented in
particular by the analysis of variance, decision trees
and support vector regression, the latter by main vari-
ants of feed-forward neural networks.


This paper summarizes experience from nearly ten
years using and developing neural-networks based data
mining methods for catalytic data. Artificial neural
networks are the most popular regression model in this
application area. In the survey [10], more than 20 pub-
lished applications of multilayer perceptrons (MLPs)
to catalytic data have been listed, as well as several ap-
plications of radial basis function networks. The role of
feed-forward neural nets as a regression model predict-
ing catalytic performance of materials (such as yield,
conversion, selectivity) is due partially to their preced-
ing success in other areas, but mostly to their ability


⋆ The research reported in this paper has been supported
by the grant No. 201/08/1744 of the Grant Agency of
the Czech Republic and partially supported by the In-
stitutional Research Plan AV0Z10300504.


to serve as universal approximators in very general
function spaces [12, 14, 18]. This ability is particularly
valuable in the context of the highly nonlinear nature
of the dependencies encountered in catalysis (cf. Fig-
ure 1).


However, it seems to be little awareness, among
researchers using artificial neural networks in catal-
ysis, of the difference among the symbolic nature of
the knowledge obtained from data by analysis of vari-
ance and decision trees, and the numeric nature of the
knowledge obtained by neural network regression.


Fig. 1. A 3-dimensional cut of a neural-network regression
of the yield of a reaction product on the composition of
the catalytic material.


Incited by the situation just outlined, the paper
presents two strategies for the application of artificial
neural networks to data about chemical materials. The
first strategy relies on the numeric knowledge from
neural network regression. Although numeric knowl-
edge is much less understandable to humans than sym-
bolic knowledge (in terms of [4], it has a high ”data
fit”, but a low ”mental fit”), we show that in this appli-
cation area, it can be very useful if directly integrated
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with the optimization of materials performance in an
approach called surrogate modelling. In that context,
also the possibility to increase the accuracy of neu-
ral network regression by means of boosting is men-
tioned. The other strategy, on the other hand, relies
on employing rules extraction methods to obtain, from
trained neural networks, symbolic knowledge.


These two strategies determine also the structure
of the paper. In Section 2, the surrogate modelling ap-
proach is described. Section 3 then explains a method
for the extraction of logical rules from trained neural
networks. Both strategies are in the respective sections
illustrated using real-world examples.


2 Neural networks used as surrogate
models


From the point of view of theoretical computer sci-
ence, the search for most suitable chemical materials
entails complex optimization tasks. As objective func-
tions, those tasks use various properties of the mate-
rials, e.g. in the case of catalytic materials, properties
quantifying their catalytic performance, such as yield,
conversion, or selectivity. A crucial feature of such ob-
jective functions is that they cannot be expressed an-
alytically, their values must be obtained empirically.
For their optimization, it is not possible to employ
most common optimization methods, such as steepest
descent, conjugate gradient methods or the Levenberg-
Marquardt method. Indeed, to obtain sufficiently pre-
cise numerical estimates of gradients or second order
derivatives of the empirical objective function, those
methods need to evaluate the function in points some
of which would have a smaller distance than is the em-
pirical error of catalytic measurements. That is why
methods not requiring any derivatives have been used
to solve such optimization tasks, such as the simplex
method, and most frequently genetic and other evolu-
tionary algorithms [2]. To compensate for missing in-
formation about derivatives, these methods need quite
large number of objective function evaluations. In the
context of catalysis, this is quite disadvantageous be-
cause the evaluation of the empirical objective func-
tions used in the search for optimal catalysts is of-
ten costly and time-consuming. Testing a generation
of catalytic materials proposed by an evolutionary al-
gorithm typically needs several days of time and costs
thousands of euros.


The usual approach to decreasing the cost and time
of optimization of empirical objective functions is to
evaluate the function only in points considered to be
most important for the progress of the employed opti-
mization method, and to evaluate its suitable regres-
sion model otherwise. That model is termed surrogate
model of the function, and the approach is referred to


as surrogate modelling [17, 20, 23, 27]. Needless to say,
the time and costs needed to evaluate a regression mo-
del are negligible compared to time and costs needed
to evaluate empirical functions such as yield or con-
version. However, it must not be forgotten that the
agreement between the results obtained with a surro-
gate model and those obtained with the original func-
tion depends on the accuracy of the model.


The fact that feed-forward neural networks are the
most frequent regression models in catalysis suggests
them as the most natural candidate for surrogate mod-
els in this area. Indeed, several nice examples of the
application of neural-network based surrogate model-
ling to the optimization of performance of catalytic
materials have been published during the last five
years [3, 6, 21, 25]. Within the overall context of the
application of artificial neural networks to mining cat-
alytic data, however, they are still rare.


Although surrogate modelling has been also ap-
plied to conventional optimization [5], it is most fre-
quently encountered in connection with evolutionary
algorithms because for them, the approach leads to the
approximation of the fitness function, whose usefulness
in evolutionary computation is already known [13, 19].
For the progress of evolutionary optimization, most
important criteria are on the one hand points that in-
dicate closeness to the global optimum (through high-
est values of the fitness function), on the other hand
points that most contribute to the diversity of the pop-
ulation.


In the literature, various possibilities of combin-
ing evolutionary optimization with surrogate model-
ling have been discussed [17, 24, 27]. Nevertheless, all
of them are controlled by one of two basic approaches:


A. The individual-based-control consists in choosing
between the evaluation of the empirical objective
function and the evaluation of its surrogate model
individual-wise, basically in the following steps:
(i) An initial set E of individuals is collected, in


which the considered empirical fitness η was
evaluated (for example, the population of sev-
eral first generations of the evolutionary algo-
rithm).


(ii) The surrogate model is constructed using the
set of pairs {(x, η(x)) : x ∈ E}.


(iii) The evolutionary algorithm is run with the
fitness η replaced by the model for one gener-
ation with a population Q of size qP , where
P is the desired population size for the opti-
mization of η, and q is a prescribed ratio (e.g.,
q = 10 or q = 100).


(iv) A subset P ⊂ Q of size P is selected so as to
contain those individuals fromQ that are most
important according to the considered criteria
for the progress of optimization.
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(v) For x ∈ P, the empirical fitness is evaluated.


(vi) The set E is replaced by E ∪ P and the algo-
rithm returns to the step (ii).


B. The generation-based-control consists in choosing
between both kinds of evaluation generation-wise,
basically in the following steps:


(i) An initial set E of individuals in which the
considered empirical fitness η was evaluated is
collected like with the individual-based con-
trol.


(ii) The surrogate model is constructed using the
set of pairs {(x, η(x)) : x ∈ E}.


(iii) Relying on the error of the surrogate mo-
del, measured with a prescribed error measure
(e.g., mean squared error, MSE, or mean abso-
lute error, MAE), an appropriate number gm
of generations is chosen, during which η should
be replaced by the model.


(iv) The evolutionary algorithm is run with the
fitness η replaced by the model for gm genera-
tions with populations P1, . . . ,Pgm of size P .


(v) The evolutionary algorithm is run with the
empirical fitness η for a prescribed number ge
of generations (frequently, ge = 1) with popu-
lations Pgm+1, . . . ,Pgm+ge .


(vi) The set E is replaced by E ∪ Pgm+1 ∪ . . .
· · · ∪ Pgm+ge and the algorithm returns to the
step (ii).


The agreement between the results that are ob-
tained with a surrogate model and those that would be
obtained if the empirical objective function were evalu-
ated depends on the accuracy of the model. A popular
approach to increasing the accuracy of learning meth-
ods is boosting, i.e., construction of a strong learner
through combining weak learners. It is important to
realize that boosted surrogate models are only par-
ticular kinds of surrogate models and their interaction
with optimization algorithms in optimization tasks fol-
lows the same rules as the interaction of surrogate
models in general. In particular in the above outlines of
individual-based and generation-based control, boost-
ing is always performed in the step (ii), which has to
be replaced with:


(ii’a) The set {(x, η(x)) : x ∈ E} is divided into k


disjoint subsets of size ⌊ |E|
k ⌋ or ⌈ |E|


k ⌉, where | |
denotes the cardinality of a set, ⌊ ⌋ the lower in-
teger bound of a real number, and ⌈ ⌉ its upper
integer bound.


(ii’b) For each j = 1, . . . , k, a surrogate model F j
1 is


constructed, using only data not belonging to
the j-th subset.


(ii’c) A k-fold crossvalidation of regression boosting
is performed, and the error of the boosting ap-
proximation is in each iteration measured with
the prescribed error measure on the validation
data.


(ii’d) The first iteration i in which the average error
of the boosting approximation on the validation
data is lower than in the i + 1-th iteration is
taken as the final iteration of boosting.


(ii’e) Boosting using the complete set {(x, η(x)) :
x ∈ E} is performed up to the final iteration
found in step (ii’d), and the result of the ap-
plication of the employed boosting method in
each such iteration of boosting is taken as the
boosted surrogate model in that iteration.


2.1 An illustration


A particular method for MLP boosting has been pre-
sented in [11]. That method will now be employed in
surrogate modelling with data from the investigation
of catalytic materials for the high-temperature synthe-
sis of hydrocyanic acid (HCN) [16]. The composition
of most of those materials was designed by means of
a specific genetic algorithm (GA) for heterogeneous
catalysis [26]. As usually in evolutionary optimization
of catalytic materials, the GA configuration was de-
termined by the experimental conditions in which the
optimization was performed: number of channels of the
reactor in which the materials were tested, as well as
time and financial resources available for those expen-
sive tests. In the reported investigation, the algorithm
was running for 7 generations of population size 92,
and in addition 52 other catalysts with manually de-
signed composition were investigated. Consequently,
data about 696 catalytic materials were available. The
considered MLPs had 14 input neurons: 4 of them cod-
ing catalyst support, the other 10 corresponding to the
proportions of 10 metal additives forming the active
shell, and 3 output neurons, corresponding to 3 kinds
of catalytic activity considered as fitness functions.


For boosting, only data about catalysts from the
1.-6. generation of the GA and about the 52 catalysts
with manually designed composition were used, thus
altogether data about 604 catalytic materials. Data
about catalysts from the 7. generation were completely
excluded and left out for testing. The set of architec-
tures to which boosting was applied was restricted to
MLPS with 1 and 2 hidden layers and was delimited by
means of the heuristic pyramidal condition: the num-
ber of neurons in a subsequent layer must not exceed
the number of neurons in a previous layer. Let nI , nH


and nO denote the numbers of input, hidden and out-
put neurons, respectively, and nH1 and nH2 denote
the numbers of neurons in the first and second hid-
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den layer, respectively. Then the pyramidal condition
entails the following 90 architectures:
(i) one hidden layer and 3 ≤ nH ≤ 14 (12 architec-


tures);
(ii) two hidden layers and 3 ≤ nH2 ≤ nH1 ≤ 14


(78 architectures).
As was mentioned above, boosting can be combined
both with the individaul-based and with the genera-
tion-based control of surrogate modelling. In the re-
ported investigation of catalytic materials for HCN
synthesis, the indiviual-based control was employed.


The error measure employed in the crossvalidation
in the step (ii’c) was MSE. The distribution of the fi-
nal iterations of boosting, found for MLPs with the
90 considered architectures in the step (ii’d), is de-
picted in Figure 2. We can see that only for 16 MLPs,
already the 1st iteration was the final. For the remain-
ing 74 MLPs, boosting improved the average MSE on
the validation data for at least 1 iteration. The mean
and median of the distribution of the final iterations
were 6.6 and 5, respectively.


Fig. 2. Distribution of the final iterations of boosting of
the 90 MLPs with 1-hidden-layer architectures fulfilling
3 ≤ nH ≤ 14 and 2-hidden-layer architectures fulfilling
3 ≤ nH2 ≤ nH1 ≤ 14.


For testing with the data from the 7th generation
of the evolutionary algorithm, we used only the five
MLPs most promising from the point of view of the
average MSE on the validation data in the final itera-
tion of boosting. These were the following MLPs:


– a 1-hidden-layer MLP, with nH = 11 and the
3rd iteration of boosting being the final iteration,


– four 2-hidden-layers MLPs, with (nH1, nH2) =
= (10, 4), (10, 6), (13, 5), (14, 8) and the final itera-
tions of boosting 19, 32, 31 and 29, respectively.


For each of them, the validation proceeded as follows:


1. In each iteration up to the final, a single MLP
was trained with data about all the 604 catalytic
materials used for boosting.


2. In each iteration up the final iteration of boosting,
the boosted surrogate model was constructed for
the trained MLP, according to the step (ii’e).


3. From the values predicted by the boosted surro-
gate model for the 92 materials from the 7. gen-
eration of the GA, and from the measured values,
the boosting MSE was calculated.


The results are summarized in Figure 3, decom-
posed to the properties corresponding to the MLP
outputs – conversions of CH4 and NH3 and yield of
HCN. They clearly confirm the usefulness of boost-
ing for the five considered architectures. For each of
them, boosting leads to an overall decrease of MSE of
the conversion of CH4 and HCN yield, on new data
from the 7th generation of the GA, which is uninter-
rupted or nearly uninterrupted till the final boosting
iteration. On the other hand, boosting did not lead
to any decrease of the error of the conversion of NH3,
which on the other hand is already from the beginning
much lower than the two other performance measures
(notice that the scale of the y-axis is 10-times finer
for the conversion of NH3 than for the conversion of
CH4 and HCN yield). The explanation for the differ-
ent behavior of the conversion of NH3 is the substan-
tially lower variability of its values in the seventh gen-
eration of the GA, used for validating the usefulness
of boosting (standard deviation, SD: 2.8, interquar-
tile range, IQR: 1.6), compared to the conversion of
CH4 (SD: 26.1, IQR: 45.0) and HCN yield (SD: 20.1,
IQR: 35.9). Due to so low variability, the conversion
of NH3 appears effectively as nearly constant during
the validation of boosting, which in turn accounts for
a nearly constant MSE.


3 Neural-network based rules
extraction from data


The architecture of a trained neural network and the
weights and biases that determine the regression mo-
del computed by the network inherently represent the
knowledge contained in the data used to train the net-
work. As was already mentioned in the introduction,
such a representation is not comprehensible to hu-
mans, being very far from the symbolic, modular and
often vague way they represent knowledge by them-
selves. Therefore, methods for the extraction of sym-
bolic knowledge from trained neural networks have
been investigated since the late 1980s. Most frequently,
the extracted knowledge has the form of a Boolean im-
plication:


IF the input variables fulfil an input condition CI


THEN the output variables are likely


to fulfil an output condition CO. (1)
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Fig. 3. History of the boosting MSE on the data from the 7th generation of the GA for MLPs with the 5 architectures
included in the validation of boosting, decomposed to the properties corresponding to the MLP outputs.


In addition, also implications and equivalences of im-
portant kinds of fuzzy logic are frequently ex-
tracted [8, 15]. In general, extracted formulas of a for-
mal logic are called rules. Over the last two decades,
various rules extraction methods have been proposed
for neural networks, but so far none of them has be-
come a common standard (cf. the survey pa-
pers [1, 15, 22] and the monograph [7]). Here, a method
for the extraction of Boolean implications from mul-
tilayer perceptrons with n inputs and m outputs will
be sketched that finds to each output condition of the
form:


CO : the value y of the output variables


lies in a rectangular area R ⊂ Rm (2)


one or more input conditions of the form


CI : the value x of the input variables


lies in a polyhedron P ⊂ Rn (3)


Hence, this method extracts rules of the form:


IF x ∈ P THEN y ∈ R. (4)


A detailed explanation of the method can be found
in [9]. Its main principles can be summarized as fol-
lows:


– An m-dimensional rectangular area R with bor-
ders perpendicular to the m coordinate axes has
to be chosen in advance in the output space of
a trained MLP with sigmoid activation functions.
The reason for choosing such an area is that in
the space of evaluations of m free variables, each
m-dimensional rectangular area is the validity set
of the conjunction of some m univariate Boolean
predicates. That conjunction then serves as the
consequent of the rule to extract.


– The activation functions in the hidden neurons are
approximated with piecewise-linear sigmoid acti-
vation functions. This can be done with an arbi-
trary precision.


– The products of individual linearity intervals of
all the activation functions determine areas in the
input space in which the final approximating map-
ping computed by the multilayer perceptron is lin-
ear.


– In each such area, all points mapped to R form
a polyhedron, which may eventually be empty or
may be concatenated with polyhedra from some
of the neighboring areas to a larger polyhedron.


– The union of all the nonempty concatenated poly-
hedra P1, . . . , Pq defines the antecedent of a rule
in a combined form


IF x ∈ P1 ∪ · · · ∪ Pq THEN y ∈ R, (5)
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which is equivalent to a logical disjunction of
q rules of the simple form (4):


IF x ∈ P1 THEN y ∈ R


. . . (6)


IF x ∈ Pq THEN y ∈ R.


To increase the comprehensibility of the extracted
rules, visualization by means of 2- or 3-dimensional
cuts of the set P1 ∪ · · · ∪ Pq can be used (Figure 4).


Usually, logical rules of the form (4) are the fi-
nal results of this rule-extraction method. Nonethe-
less, there is one exception – when the polyhedron P
is also rectangular with borders perpendicular to axes,
or more generally, when P can be approximately re-
placed with such a rectangular area RI in the input
space. Then the above rule (4) can be approximately
expressed in the conjunctive form


IF x1 ∈ I1 & . . .& xnI ∈ InI THEN y ∈ R. (7)


Here, I1, . . . , InI are intervals that constitute the pro-
jections of RI into the nI input dimensions. Each such
interval can be restricted both from below and from
above, restricted only from below or only from above,
or finally can be even the complete set of real num-
bers. However, dimensions for which the corresponding
projection of RI equals the complete real axis are usu-
ally not included in (7), since they would not provide
any new knowledge. Finally, observe that due to (5)
and (7), the final extracted rule is in the disjunctive
normal form.


In the rule-extraction method outlined above, the
possibility of replacing a polyhedron P with a rectan-
gular area RI is assessed according to the following
principles:


1. The resulting dissatisfaction with points that
either belong to P but do not belong to RI , or be-
long to RI but do not belong to P (i.e., with points
from the symmetric difference RI∆P ), has to re-
main within a prescribed tolerance ε and RI has
to be minimal in the input space among rectangu-
lar areas of some specified kind with dissatisfacion
within that tolerance.


2. The dissatisfaction with points from RI∆P de-
pends solely on those points and is increasing with
respect to inclusion. Consequently, it can be mea-
sured using some monotone measure on the input
space, possibly depending on P .


3. To be eligible for replacement, P has to cover at
least one point of the available data.


For 2., the most attractive monotone measures, due
to their straightforward interpretability, are:


– The joint empirical distribution of the input vari-
ables in the available data.


– The conditional empirical distribution of the input
variables in the available data, conditioned by P .


Rules of the form (7) are also very convenient from
the visualization point of view: Since cuts of rectangu-
lar areas coincide with the corresponding projections
of those areas, the values of no variables need to be
fixed.


3.1 An illustration


As an example, Figure 5 shows three-dimensional cuts
determining the antecedents of conjunctive-form rules
extracted from a trained MLP with 5 input neurons
and 1 output neuron such that:
(i) the input neurons correspond to variables that re-


cord the molar proportions of the oxides of Fe, Ga,
Mg, Mn and Mo in the catalytic material;


(ii) the output neuron corresponds to a variable re-
cording propene yield.


The extracted rules are listed in Table 1.


Fig. 4. A two-dimensional cut of the union of polyhedra
from the antecedent of a rule of the form (5) extracted from
a trained MLP. The cut corresponds to input variables
recording the molar proportions of oxides of Mn and Ga in
the catalytic material, for the consequent ”propene yield
> 8%”.


4 Conclusion


The paper dealt with employing feed-forward neural
networks for knowledge discovery from data about che-
mical materials. It has shown that in this application
area, obtaining numeric knowledge by neural-network
regression is justified, in spite of the fact that numeric
knowledge is substantially less human-understandable
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Rule Antecedent Consequent


1 24% < Ga proportion < 33% & 31% < Mg proportion < 39%
& Mo proportion < 7% & Fe, Mn proportions = 0


2 Ga proportion ≈ 36% & 28% < Mg proportion < 38% C3H6 yield > 8%
& Fe, Mn, Mo proportions = 0


3 Fe proportion < 12% & Ga proportion ≈ 38% & 29% < Mg proportion < 36%
& Mo proportion < 9% & Mn proportion = 0


Table 1. Antecedents of the rules of the form (7) extracted using the method described in this section for the consequent
”propene yield > 8%” from a trained MLP with 5 input neurons and 1 output neuron, assuming that the above
interpretation of the variables to which those neurons correspond is described by (i) and (ii).


Fig. 5. A three-dimensional projection of the union of rect-
angular areas that replace, following the method described
in this section, the union of of polyhedra from the an-
tecedent of a combined form rule extracted from a trained
MLP. The projection corresponds to input variables re-
cording the molar proportion of oxides of Ga, Mg and Mo
in a catalytic material. The numbers 1, 2, 3 refer to the
antecedents of the rules in Table 1.


than symbolic knowledge. Its justification consists in
the possibility to use such knowledge in the optimiza-
tion tasks entailed by search for new materials in the
surrogate modelling approach.


In addition to justifying the specific need for nu-
meric knowledge from neural network regression in
this application area, the paper recalled the possibil-
ity to obtain symbolic knowledge in the form of logical
rules from trained neural networks. It explained a re-
cently proposed method for the extraction of Boolean
rules in disjunctive normal form, and illustrated it on
data about catalytic materials.
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Abstract. We provide a formal model of a stratificational
dependency approach to natural language description. This
formal model is motivated by an elementary method of
analysis by reduction, which serves for describing correct
sentence analysis. The model is based on enhanced restart-
ing automata that assign a set of parallel dependency struc-
tures to every reduction of an input sentence. These struc-
tures capture the correspondence of dependency trees on
different layers of linguistic description, namely layer of
surface syntax and layer of language meaning.
The novelty of this contribution consists in (i) the exten-
sion of enhanced restarting automata in order to produce
tree structures with several interlinked layers and (ii) the
application of these automata to the stratificational de-
scription of a natural language.


1 Introduction


Formal modeling of syntactic structure of a natural
language, its syntactic analysis as well as synthesis,
has an important impact on an insight into the char-
acteristic features of the language and into the needs
of its explicit description.


We attempt to provide a formal model for natural
language description which would adequately reflect
linguistic methods and makes it possible to formulate
and refine linguistic observations and thus deepen the
understanding of the language.


The proposed formal model is based on an ele-
mentary method of analysis by reduction. The anal-
ysis by reduction (RA henceforth, see [1, 2], here Sec-
tion 1.2), serves for describing correct reductions of
natural language sentences (particularly for languages
with free word order) on several linguistic layers (see
Section 1.1).


The proposed model is based on the concept of en-
hanced restarting automata that assign a set of depen-
dency structures (DR-structures) to every reduction
of an input sentence; DR-structures can capture a set
of dependency trees representing sentence on different


? The paper reports on the research supported by the
grants of GAČR No. P202/10/1333, P103/10/0783, and
405/08/0681. It is carried under the project of MŠMT
ČR No. MSM0021620838.


layers of linguistic description in a parallel way. The
novelty of this approach consists in the formal pre-
sentation of the stepwise parallel composition of tree
structures on different language layers.


In [2], natural language description is modeled as
a formal string to string translation using a suitable
model of restarting automata. [3] introduces a class of
enhanced restarting automata with an output consist-
ing of a single DR-tree. Here we discuss a model which
is able to represent several parallel dependency struc-
tures and thus to capture relations between syntactic
structures on different layers derived from RA.


1.1 Functional Generative Description


The theoretical linguistic basis for our research is
provided by the Functional Generative Description
(FGD in the sequel, see esp. [4]). FGD is characterized
by its stratificational and dependency-based approach
to the language description.


The stratificational approaches split language de-
scription into layers, each layer providing complete
description of a (disambiguated) sentence and having
its own vocabulary and syntax. We use the version of
FGD that distinguishes four layers of description:1


t-layer (tectogrammatical layer) capturing deep syn-
tax, which comprises language meaning in a form
of a dependency tree; the core concepts of this
layer are dependency, valency, and topic-focus ar-
ticulation, see esp. [4];


a-layer (analytical layer) capturing surface syntax in
a form of a dependency tree (non-projective in
general);


m-layer (morphological layer) capturing morphology
(string of triples [word form, lemma, tag]);


w-layer (word layer) capturing individual words and
punctuation marks in a form of a simple string.


There are one-to-one correspondences between
w- and m-layer (we leave aside small exceptions here)


1 We adopt the notation of the Prague Dependency Tree-
bank [5], a large corpus of Czech sentences, which uses
FGD as its theoretical basis.
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and between m- and a-layer; individual symbols of
these three layers (surface layers in the sequel) reflect
individual ‘surface’ words and punctuation marks.
On the other hand, individual symbols of t-layer re-
flect only lexical words (so called function words, as,
e.g., prepositions, auxiliary verbs, are captured as at-
tributes of lexical words); moreover, surface ellipses
(as, e.g., elided subject in Czech) are restored as nodes
on t-layer.


Similarly as in other stratificational approaches,
see e.g. [6], the layers are ordered; the lowest one be-
ing the simplest w-layer, the highest being the most
abstract t-layer.


FGD as a dependency-based approach captures
both surface and deep syntactic information in a form
of dependency structures. Words (i.e., their a- and t-
correlates, respectively) are represented as nodes of
the respective trees, each node being a complex unit
capturing the lexical, morphological and syntactic fea-
tures; relations among words are represented by ori-
ented edges [7]. The dependency nature of these repre-
sentations is important particularly for languages with
relatively high freedom of word order; it also complies
with the shift of focus to deep syntactic representation
for which dependency approach is commonly used.


The following example illustrates description of
a sentence at four layers of FGD (slightly simplified).
Such a description expresses all necessary linguistic
information on a disambiguated sentence.


Śıdlo dnes mohla mı́t ve státě Texas.
residence - today - could - have - in - state - Texas
‘She (= elided Sb) could reside in the state of Texas
today.’


Figure 1 shows the deep syntactic tree on t-layer, the
surface non-projective syntactic tree on a-layer, the
string of triples [word form, lemma, tag] on m-layer
and the string of wordforms on w-layer. The dotted
lines interconnect corresponding nodes. We focus on
the non-trivial relation between a-layer and t-layer
here; (i) preposition ve ‘in’ as well as noun státě ‘state’
in the a-tree are linked to the single t-symbol rep-
resenting lexical word stát ‘state’; (ii) similarly, both
modal verb mohla ‘could’ and lexical verb mı́t ‘have’
are represented as the single t-node mı́t ‘to have’ (in-
formation on modal verb is preserved as the attribute
‘poss’); as a result, the non-projective a-tree is trans-
formed to the projective t-tree; (iii) moreover, subject
elided in a surface sentence is restored in the t-tree
(the node with the symbol starting with #PersPron),
thus this node has no counterpart on the a-layer.


1.2 Basic principles of analysis by reduction


Analysis by reduction is based on a stepwise simpli-
fication of an analyzed sentence. It defines possible


Fig. 1. Parallel representation on t-, a-, m- and w-layers
of the sample sentence according to FGD.


sequences of reductions (deletions) in the sentence –
each step of RA is represented by (i) deleting at least
one word of the input sentence, or (ii) by replacing
an (in general discontinuous) substring of a sentence
by a shorter substring. Consequently, it is possible to
derive formal dependency relations between individ-
ual sentence members based on the possible order(s)
of reductions.


Using RA we analyze an input sentence (w-layer)
enriched with the metalanguage information from the
m-, a- and t-layer. Symbols on different layers repre-
senting a single word of an input sentence are pro-
cessed simultaneously.


The principles of RA can be summed up in the
following observations:


– The fact that a certain word (or a group of words)
can be deleted implies that this word (or group of
words) depends in RA on one of the words retained
in the simplified sentence; the latter being called
governing word(s) in RA.


– Two words (or groups of words) can be deleted in
an arbitrary order if and only if they are mutually
independent in RA.
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– In order to ensure adequate modeling of natural
language meaning (on t-layer), certain groups of
words have to be deleted in a single step (e.g.,
valency frame evoking words2 and their (valency)
complementaions [1]); such words is said to con-
stitute a reduction component. Even in such cases
it is usual to determine governing-dependent pairs
on the layer of surface syntax (a-layer). In such
a case, it is necessary to define special rules for
particular language phenomena.


When simplifying input sentence, it is necessary to
apply certain elementary principles assuring adequate
analysis:


– principle of correctness: simplified sentence
must be correct; this principle is applied on all
layers of language description;


– principle of completeness: simplified sentence
must be complete with respect to its valency struc-
ture, i.e., each frame evoking word must be ‘satu-
rated’ on the t-layer [1];


– principle of shortening: at least one ‘surface’
word (i.e., its correlates on w-, m- and a-layer)
must be deleted in each step of RA;


– principle of layers: each step of RA must con-
cern all symbols, i.e., symbols from all layers, rep-
resenting a particular processed word.


– principle of minimality: each step of RA must
be ‘minimal’ – any potential reduction step con-
cerning less symbols in the sentence would violate
the principle of completeness.


These principles imply that in a single reduction
step, either (i) item(s) representing a single free modi-
fication or (ii) items representing valency complemen-
tations of a single frame evoking word together with
their governing word are processed.


The sentence is simplified until so called core pred-
icative structure is reached (typically formed by sen-
tence predicate and its valency complementations).


The basic principles of RA are exemplified on sev-
eral reduction steps of our sample Czech sentence from
Section 1.1; they illustrate how the sentence is simpli-
fied and how the fragments of its DR-structure (a- and
t-trees) are built.


Śıdlo dnes mohla mı́t ve státě Texas.
residence - today - could - have - in - state - Texas
‘She (= elided Sb) could reside in the state of Texas
today.’


2 A frame evoking word is a lexical word (verb, noun,
adjective or adverb) that requires a set of syntactico-
semantic complementations, as e.g. the verb to give
requires three complementations, namely actor (ACT,
who gives something), patient (PAT, what is given) and
addressee (ADDR, to whom something is given).


w-layer m-layer a-layer t-layer


Śıdlo śıdlo.NNNS4 Obj PAT
ACT


dnes dnes.Db- - - Adv TWHEN
mohla moci.VpYS- Pred
mı́t mı́t.Vf- - - Obj PRED.Frame1.poss
ve v-1.RV- -6 AuxP
státě stát.NNIS6 Adv LOC
Texas Texas.NNIS6 Atr ID
. ..Z: AuxK


Fig. 2. Representation of the sample sentence at four lay-
ers of FGD (simplified).


Figure 2 presents a (simplified) representation of the
sample sentence at four layers of FGD. Each column
captures one layer of language description (w-, m-, a-
and t-layer, respectively, see Section 1.1). Rows cap-
ture information related to particular words and punc-
tuation marks (one or more rows for an individual
word/punctuation mark, depending on its surface and
deep word order, see [2]).


We can see that the sentence contains a verbonom-
inal predicate (the predicate consisting of the light
verb mı́t ‘to have’ and the noun śıdlo ‘residence’); this
predicate evokes two valency positions, actor (ACT)
and local modification (LOC); the nominal part of the
predicate is analyzed as patient (PAT) of the verb in
FGD (encoded as Frame1 ... ACT PAT LOC).


There are two possible orders of reductions: (1) In
the first reduction step of RA, the word Texas is re-
duced – the simplified sentence is grammatically cor-
rect and it is complete (i.e., its valency structure is
complete). The respective symbols on all layers (inter-
linked by dotted lines in Figure 1) are processed simul-
taneously: those on w- and m-layers are deleted; the
a-symbol is analyzed as depending on the a-symbol
for the preceding noun stát ‘state’ (as its syntactic
attribute, Atr); further, the t-symbol for Texas is an-
alyzed as depending on the t-symbol for stát ‘state’
(ID indicates a proper name).


(2) Alternatively, RA may start with the reduction
step processing the word dnes ‘today’. Again, respec-
tive symbols on w- and m-layers are deleted; based
on surface syntactic and morphological categories, the
a-symbol and t-symbol are included in the a- and
t-structures, respectively.


After processing the words Texas and dnes, RA
continues with the predicate and its complementa-
tions. As they form a reduction component, they must
be processed in a single step on the t-layer (otherwise
a principle of completeness on the t-layer is violated).
Thus the sentence is simplified on the surface layers
(i.e., w-, m- and a-layers) first and only when all va-
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lency complementations are reduced there, the frame
evoking predicate and its complementations can be
processed on the t-layer. Let us describe the analysis
of this component in more detail.


First, a prepositional group ve+státě ‘in (the)
state’ is identified in the sentence – it is processed
in a single step on ‘surface’ layers (its w- and m- sym-
bols are deleted and a-symbols are included into the
a-structure as adverbial modification of the verb mı́t
‘to have’). The whole prepositional group will be rep-
resented as a single t-node stát , see Figure 1. It will be
identified as a local valency complementation LOC on
the t-layer. Second, the noun śıdlo ‘residence’ is pro-
cessed on the surface layers and marked as a valency
PAT complementation on the t-layer. Third, the sym-
bol for elided subject, which is restored on the t-layer,
is marked as ACT valency complementation. All the
valency complementations of the predicate are identi-
fied now, the valency frame Frame1 is saturated.


Next, we focus on the modal verb mohla ‘(she)
can’. On the a-layer, this is a governing node of the
lexical verb mı́t ; the respective edge is created, which
results in a non-projective a-tree (the symbols on the
surface layers are deleted). On the other hand, modal
verbs are accounted functional verbs in FGD and thus
represented as attributes of lexical verbs in t-trees (mı́t
in our case, value ‘pass’ in the respective t-node). Thus
the non-projectivity is eliminated in the t-tree.


Now the predicate with its complementations
ACT, PAT and LOC (Frame1) can be identified as
the core predicative structure on the t-layer, the rel-
evant edges for individual valency complementations
are created and the simplified sentence is accepted (in
the accepting step, the final full stop is processed on
the surface layers).


2 Restarting automata


First, we introduce a relevant type of a simple restart-
ing automaton – sRL-automaton – rather informally.
From technical reasons, we do it in a slightly different
way than in [8].


An sRL-automaton M is (in general) a nondeter-
ministic machine with a finite-state control Q, a fi-
nite characteristic alphabet Γ , and a head (window of
size 1) that works on a flexible tape delimited by the
left sentinel c and the right sentinel $ (c, $ 6∈ Γ ). For
an input w ∈ Γ ∗, the initial tape inscription is cw$.
To process this input, M starts in its initial state q0
with its window over the left end of the tape, scanning
the left sentinel c. According to its transition relation,
M performs the following operations in the individual
steps:


– moves to the right or to left – shift the head one
position to the right or to the left;


– dl – deletes the visited symbol and shifts the head
on its right neighbor;


– wr[b] – rewrites the visited symbol by the symbol b;
– pb – serves for marking (putting a pebble on) the


visited item only: marked items are used as nodes
in DR-trees (in any other aspect it is an empty
operation, see later);


– accept – halts the computations and accepts the
input word.


Of course, neither the left sentinel c nor the right
sentinel $ must be deleted. At the right end of the
tape M either halts and accepts, or it halts and rejects,
or it restarts, that is, it places its window over the left
end of the tape and reenters the initial state. It is
required that prior to the first restart step and also
between any two restart steps, M executes at least
one delete operation. During each step, M can change
its internal state.


We can see that any finite computation of M con-
sists of certain phases. A phase, called a cycle, starts in
a restarting configuration, the window is moved along
the tape by performing its operations until a restart
operation is performed and thus a new restarting con-
figuration is reached. If no further restart operation
is performed, each finite computation necessarily fin-
ishes in a halting configuration – such a phase is called
a tail. We assume that no delete and rewrite operation
is executed in a tail computation.


The notation u `cM v denotes a reduction per-
formed during a cycle of M that begins with the tape
inscription cu$ and ends with the tape inscription cv$;
the relation `c∗M is the reflexive and transitive closure
of `cM .


A string w ∈ Γ ∗ is accepted by M , if there is an
accepting computation which starts in the restarting
configuration with the tape inscription cw$ and ends
by executing the accept operation. By LC(M) we de-
note the language consisting of all words accepted by
M ; we say that M recognizes (accepts) the character-
istic language LC(M).


Further we will refer to a sRL-automaton M as
a tuple M = (Γ, c, $, R(M), A(M)), where Γ is a char-
acteristic vocabulary (alphabet), c and $ are sentinels
not belonging to Γ , R(M) is a finite set of restarting
instructions over Γ and A(M) is a finite set of accept-
ing meta-instructions over Γ .


Remark: sRL-automata are two-way nondeterministic
automata which allow to check whole input sentence
prior to any changes. It resembles linguist who can
read the whole sentence first and reduce the sentence
in a correct way afterward. We choose nondeterminis-
tic model to enable various orders of reductions. This
can serve for verification of independency between in-
dividual parts of a sentence.
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Similarly as in [8], we use a restricted type of sRL-
automata for which the number of rewrite, delete and
pebble operations made per cycle is limited by a con-
stant. Such sRL-automata can be described by (meta)-
instructions, which describe the moves of the head and
the changes of the states implicitly. Each cycle of M
is described by a single restarting instructions over Γ
of the following form:


IR = (c · E0, [a1]1o1, E1, [a2]2o2, E2, . . . , Es−1, [as]sos,
Es · $,Restart), where


– E0, E1, . . . , Es (s > 0), are regular languages over
Γ (usually represented by regular expressions);


– o1, · · · , os ∈ {dl,pb,wr[b]}, where b ∈ Γ .
– The symbols a1, a2, . . . , as ∈ Γ correspond to the


symbols on which the corresponding operations
{o1, · · · , os} are executed.


Let us define auxiliary function o : Γ → Γ for each
operation o ∈ {dl,pb,wr[b]}:


– pb(ai) = ai,
– dl(ai) = λ, and
– wr[b](ai) = b.


When trying to execute IR starting from a tape
inscription cw$, M will get stuck (and so reject), if
w does not admit a factorization of the form w =
v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i =
0, . . . , s. On the other hand, if w admits factorizations
of this form, then one of them is chosen nondeter-
ministically, and cw$ is transformed (reduced) into
cv0o1(a1)v1 · · · vs−1os(as)vs$.


Tails of accepting computations are described by
accepting instructions over Γ of the form


IA = (c · E0, [a1]1, E1, [a2]2, E2, . . . , Es−1, [as]s, Es ·
$,Accept), where individual Ei are regular languages
over Γ .


For our linguistic application (i.e., modeling FGD),
we consider the accepting instructions with finite Ei’s
only.


A tail performed by the instruction IA starts with
the inscription on the tape cz$; if z ∈ E0a1 · · · asEs,
thenM accepts z (and the whole computation as well).
Otherwise the computation halts with rejection. This
special form of accepting instruction is introduced
with regard to the future enhancements of restarting
automata.


The class of all sRL-automata are denote as sRL.


A crucial role in our applications has the following
property of restarting automata.
(Correctness Preserving Property) A sRL-auto-
maton M is correctness preserving if u ∈ LC(M) and
u `c∗M v imply that v ∈ LC(M).


It is already known that all deterministic
sRL-automata are correctness preserving. On the


other hand, it is easy to design a nondeterministic
sRL-automaton which is not correctness preserving
(see [8]). We consider only the correctness preserving
automata in the sequel in order to model adequately
the analysis by reduction.


2.1 Restarting automata enhanced with
DR-structures


In this section we introduce enhanced restarting au-
tomata, so called sERL-automata. During their com-
putations, these automata build structures consisting
of deleted, rewritten, or marked items and of directed
edges between pairs of such items.


Enhanced restarting automata sERL-automata
were formally introduced in a restricted form in [3].
Their formal definition is rather long and very techni-
cal. So we prefer to use an informal description of the
model and concentrate on their possible applications.
In contrast to sRL-automata, there can be attached
a so called DR-structure to any item of the tape of an
sERL-automaton.


A DR-structure is a slight generalization of
DR-trees used in [7]. It is an oriented graph D =
(V,Hd), where V is a finite set of nodes, and Hd is a fi-
nite set of edges. A node u ∈ V is a tuple u = [i, j, a],
where a is a symbol assigned to the node, i, j are nat-
ural numbers; i represents the horizontal position of
the node u, j represents the vertical position of u (it
is equal to 0 or to the number of nodes with the same
horizontal position i from which there are oriented
paths to u). An edge h of D is an ordered pair of
nodes h = (u, v). We define two types of edges:


– Oblique edge: h = (u, v), where u = [iu, ju, a], v =
[iv, jv, b] and iu 6= iv;


– Vertical edge: h = (u, v), where u = [iu, ju, a],
v = [iv, jv, b] and iu = iv, jv = ju + 1;


We say that D = (V,Hd) is a DR-tree if the graph D
is an oriented tree (with a single root, in which all
maximal paths in D end).


Each sERL-automaton Me is actually an sRL-
automaton with enhanced instructions. An enhanced
instruction is a pair Ie = (I,G) consisting of an
instruction I of a sRL-automaton and an acyclic
graph G representing the required structure for sym-
bols processed – deleted, rewritten or marked (peb-
bled) – during the application of the instruction I. The
restrictions put on the set of edges of G are described
below together with the application of an enhanced
instruction Ie = (I,G), where G = (U,H), on a tape
containing cw$.


All the symbols on the tape are stored in so called
items which are actually nodes of a DR-structure. I.e.,
a symbol x is stored in a node [i, j, x], where i is
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its horizontal position. Initially, horizontal position of
n-th input symbol of the input equals n, j = 0 and
there are no edges between the items.


Restarting instruction. If I is a restarting in-
struction I = (c ·E0, [a1]1o1, E1, [a2]2o2, E2, . . . , Es−1,
[as]sos, Es · $,Restart) then o1, · · · , os ∈ {dl,pb,wr[b]}
(b ∈ Γ ) are the operations performed on symbols
{a1, · · · , as}. Let oi1 = wr[bi1 ], . . . , oir = wr[bir ], for
some r ≥ 0, be all rewrite operations from {o1, . . . , os}.
Let G = (U,H), where U = {1, 2, . . . , s, i′1, i′2, . . . , i′r},
and let the nodes correspond to the symbols a1, . . . , as
and symbols bi1,. . .,bir , respectively. An edge (u,v)∈H
is of one of the following forms:


1. deleting: u = i corresponds to a deleted symbol ai
(hence oi = dl, 1 ≤ i ≤ s) and v = j for some
j ∈ U , j 6= i. Let us note that the deleting edge is
always oblique.


2. rewriting: u = i corresponds to a rewritten sym-
bol ai (hence oi = wr[bij ], bij ∈ Γ , 1 ≤ i ≤ s,
1 ≤ j ≤ r) and v = i′j . Let us note that the rewrit-
ing edge is always vertical.


An application of Ie on a word w consists in:


1. Choosing a factorization of cw$ of the form w =
v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i =
0, . . . , s. On the other hand, if w does not admit
any factorization of this form, then I cannot be
applied on w.


2. Rewriting the tape containing cw$ into the tape
containing cv0o1(a1)v1 · · · vs−1 os(as)vs$.


3. For each edge e ∈ H a new edge is inserted into
the current DR-structure.
If e = (i, j) is a deleting edge, an oblique edge from
the item containing deleted ai into the item con-
taining the symbol corresponding to j (either aj , if
1 ≤ j ≤ s, or bj , when j ∈ {i′1, . . . , i′r}) is inserted.
If e = (i, j) is a rewriting edge, a vertical edge from
the item containing ai into the item containing
bj is inserted (j ∈ {i′1, . . . , i′r}) and the vertical
position of the new item containing bj is set to the
value by q + 1, where q is the vertical position of
the item containing ai.
If there was a DR-structure attached to some of the
deleted of rewritten cell, the structure is preserved
and combined into a larger graph.


Example 1: Let I1 = ((c · a∗, [a]1pb, λ, [a]2dl, λ,
[b]3dl, b∗X∗, [c]4wr[X], c∗ · $,Restart), D1) be an en-
hanced restarting instruction with the graph D1 of
the following form:


1


2 3


4’


4


Then two consecutive applications of I1 on the word
aaabbbccc will result in the following sequence of tape
contents (in the figure the tape content consists of the
bold items depicted in the upper horizontal part of
a picture for a particular configuration):


[0,0,c][1,0,a][2,0,a][3,0,a][4,0,b][5,0,b][6,0,b][7,0,c][8,0,c][9,0,c][10,0,$]


[0,0,c][1,0,a][2,0,a]


[3,0,a] [4,0,b]


[5,0,b][6,0,b][7,1,X][8,0,c][9,0,c][10,0,$]


[7,0,c]


[0,0,c][1,0,a]


[2,0,a]


[3,0,a] [4,0,b]


[5,0,b]


[6,0,b][7,1,X][8,1,X][9,0,c][10,0,$]


[7,0,c] [8,0,c]


Accepting instruction. If I is an accepting in-
struction I = (c·E0, [a1]1pb, E1, [a2]2pb, E2, . . . , Es−1,
[as]spb, Es · $,Accept) then the symbols {a1, · · · , as}
are pebbled and they correspond to the nodes in
U = {1, 2, . . . , s}. All edges (u, v) ∈ H are oblique and
have the same properties as deleting edges in graphs
enhancing restarting instructions.


An application of Ie = (I,G), with G = (U,H), on
a word w consists in:


1. Choosing a factorization of cw$ of the form w =
v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i =
0, . . . , s. On the other hand, if w does not admit
any factorization of this form, then I cannot be
applied on w.


2. For each edge e = (i, j) in H a new oblique edge
is inserted into the current DR-structure. The in-
serted edge starts from the item containing ai and
ends in the item containing symbol aj .
If there was a DR-structure attached to some of
the connected items, the structure is preserved and
combined into the resulting graph.


Example 2: Let I2 = ((c, [a]1pb, λ, [b]2pb, X∗,
[c]3pb, $,Accept), D2) be an enhanced accepting in-
struction with the graph D2 of the following form:


1 2


3


Then after applying I2 on the resulting DR-structure
from Example 1 we obtain the following final DR-
structure:


[1,0,a]


[2,0,a]


[3,0,a][4,0,b]


[5,0,b]


[6,0,b]


[9,0,c]


[7,1,X][8,1,X]


[7,0,c] [8,0,c]
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Computation of enhanced restarting automata.
A (restarting) configuration C = (T,D) of a compu-
tation by Me = (Γ, c, $, ER(Me), EA(Me)) consists of
the set T of items representing current tape content
and a DR-structure D. By an application of an en-
hanced instruction I, the tape content is changed and
the DR-structure can grow. The initial configuration
C0 = (Tw, D∅) for an input word w = x1 . . . xn con-
sists of the set of items representing the initial con-
tent of the tape Tw = {[0, 0, c]} ∪ {[0, i, xi] | i =
1, . . . , n} ∪ {(n+ 1, 0, $]} and the empty DR-structure
D∅ = (∅, ∅). By application of an enhanced instruc-
tion I, a configuration C is transformed onto a new
configuration C ′.


An input word w is accepted by Me if there exists
a computation starting with the initial configuration
for w which ends in a configuration Ca by an applica-
tion of an accepting enhanced instruction. The result
of the computation is the DR-structure of Ca.


Similarly as for sRL-automata, we define the char-
acteristic language of Me as LC(Me) ={w |w∈Γ and
Me accepts w}. Moreover, DR-language of Me is the
set DR(Me) = {D | D is a result of some accepting
computation of Me}.


2.2 Enhanced automata with several layers


First, we introduce a technical notion of projection. Let
Σ and Γ (⊃ Σ) be alphabets. The projection from Γ ∗


onto Σ∗ denoted as PrΣ is the morphism defined as
a 7→ a (for a ∈ Σ) and A 7→ λ (for A ∈ Γ r Σ).
Similarly, we define the projection of languages: PrΣ :
P(Γ ∗) 7→ P(Σ∗).


Similarly as above, we introduce a projection
for DR-structures. Let D be a DR-structure from
a DR-language over an alphabet Γ , PrΣ(D) denotes
a DR-structure over Σ that is obtained from D by
removing all nodes with (at least one) symbol from
Γ rΣ and all edges incident to that nodes. A projec-
tion may be in an obvious way extended onto projec-
tion of a DR-language over Γ .


Let Σ1, . . . , Σj , for some j ≥ 1, be a se-
quence of pairwise disjoint alphabets and Γ =
Σ1 ∪ · · · ∪ Σj . We say that sERL-automaton Mj =
(Γ, c, $, ER(Mj), EA(Mj)) is an enhanced simple
sERL-automaton with j layers ((j)-sERL-automaton
for short) if the following assumptions are fulfilled:


– Mj is correctness preserving ;


– Mj is allowed to rewrite a symbol from Σi (for 1 ≤
i ≤ j) by a symbol from the same sub-vocabulary
Σi, only. We refer to the symbols from Σi as the
symbols on layer i (or i-symbols).


3 FGD as a (4)-sERL-automaton


Our ultimate goal is to model FGD – we consider
a (4)-sERL-automaton MFD to be a suitable formal
frame for this linguistic theory.


Let MFD = (Γ, c, $, ER(MFD), EA(MFD)); Γ con-
sists of four parts Γ = Σw ∪Σm ∪Σa ∪Σt which cor-
respond to the respective layers of FGD (Section 1.2).
Recall that the symbols from individual layers can be
quite complex.


A language of layer ` ∈ {w,m, s, t} accepted
by MFD is obtained as a projection of the characteristic
language onto Σ`, i.e., L`(MFD) = PrΣ`(LC(MFD))).


The characteristic language LC(MFD) contains in-
put sequences (over Σw) interleaved with metalan-
guage information in the form of symbols from Σm ∪
Σa∪Σt. Then, the language of correct sentences of the
studied natural language is Lw = PrΣw(LC(MFD)). In
our case, it defines the set of correct Czech sentences.


Similarly, a DR-language of layer ` accepted by
MFD is obtained as DR`(MFD) = PrΣ`(DR(MFD)),
` ∈ {w,m, s, t}. Let us note that DRw(MFD) and
DRm(MFD) are empty (Lw and Lm are string lan-
guages). Further, DRa(MFD) and DRt(MFD) are lan-
guages of DR-trees. Each DR-tree T ∈ DRt(MFD) is
projective (with respect to its descendants); that is,
for each node n of the DR-tree T all its descendants
(including also the node n) constitute a contiguous
sequence in the horizontal ordering of nodes of the
tree T . On the other hand, trees from DRa(MFD) can
be in general non-projective.


The DR-language DRt(MFD) represents the set of
meaning descriptions in FGD whereas and DRa(MFD)
models the set of (surface) syntactic trees.


Let us note that Lt(MFD) is designed as a deter-
ministic context-free language. Readers familiar with
restarting automata can see that LC(MFD) is a de-
terministic context-sensitive language and Lw(MFD) is
a context-sensitive language.


We have not mentioned so far the edges from
DR-structures from DR(MFD) which have the edges
with nodes (their symbols) in different layers. These
edges serve for connecting the corresponding lexical
units on different layers (see dotted lines in Figure 1
and are obtained by applications of extended restart-
ing meta-instructions of MFD.


Here such an edge connects nodes on neighboring
layers only. I.e., this edges connect w-layer nodes to
m-layer nodes, m-layer nodes to a-layer nodes, a-layer
nodes to t-layer nodes, and nothing else (see Figure 1).


Concluding remarks In this paper, encouraged
by [9, 10], we extend the formal model of natural lan-
guage description based on FGD so that it outputs
neither lists of words nor lists of symbols but the
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so called reduction language and a set of complex
DR-structures. We plan to study the relation between
reduction languages and DR-languages more deeply in
the near future.


The novelty of this contribution consists in (i) the
extension of enhanced restarting automata in order to
produce tree structures with several interlinked layers
and (ii) the application of these automata to the strati-
ficational description of a natural language. Moreover,
we outline a formalization of the basic methodology
of FGD in terms derived from the automata theory
and from the theory of parsing schemata as well. We
envisage that the proposed methodology is not FGD-
specific and that similar approach can be used to ob-
tain a formal frame for other language descriptions, as
e.g. those presented in [6] and [11].
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Abstract. The article deals with the denotational seman-
tics of a special query language called XML-Lambda
(abbreviated as XML-λ), which is based on the simply typed
lambda calculus. The exact semantics allows experimenta-
tion with a language definition, prototyping of programs,
and similar experiments. One of such experiment is the
implementation of the XQuery language in the XML-λ en-
vironment. The main advantage of our approach is the pos-
sibility of a query optimizations in the XML-λ intermedi-
ate form. It is much more easier than optimizations based
on the official W3C semantics. XML-λ is a part of more
complex XML-λ Framework which serves for experiment-
ing with the tools for XML processing.


1 Introduction


In this paper, we define formally the semantics of
XML-Lambda Query Language. From now on we will
use abbreviation XML-λ. XML-λ employs the func-
tional data model for XML data elaboration. The first
idea for such an attitude was published in [5, 6]. This
research brought in the key idea of a functional query
processing with a wide potential that was later proven
by a simple prototype implementation [7].


We can imagine two scenarios for this language;
firstly, the language plays a role of a full-featured query
language for XML (it has both formal syntax and se-
mantics and there is also an existing prototype that
acts as a proof-of-the-concept application). But there
already exist standard approaches for XML querying
– especially XQuery, with probably more appropriate
syntax for users. So, there is no need to define any new
query language.


In the second scenario, the XML-λ Query Lan-
guage is utilized as an intermediate language for the
description of XQuery semantics. In [4] we propose
a novel method for XQuery evaluation based on the
transformation of XQuery queries into their XML-λ
equivalents and their subsequent evaluation. As an in-


⋆ This work has been supported by the Ministry of Edu-
cation, Youth and Sports under Research Program No.
MSM 6840770014 and also by the grant project of the
Czech Grant Agency No. GA201/09/0990.


tegral part of the work, we have designed and devel-
oped a prototype of an XML-λ query processor for
validating the functional approach and experimenting
with it. The main advantage of this concept is the
possibility of a query optimizations in the XML-λ in-
termediate form. It is much more easier than optimiza-
tions when we use the official W3C semantics ([3]).


Since it is not possible to express the semantics of
the whole XML-λ language in this contribution, the
paper focuses chiefly on its main idea and concepts.


2 XML-λ Query Language


In this section, we briefly describe the XML-λ Query
Language, a query language for XML based on the
simply typed lambda calculus.


2.1 Language of terms


Typical query expression has a query part — an ex-
pression to be evaluated over data — and a constructor
part that wraps a query result and forms the output.
The XML-λ Query Language is based on λ-terms de-
fined over the type system TE as will be shown later.
λ-calculus is a formal mathematical system for inves-
tigation of function definition and application. It was
introduced by Alonzo Church and has been utilized
in many ways. In this work, we use a variant of this
formalism, the simply-typed λ-calculus, as a core for
the XML-λ Query Language. We have gathered the
knowledge from [8] and [1]. Our realization is enriched
by usage of tuples.


The main constructs of the language are variables,
constants, tuples, projections, and λ-calculus opera-
tions — applications and abstractions. The syntax is
similar to λ-calculus expressions, thus the queries are
structured as nested λ-expressions, i.e.:


λ . . . (λ . . . (expression) . . .)


In addition, there are also typical constructs such as
logical connectives, constants, comparison predicates,
and a set of built-in functions.
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Language of terms is defined inductively as the
least set containing all terms created by the applica-
tion of the following rules. Let T, T1, . . . , Tn, n ≥ 1 be
members of TE . Let F be a set of typed constants, and
V an at most countable set of typed variables. Then:


1. variable: each variable (member of V) of type T is
a term of type T


2. constant: each constant (member of F) of type T
is a term of type T


3. application: ifM is a term of type ((T1,. . ., Tn)→T )
and N1, . . . , Nn are terms of the types T1, . . . , Tn,
then M(N1, . . . , Nn) is a term of the type T


4. λ-abstraction: if x1, . . . , xn are distinct variables
of types T1, . . . , Tn and M is a term of type T ,
then λx1 : T1, . . . , xn : T1.(M) is a term of type
((T1, . . . , Tn)→ T )


5. n-tuple: if N1,. . ., Nn are terms of types T1,. . ., Tn,
then (N1, . . . , Nn) is a term of type (T1, . . . , Tn)


6. projection: if (N1, . . . , Nn) is a term of type
(T1, . . . , Tn), then N1, . . . , Nn are terms of types
T1, . . . , Tn


7. tagged term: if N is a term of type NAME and
M is a term of type T then N : M is a term of
type (E → T ).


The set of abstract elements E serves as a notation
for abstract positions in XML trees. Terms can be in-
terpreted in a standard way by means of an interpre-
tation assigning to each constant from F an object of
the same type, and by a semantic mapping from the
language of terms to all functions and Cartesian prod-
ucts given by the type system TE . Speaking briefly, an
application is evaluated as an application of the as-
sociated function to given arguments, an abstraction
’constructs’ a new function of the respective type. The
tuple is a member of Cartesian product of sets of typed
objects. A tagged term is interpreted as a function de-
fined only for one e ∈ E. It returns again a function.


3 Abstract syntax


As for evaluation of a query, we do not need its com-
plete derivation tree; such information is too complex
and superfluous. Therefore, in order to diminish the
domain that needs to be described without any loss of
precision, we employ the abstract syntax. With the ab-
stract syntax, we break up the query into logical pieces
that forming an abstract syntax tree carrying all orig-
inal information constitute an internal representation
suitable for query evaluation. We introduce syntactic
domains for the language, i.e., logical blocks a query
may consist of. Subsequently, we list all production
rules. These definitions are later utilized in Section 4
within the denotational semantics.


3.1 Syntactic domains


By the term syntactic domain, we understand a logi-
cal part of a language. In Table 1, we list all syntactic
domains of the XML-λ Query Language with their in-
formal meaning. Notation Q : Query stands for the
symbol Q representing a member of the Query do-
main.


Q : Query XML-λ queries,
O : Options XML input attachements,
C : Constructor constructors of output results,
E : Expression general expressions,
SQ : SubQuery (nested) subqueries,
T : Term sort of expression,
F : Fragment sub-parts of a Term,
As : Assignment variable assignments,
Flt : Filter set pruning conditions,
FC : FunctionCall either built-in or user-defined


functions,
BinOp : BinOperator binary logical operators,
RelOp : RelOperator binary relational operators,
NF : Nullary identifiers of nullary functions


(subset of Identifier),
Proj : Projection identifiers for projections (sub-


set of Identifier),
B : Boolean logical values,
N : Numeral numbers,
D : Digits digits,
S : String character strings,
Id : Identifier strings conforming to the


Name syntactic rule in [2].


Table 1. Syntactic domains of the XML-λ Query Lan-
guage.


3.2 Abstract production rules


The abstract production rules listed in Table 2 (writ-
ten using EBNF) connect the terms of syntactic do-
mains from the previous section into logical parts with
suitable level of details for further processing. On the
basis of these rules, we will construct the denotational
semantics of the language.


4 Denotational semantics


We use denotational semantics for the description of
the meaning of each XML-λ query. The approach is
based on the idea that for each correct syntactic con-
struct of the language we can define a respective mean-
ing of it as a formal expression in another, well-known,
notation. We can say that the program is the denota-
tion of its meaning. The validity of the whole approach
is based on structural induction; i.e, that the meaning
of more complex expressions is defined on the basis
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Query ::= Options Constructor Expression
Constructor ::= ElemConstr + | Identifier+
ElemConstr ::= Name AttrConstr ∗ (Identifier


| ElemConstr)
AttrConstr ::= Name Identifier
Expression ::= Fragment
Fragment ::= Nullary | Identifier | Term


| Fragment Projection
| SubQuery | FunctionCall
| Numeral | String | Boolean


Term ::= Boolean | Filter | ’not’ Term
| Term BinOperator Term


Filter ::= Fragment RelOperator Fragment
SubQuery ::= Identifier + Expression
BinOperator ::= ’or’ | ’and’
RelOperator ::= ’<=’ | ’<’ | ’==’ | ’!=’ | ’>’ | ’>=’
Numeral ::= Digit+ | Numeral ′.′ Digit+
Digit ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’
Identifier ::= Name
Projection ::= Identifier


Table 2. Abstract production rules for the XML-λ Query
Language.


of their simpler parts. As the notation we employ the
simply typed lambda calculus. It is a well-known and
formally verified tool for such a purpose.


4.1 Prerequisites


The denotational semantics utilizes a set of functions
for the definition of the language meaning. For this
purpose, we formulate all necessary mathematical def-
initions. We start with the data types and specifica-
tion of the evaluation context followed by the outline
of bindings to the TE type system. Then, all auxiliary
and denotation functions are introduced.


Data Types. Each value computed during the process
of the query evaluation is of a type from Type. Let E
be a type from the type system TE , we define Type as:


Type ::= BaseType | Seq(Type)
Seq(Type) ::= ⊥ | BaseType× Seq(Type)
BaseType ::= E | PrimitiveType
PrimitiveType ::= Boolean | String | Number


Primitive types, Boolean, String, and Number, are
defined with their set of allowed values as usual. The
type constructor Seq stands for the the type of ordered
sequences of elements of values of the type Type3. We
use it only for base types, so Seq(Type) is the type
of all ordered sequences of elements of base types. We
do not permit sequences of sequences. The symbol ⊥
stands for the empty sequence of types – represents
an unknown type. More precisely, we interpret types


3 We suppose usual functions nil, cons, append, null, head,
and tail for sequences.


as algebraic structures, where for each type τ ∈ Type
there is exactly one carrier Vτ , whose elements are the
values of the respective type τ .


Variables. An XML-λ query can use an arbitrary
(countable) number of variables. We model variables
as pairs name : τ , where name refers to a variable
name and τ is the data type of the variable – any
member of Type. Syntactically, variable name is al-
ways prepended by the dollar sign. Each expression in
XML-λ has a recognizable type, otherwise both the
type and the value are undefined.


Query Evaluation Context. During the process
of query evaluation we need to store variables inside
a working space known as a context. Formally, we de-
note this context as the State. We usually understand
a state as the set of all active objects and their values
at a given instance. We denote the semantic domain
State of all states as a set of all functions from the set
of identifiers Identifier into their values of the type
τ ∈ Type. Obviously, one particular state σ : State
represents an immediate snapshot of the evaluation
process; i.e., values of all variables at a given time. We
denote this particular value for the variable x as σ[[x]].
Simply speaking, the state is the particular valuation
of variables. We use the functor f [x← v] for the defini-
tion of a function change in one point x to the value v.


4.2 Signatures of semantic functions


Having defined all necessary prerequisites and auxil-
iary functions (recalling that the SeqType represents
any permitted type of value), we formalize semantic
functions over semantic domains as:


SemQuery : Query → Seq(XMLDoc)→ Seq(Type)
SemOptions : Options→ (State→ State)
SemExpr : Expression→ State→ Seq(Type)
SemTerm : Term→ (State→ Boolean)
SemFrag : Fragment→ State→ Seq(Type)
SemAssign : Fragment×Identifier→State→ State
SemRelOper : Fragment×RelOperator×Fragment→


→ (State→ Boolean)
SemBinOper : Term×BinOperator × Term→


→ (State→ Boolean)
SemAttrCons : AttrConstr × State→ Seq(Type)
SemElemCons : ElemConstr × State→ Seq(Type)


Table 3. Semantic functions arities.


4.3 Semantic equations


We start with the semantic equations for the expres-
sions, then we will continue with the semantics
of queries.
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Terms. Terms are logical expressions. It means, that
the meaning of any term in a given state is the Boolean
value.


SemTerm : Term → State → Boolean


Terms are constructed with help of relational opera-
tors (we call it filter, but we do not distinguise it
here), binary operators, negation sign, or primitive
Boolean literals (denoted as B in the definition).


SemTerm[[B]] = λσ.bool[[B]]
if B is a constant of the type Boolean


SemTerm[[F1 RelOp F2]] =
λσ.SemRelOper[[F1 RelOp F2]]σ


SemTerm[[ ′not′ T ]] = λσ.not(SemTerm[[T ]]σ)


SemTerm[[T1 BinOp T2]] =
= λσ.SemBinOper[[T1 BinOp T2]]σ


Table 4. Semantic equations for terms.


Relational Operators. Relational operators can be ap-
plied to any two fragments and the meaning of result-
ing expression is the mapping from the current state
to Boolean values. They serve in filters.


SemRelOper :
Fragment×RelOperator × Fragment→
→ State→ Boolean


SemRelOper[[F1 ’<’ F2]] =
= λσ.(SemFrag[[F1]]σ < SemFrag[[F2]]σ)


SemRelOper[[F1 ’==’ F2]] =
= λσ.(SemFrag[[F1]]σ == SemFrag[[F2]]σ)


SemRelOper[[F1 ’>’ F2]] =
= λσ.(SemFrag[[F1]]σ > SemFrag[[F2]]σ)


SemRelOper[[F1 ’<=’ F2]] =
= λσ.(SemFrag[[F1]]σ <= SemFrag[[F2]]σ)


SemRelOper[[F1 ’>=’ F2]] =
= λσ.(SemFrag[[F1]]σ >= SemFrag[[F2]]σ)


SemRelOper[[F1 ’!=’ F2]] =
= λσ.(not(SemFrag[[F1]]σ = SemFrag[[F2]]σ))


Table 5. Semantic equations for relational operators.


Binary Operators. Binary operators can be applied to
any two terms and the meaning of resulting expres-
sion is the mapping from the current state to Boolean
values. XML-λ uses clasical logical conectives – logical
’or’ and logical ’and’


SemBinOper : Term×BinOperator × Term
→ State→ Boolean


SemBinOper[[T1 ’or’ T2]] =
= λσ.(SemTerm[[T1]]σ or SemTerm[[T2]]σ)


SemBinOper[[T1 ’and’ T2]] =
= λσ.(SemTerm[[T1]]σ and SemTerm[[T2]]σ)


Table 6. Semantic equations for binary operators.


Fragments. Fragments are logical parts of filters and
have the same meaning as expressions.


SemFrag : Fragment→ State→ Seq(Type)


SemFrag[[Id]] = λσ.σ[[Id]]


SemFrag[[f(E1, ..., En)]] =
= λσ.f(SemExpr[[E1]]σ, ..., SemExpr[[En]]σ)


SemFrag[[F P ]] =
= λσ.(SemFrag[[F ]] ◦ SemFrag[[P ]])σ


SemFrag[[(subquery)(arg)]] =
= λσ.(SemExpr[[subquery]](σ)(SemExpr[[arg]](σ)))


SemFrag[[I1I2...InE]] =
= SemExpr[[I2...InE]](σ[SemExpr[[E]]σ ← I1])


SemFrag[[N ]] =
= λσ.num[[N ]] if N is a constant of the type Numeral


SemFrag[[S]] =
= λσ.str[[S]] if S is a constant of the type String


SemFrag[[B]] =
= λσ.bool[[B]] if B is a constant of the type Boolean


Table 7. Semantic equations for fragments.


Assignments. An assignment expression is a manda-
tory part of a query. It sets the initial context of the
evaluation, more precisely, such expression evaluates
a nullary function and stores the result into a vari-
able. Then, the evaluation process will filter results
and than iterates over all values and computes remain-
ing results.


SemAssign : Fragment × Identifier
→ State → State


SemAssign[[Id ’=’ F ]] = λσ.σ[Id← SemFrag[[F ]]σ]


Table 8. Semantic equation for assignments.


Expressions. Each expression e has a defined value
SemExpr[[e]](σ)(ξ) in a state σ and in an en-
vironment ξ. The state represents the values of vari-
ables, the environment represents XML document that
is elaborated. The result is a state SemExpr[[e]](σ)(ξ),
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where all interesting values are bound into local vari-
ables. We do not need the environment in the next
computation, because all information is in the state.
We can model input data as a mapping Env from
identifiers to XML documents, formally:


Env : Identifier → XMLdoc


SemExpr : Expression × State × Env →
Seq(Type)


SemExpr[[A1A2...AnF1F2...Fm]]σξ =
= SemExpr[[A2...AnF1F2...Fm]](SemAssign[[A1]]σξ)


SemExpr[[F1F2...Fm]]σξ =


= append(SemExpr[[F1]]σξ, SemExpr[[F2...Fm]]σξ)
if SemRelOper[[F1]]σξ = true


SemExpr[[F1F2...Fm]]σξ =
= SemExpr[[F2...Fm]]σξ
if SemRelOper[[F1]]σξ = false


SemExpr[[]]σξ = nil


Table 9. The semantics of general expressions.


Constructors. Resulting values are created by con-
structors. A constructor is a list of items which can
be either a variable identifier or a constructing expres-
sion.


SemCons : Constructor × State→ Seq(Type)


SemCons[[E1E]]σ = append(SemElemCons[[E1]]σ,
SemCons[[E]]σ)


SemCons[[I1E]]σ = cons(σ[[I1]], SemCons[[E]]σ)


SemCons[[ ]]σ = nil


Table 10. Semantic equations for constructors.


Element Constructors. The most common kind of re-
sulting value is undoubtedly the element constructor;
obviously, all its alternatives are supported – either
with empty content, textual content or more complex
(i.e. “mixed”) content. For all cases we can also attach
attributes to elements. In the definition we use ab-
stract functions element and attribute, which serves
to construct output XML values from arguments.


SemElemCons : ElemConstr × State→ Seq(Type)


Attribute Constructors. Elements can have attributes
assigned by attribute constructors


SemAttrCons : AttrConstr × State→ Seq(Type)


SemElemCons[[NA1...AnI]]σ =


= element(N,σ[[I]], SemAttrCons[[A1]]σ, ...,
SemAttrCons[[An]]σ)


SemElemCons[[NA1...AnE]]σ =


= element(N,SemExpr[[E]]σ, SemAttrCons[[A1]]σ, ...,
SemAttrCons[[An]]σ)


SemElemCons[[N I]]σ = element(N, σ[[I]], nil)


SemElemCons[[N E]]σ =
= element(N,SemExpr[[E]]σ, nil)


Table 11. Semantic equations for element constructors.


SemAttrCons[[N I]]σ = attribute(N,SemExpr[[I]]σ)


Table 12. The semantic equation for attribute construc-
tors.


Example. Let us show an example of resulting se-
quence for the XML-λ constructor


lambda book attlist [ title $b ] $a


The result is the function


λσ.element(′book′, σ[[a]], attribute(′title′, σ[[b]]))


returning in the given state the string


element(book,"the value of a",


attribute(title,"the value of b"))


Options. The only allowed option in the language is
now the specification of input XML documents.


SemOptions : Options× Env → Env


SemOptions[[ ]](E) = E


SemOptions[[ xmldata(X ) Y ]] =
= λξ.SemOptions[[Y ]](ξ[Dom(X)← X#])


Table 13. Semantic equations for options.


We explore a function Dom(X) that converts an in-
put XML document X into its internal representation
accessible under identification X#.


Query. A query (denoted as Q) consists of query op-
tions (denoted as O), where input XML documents are
bound to its formal names, the query expression to be
evaluated (denoted as E), and the output construction
commands (denoted as C). At first, input files are elab-
orated, than an initial variable assignment takes place,
followed by evaluation of expression. Finally, the out-
put is constructed. This idea is inbuilt into the defini-
tion of SemQuery[[O C E]] bellow. The whole meaning
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SemQuery[[Q]] of a query Q can be modeled as a map-
ping from the sequence of input XML documents into
a sequence of output values of the type of Type. The
definition is carried by the structural induction on the
possible forms of an input sequence.


SemQuery[[Q]] : Seq(XMLDoc)→ Seq(Type)


SemQuery[[O C E]] : XMLDoc → Seq(Type)


SemQuery[[Q]](nil) = nil


SemQuery[[Q]](cons(H,T )) =
= append(SemQuery[[Q]](H), SemQuery[[Q]](T ))


SemQuery[[O C E]] =


= λδ.(SemCons[[C]](SemExpr[[E]](λσ.⊥)
(SemOptions[[O]](λξ.⊥)(δ)))


Table 14. Semantic equations for queries.


5 The example


The following example illustrates the computations
performed in order to evaluate given XML-λ queries
inside a virtual machine. It just computes a simple nu-
merical term. More complex examples could be found
in [4].


5.1 Simple computation


Let us suppose the following simple query in the
XML-λ and its evaluation.


lambda $v1 ($v1 = plus(3, 2))


We can compute its meaning according to the XML-λ
semantics as (the result is independent on the input
XML documents, so we can use the empty sequence
nil as the input):


SemQuery[[
′lambda $v1 ($v1=plus(3, 2)′]](nil) =


= λδ.(SemCons[[
′lambda $v1 ($v1 = plus(3, 2))′]]


(SemExpr[[ ]])(λσ.⊥)(δ))(nil) =
= SemCons[[


′lambda $v1 ($v1 = plus(3, 2))′]]
(λσ.⊥) =


= SemAssign[[
′$v1 = plus(3, 2)′]]


(λσ.⊥)(′$v1′) =
= λσ1.σ1[


′$v1′ ← SemFrag[[
′plus(3,2)′]]


(σ1)](λσ.⊥)(′$v1′) =
= (λσ.⊥)[′$v1′ ← SemFrag[[


′plus(3,2)′]]
(λσ.⊥)](′$v1′) =


= (λσ.⊥)[′$v1′ ← λσ2.plus(SemExpr[[
′3′]]


(λσ2.⊥), SemExpr[[
′2′]](λσ2.⊥))


(λσ.⊥)](′$v1′) =


= (λσ.⊥)[′$v1′ ← λσ2.plus(num[[′3′]]
(λσ2.⊥), num[[′2′]](λσ2.⊥))(λσ.⊥)](′$v1′) =


= (λσ.⊥)[′$v1′ ← λσ2.plus(3, 2)(λσ.⊥)](′$v1′) =
= (λσ.⊥)[′$v1′ ← λσ2.5(λσ.⊥)](′$v1′) =
= (λσ.⊥)[′$v1′ ← λσ.5](′$v1′) =
= (λσ.⊥)[′$v1′ ← 5](′$v1′) =
= 5


6 Conclusion


In this paper, we have presented syntax and deno-
tational semantics of the XML-λ Query Language,
a query language for XML based on simply typed
lambda calculus. We use this language within the spe-
cial XML-λ Framework as an intermediate form of
XQuery expressions for description of its semantics.
Nevertheless the language in its current version does
not support all XML features, e.g. comments, process-
ing instructions, and deals only with type information
available in DTD, it can be successfully utilized for
fundamental scenarios both for standalone query eval-
uation or as a tool for XQuery semantics description.
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Abstract. Finding a schedule with minimal makespan for
a finite number of independent tasks on a homogeneous net-
work of processors is an NP-hard problem if durations of
all tasks are known. With only partial a-priori knowledge
of tasks’ time durations, it makes sense to look for on-
line algorithms which guarantee short makespans in terms
of small competitive ratios. Three algorithms are analysed
and compared in this paper. The chunking algorithm as-
sumes a-priori knowledge of the longest task’s duration.
The factoring algorithm assumes a-priori knowledge of the
ratio between the longest and shortest task’s durations. The
work-stealing algorithm requires no a-priori knowledge but,
unlike the previous two algorithms, requires a mechanism
for redistribution of tasks which have already been assigned
to processors. It turns out that work-stealing outperforms
both the chunking and factoring algorithms when the num-
ber of tasks is sufficiently large. The analysis is not only
asymptotic—it also provides an accurate (worst-case) pre-
diction of makespans for all aforementioned algorithms for
an arbitrary number of processors and tasks.


1 Introduction


Finding an optimal schedule for a given number of in-
dependent tasks with known time durations on a given
number of (equally fast) parallel processors is
NP-hard [9]. An online version of this problem [14]
assumes only a partial knowledge of tasks’ durations.
This online version appears in the same abstract form
e.g. in parallel game-tree search, parallel ray tracing,
scheduling of independent loops for multiprocessor
machines etc. The challenge is to properly control the
trade-off between the costs of work imbalance and
communication.


The problem can be stated as follows. There is
a master holding W pieces of indivisible work (tasks).
Each task can be processed by any of N workers (the
master can actually be one of the workers, playing
both roles simultaneously). The durations of tasks can
be different (e.g. processing of one task can take a sec-
ond, processing of another task can take a minute).
The workers are reliable, equally fast and are willing
to complete the entire work as soon as possible (to
minimise the makespan, i.e. the parallel time). The


? This work was partially supported by the grant VEGA
1/0726/09.


master’s interest also is the fastest completion of
all W tasks. The master and the workers are isolated
from one another but can communicate via a reliable
asynchronous postal service. The delivery of a packet
(message) takes some time called communication la-
tency. More precisely, latency is the time from the
moment when a worker becomes idle until the mo-
ment when it receives some work to do (or realises
that there is no more work to do). Latency is a con-
stant which does not depend on the size of the packet
(e.g. on number of tasks transferred in the packet).
The master and the workers know this constant.1


If the master knows the durations of all tasks, it
can compute the shortest schedule offline (solving an
NP-hard problem) and send a single packet to each
worker. The packet contains all the tasks assigned in
the shortest schedule to that worker.


If the master knows nothing about the durations
of all tasks, it can for example send one packet con-
taining W/N arbitrarily chosen tasks to each worker.
By doing so, the latency is added only once to the
makespan (as in the previous offline algorithm). This
algorithm is good in case of equal tasks’ durations. But
it can happen that all the tasks are very short except
of W/N tasks which are very long. In a lucky case,
each worker will receive a packet which contains one
very long task and many short tasks. In an unlucky
case, N − 1 workers will receive packets which contain
only short tasks, while one worker will receive a packet
in which all the tasks are very long. Online analysis is
interested in this worst case, where an “adversary”
plays against the master and the workers. The inten-
tion of the adversary is to make the schedule as long
as possible.


1 Note that in asynchronous message passing model the
latency can vary not only for different runs of the same
program with the same input, but even for different mes-
sages in the same run. It is bounded for a given run,
but the bound is not a-priori known. In order to be fair
by comparison of different algorithms, we assume that
the latency is the same constant for all messages and
all runs. This is a common assumption in publications
relating to the problem in question. (In dedicated prac-
tical networks, the latency for a fixed message size is
bounded—and a-priori known, as it can be measured in
run-time before the actual computation begins.)
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If the workers are not allowed to return tasks which
they are assigned and if no information on tasks’ du-
rations is available, then no master’s algorithm is intu-
itively “better” than the algorithm from the previous
paragraph. For example, consider an algorithm where
the master sends only one task as a reply to a request
from an idle worker. Then the unlucky case is that all
the packets are very short. The cost of communication
can then be very high in comparison with the work
itself and may exceed the total time of the previous
algorithm.


All algorithms used in the previous examples use
the same scheme. In the beginning, all the workers are
idle. Each worker process runs a loop in which it sends
a job request to the master process, waits for a job
(a set of tasks sent in a message) and then processes
all the tasks in the job, one after another. The algo-
rithms only differ in how the master decides for the
number of tasks (job size) which it sends when reply-
ing a job request. Without a knowledge on a specific
task’s duration only the job sizes K are important,
not the choice of tasks in a job. A generic master’s
algorithm is shown in Fig. 1.


master generic(int W , int N)
{


int K;
int work = W ;
while (work > 0)
{


wait for a job request from an idle worker;
compute the job size K;
assign a job consisting of K yet unprocessed tasks
to the idle worker;
work = work −K;


}
reply job requests with NO MORE WORK;


}


Fig. 1. Generic assignment algorithm (without work redis-
tribution).


Note that when a job request arrives, the master
process must decide immediately how many yet un-
processed tasks it assigns in that job (as it might take
long until another job request arrives). This decision
is based on partial a-priori knowledge of tasks’ du-
rations. Only deterministic online algorithms will be
considered, i.e. algorithms which do not internally use
any source of randomness. Two of the three algorithms
studied in this paper, chunking and factoring, follow
the scheme from Fig. 1. The third algorithm, deter-
ministic work stealing, uses a more complex scheme.


Chunking and factoring algorithms make use of
partial information on the tasks’ durations. They were
first investigated in a probabilistic model, where tasks’
durations are assumed to be realisations of a random
variable with known mean and variance [11, 7, 6, 1, 10].
The goal in the probabilistic model is to find parame-
ter settings which minimise the expected makespan of
the algorithms. Optimal settings have not been found,
only rough approximations are known.


In a deterministic model [12, 13] it is assumed that
the information on maximal and minimal tasks’ dura-
tions is available a-priori, i.e. before the computation
begins. The goal in the cited papers was to find param-
eter settings which minimise the maximal makespan
of chunking and factoring algorithms. The goal in this
paper is to find parameter settings which minimise the
competitive ratio of the algorithms.


The main contribution of this paper is competi-
tive analysis and quantitative comparison of three al-
gorithms in the deterministic model. Optimal param-
eters for chunking and factoring algorithms are de-
rived. (As it turns out, the optimal parameter settings
are almost the same in both scenarios—which is per-
haps not surprising, as both scenarios focus on the
worst-case input.) The third algorithm is determinis-
tic work stealing. This algorithm requires no a-priori
information and has no parameters; however, it re-
quires a mechanism for redistribution of already as-
signed tasks. This means that the workers are allowed
to communicate with one another and are allowed to
return assigned, but yet unprocessed tasks to the mas-
ter. We prove that the deterministic work stealing al-
gorithm performs better than the previous two algo-
rithms under certain assumptions which usually hold
in practical systems. This makes deterministic work
stealing very attractive for applications where no
a-priori knowledge of tasks’ durations is available.


The deterministic work stealing algorithm appears
in the context of diffusive load balancing, e.g.
in [3–5] (optimal load balancing scheme). In the con-
text of diffusive load balancing the data locality is the
main concern; the goal is to exploit the structure of the
network in order to minimise the cost of a single work
redistribution step. In this paper the network struc-
ture is ignored and the number of work redistribution
steps is minimised.


The paper is organised as follows. Section 2 intro-
duces the notation and definitions. Sections 3, 4 and 5
present online analysis of chunking, factoring and work
stealing algorithms in the deterministic model (related
results for chunking and factoring algorithms in
a probabilistic model are briefly summarised in subsec-
tions). Performance of these algorithms is compared in
Section 6. Section 7 concludes the paper.
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2 Notation and definitions


The following notation is used throughout this paper:


N number of worker processes; N ≥ 1
W total number of tasks (total work); W ≥ 1
M makespan (total parallel time)
L latency (duration of assignment of one job)
ti task’s durations (i = 1...W ); ti > 0.0
Tmin minimal task’s duration, Tmin = mini=1...W ti
Tmax maximal task’s duration, Tmax=maxi=1...W ti
T ratio Tmax/Tmin; T ≥ 1.0


In order to quantify the performance of algorithms,
a standard definition of competitive ratio is used [2]:


Definition 1 (competitive ratio of algorithm).
For given W , N , L, let CRS(A) denote the maximal ra-
tio between the makespan MS(A) of algorithm S which
uses a-priori information A and the best offline make-
span Mbest offline over all sequences t1 . . . tW of the
input tasks’ durations which conform to the a-priori
information A:


CRS(A)(W,N,L) = sup
t1...tW


MS(A)(t1 . . . tW )


Mbest offline(t1 . . . tW )


where MS(A)(t1 . . . tW ) is the makespan of S with
N processes on W tasks with durations t1 . . . tW , with
assignment latency L. CRS(A) is called competitive ra-
tio of algorithm S with a-priori information A.


The best offline algorithm assigns all the tasks in
one round, i.e. its communication overhead is L. It
produces a schedule with the shortest makespan for
W tasks with durations t1 . . . tW . Thus competitive ra-
tio of any algorithm is at least 1.0. The smaller it is,
the better the algorithm is.


Definition 2 (comparison of algorithms). An as-
signment algorithm S performs at least as well as an
assignment algorithm R for some W , N , L (we will
also say that S does not perform worse than R, or that
S competes with R) iff


CRS(A)(W,N,L) ≤ CRR(A′)(W,N,L)


In a practical setting the number of processes N
is fixed (equal to the number of available processors).
The latency L can be considered a constant. The num-
ber of tasks W is constant for a given run of an al-
gorithm. Intuitively, the relative overhead of an effi-
cient assignment algorithm should diminish with the
growing number of tasks W , i.e. the competitive ratio
should approach a small constant independent of N
with increasing W .


Although we are particularly interested in asymp-
totic case W → ∞, we prefer to keep the comparison
parameterised with respect to W , N , L instead of us-
ing the limit values of CRS(A) and CRR(A) in Defini-
tion 2. This allows for a finer comparison of algorithms.


3 Chunking


The chunking algorithm [11], [8] always assigns jobs
of size K to idling worker processes, where K remains
constant (the last assignment may be an exception,
where a smaller job is assigned), see Fig. 1. Once a job
has been assigned to a worker, this decision cannot be
changed—the worker must then compute all the tasks
assigned in that job.


We will prove a general theorem which states that
a-priori knowledge of Tmax does not help much. The
parallel time of any algorithm (including chunking) is
in the worst case comparable with the sequential time
for a sufficiently large number of tasks.


Theorem 1. For all W,N,L, Tmax such that W >
N3 +N2(N − 1)Tmax/L competitive ratio of an arbi-
trary assignment algorithm with no work redistribution
and with a-priori knowledge of Tmax is at least N (i.e.
Ω(N) for W = Ω(N3)).


Proof. Let W > N3 + N2(N − 1)Tmax/L. Let K de-
note the maximal job size assigned by an algorithm S.
There are two cases:
case 1, K ≥ WL/(N2L+N(N − 1)Tmax);
case 2, K < WL/(N2L+N(N − 1)Tmax).


In case 1, there is Kint such that N ≤ Kint ≤ K
and Kint/N is an integer. Kint tasks of the maximal
job will have duration Tmax, while all the other tasks
will have duration ε → 0. The best offline algorithm
computes the Kint long tasks in parallel, whereas the
algorithm S computes them sequentially. This implies
(as S makes at least as many assignments as the best
offline algorithm)


CRS(Tmax)(W,N,L) ≥ KintTmax


KintTmax/N
= N


In case 2, consider the latency overhead of the al-
gorithm S, which is at least WL/(NK). Assume that
one task has duration Tmax and is assigned in the last
job; all the remaining tasks are of an equal duration
ε → 0). Hence the makespan of the algorithm S is at
least WL/(NK) + Tmax and


CRS(Tmax)(W,N,L) ≥ WL/(NK) + Tmax


L+ Tmax
≥ N


This completes the proof. ut
Consider the case where all K tasks of some job


are of duration ε → 0 and all the other tasks are of
duration Tmax. The competitive ratio of the chunking
algorithm using the job size K is then


CRchunking(Tmax)(W,N,L) =
KTmax +WL/(NK)


L+ Tmax


The competitive ratio is minimised by setting the first
derivative of CRchunking with respect to K to zero and


solving for K. This yields K =
√


WL(L+Tmax)
NTmax


.
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3.1 Chunking in a probabilistic model


Recall that the probabilistic model assumes that tasks’
durations are realisations of a random variable with
(known) mean µ and (known) standard deviation σ.
The fixed-size chunking strategy in the probabilistic
model was analysed by Kruskal and Weiss [11]. They
derived the following estimation of the expected make-
span E[M] for the chunk size K:


E[M] ≈ W


N
µ+


WL


NK
+ σ


√
2K lnN (1)


This formula has a nice intuitive interpretation.
The first term is the time of executing W tasks on
N processors on a system with no overhead. The sec-
ond term describes the latency overhead. The third
term describes the load imbalance due to the varia-
tion in tasks’ durations. Unfortunately, the estimation
in Equation 1 only holds if W and K are large and
K À logN . If these assumptions hold then also the
optimal chunk size Kopt can be estimated:


K̂opt =


( √
2WL


σN
√
lnN


)


If the assumptions above do not hold, [11] gives the
following estimates for the expected makespan E[M]:


E[M] ≈ W


N
µ+


WL


NK
+ σ


√
2K ln


σN√
Kµ


for K ¿ W/N and small
√
K/N ; and


E[M] ≈ W


N
µ+


WL


NK
+


Nσ2


µ


for K ¿ W/N and large
√
K/N . However, a tracta-


ble analytical expression for the optimal chunk size K
could not be derived.


4 Factoring


Factoring [7, 6, 1, 8] works in rounds, see Fig. 2 it could
also be expressed in the form of the generic algorithm
from Fig. 1 by rewriting the procedure compute the


job size K, but doing so would make the algorithm
more difficult for reading). In each round, it assigns N
jobs of equal size. The job size is decreased after each
round, whereby the job size in a round is a factor of the
work remaining (the number of yet unassigned tasks)
at the beginning of the round. The factor F remains


MASTER FACTORING(int W , int N , float F )
{


int K;
int counter;
int round = 0;
int work = W ;
while (work > 0)
{


round = round+ 1;
K = max(work/F , 1);
counter = 0;
while ((counter < N) and (work > 0))
{


counter = counter + 1;
wait for a job request from an idle worker;
assign a job consisting of K yet unprocessed tasks
to the idle worker;
work = work −K;


}
} reply job requests with NO MORE WORK;


}


Fig. 2. Factoring algorithm with factor F .


constant over all rounds. During the last round, single-
task jobs are assigned. Once a job has been assigned to
a worker, the worker must compute all tasks assigned
in that job.


We will derive the optimal factor F , assuming that
the ratio T = Tmax/Tmin is the only a-priori knowl-
edge available. (A similar analysis which assumes an
a-priori knowledge of both Tmax and Tmin can be
found in [8] and [12].) Denote Ki the job size which is
assigned during the round i of the factoring algorithm
and let wi denote the number of still unassigned tasks
at the beginning of round i. In order to be competitive,
factoring guarantees that the longest sequential com-
putation of a job of size Ki will not take longer than
the shortest parallel computation of the still unas-
signed wi −Ki tasks on the remaining N − 1 workers:
max seq time(Ki) ≤ min par time(wi−Ki, N − 1). In
order to minimise the assignment overhead, Ki must
be as large as possible. The largest Ki which satis-
fies the inequality above (and thus guarantees
the maximal imbalance of at most 1 task) is
Ki = wi/(1 + T (N − 1)).


Note that it is only the assignment overhead which
determines the competitive ratio of factoring. For ex-
ample, the trick with setting durations of all the tasks
of K1 to Tmax and computing them in parallel by
the best offline algorithm does not work. The rea-
son is that this does not increase the makespan of
factoring at all: K1Tmax = WTmax/(T (N − 1)) =
WTmin/(N − 1).
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Theorem 2. For all W,N,L, T competitive ratio of
the factoring algorithm with a-priori knowledge of T
using factor F = 1 + T (N − 1) is O((lnW )/W ) and
approaches 1 if W → ∞.


Proof. Let r denote the last round at the beginning
of which the number of still unassigned tasks wr is at
most N (as the size of the jobs assigned in the round
r is Kr = 1 and the number of the jobs assigned in
the round r is at most N). It can be observed that the
number of yet unassigned tasks wi at the beginning of
round i is equal to wi=W (1−N/(1 + T (N − 1)))


i−1
.


Solving wr ≤ N for maximal r yields the number of
rounds r performed by the factoring algorithm:


rfactoring =
ln (W/N)


ln 1+T (N−1)
(N−1)(T−1)


(2)


The cost of assignments of the factoring algorithm
is Lr. The imbalance of the factoring algorithm is at
most 1 task. Thus the difference between the net make-
span of the factoring (which does not include the cost
of assignments) and the best net offline makespan is
at most Tmax − Tmin. In the worst case all task’s du-
rations are Tmin except of one task which is of dura-
tion Tmax and is assigned in the last round of the fac-
toring algorithm. Hence competitive ratio of the fac-
toring algorithm can be bounded from above:


CRfactoring(T )(W,N,L) ≤


≤ WTmin/N+Tmax−Tmin+L
(
ln (W/N)/ln


1+T (N−1)
(N−1)(T−1)


)
WTmin/N+L =


= O((lnW )/W ) (3)


This completes the proof. ut


4.1 Factoring in a probabilistic model


The factoring algorithm in a probabilistic model (with
known µ and σ) was studied by Flynn, Flynn-Hummel
and Schonberg in the context of scheduling indepen-
dent loops on multiprocessor shared-memory ma-
chines. An approximation of the optimum job
size K̂opt


i which is used in round i was determined
in [6, 7] by estimating the maximal portion of the re-
maining (unassigned) work which has a high probabil-
ity of being completed by N processors within
time µwi/N . The analysis yields the following itera-
tion scheme (at the beginning of round i, wi denotes
the number of still unassigned tasks, 1/(Nxi) is the
division factor):


w1 = W, x1 = 1 +
N2


w1


(
σ


µ


)2


K̂opt
i =


wi


Nxi
,


wi+1 = wi −NK̂opt
i , xi+1 = 2 +


N2


wi


(
σ


µ


)2


Note that this iteration scheme only requires the
knowledge of the coefficient of variation cov of the
tasks’ probability distribution (cov = σ/µ). There are
two extreme cases: 1. If cov = 0 (no variance) then
this strategy assigns all jobs in a single round; 2. If
cov → ∞ (unbounded variance or negligible tasks’ du-
rations) then this scheme assigns jobs of size 1. (This
scheme is not strictly factoring in the sense of Sec-
tion 4 because the factor is not the same constant in
subsequent rounds.)


5 Work stealing


So far we assumed that the master process cannot take
back its decisions—i.e. once a job has been assigned
to a worker, then the job must be processed by that
worker. In the work stealing algorithm, the master pro-
cess can reclaim already assigned but yet unprocessed
tasks from the workers. The work stealing algorithm
requires no a-priori information (not even the knowl-
edge of latency). It initially assigns all the tasks in
jobs of size W/N to idling worker processes. When
a worker becomes idle again, the master reclaims all
yet unprocessed tasks from all the worker processes
and redistributes them equally back again to all worker
processes. The periods between the redistributions are
called rounds. Each round adds a penalty L′ to the
makespan.


An implementation of the work stealing algorithm
can use two threads of control in each worker process:
a “listening thread” which reacts to work redistribu-
tion messages by sending all yet unprocessed tasks
to the master process; and a “working thread” which
computes the tasks and notifies other processes when
it runs out of work. These two threads share a queue
of tasks. The queue is protected by a semaphore in
order to exclude its simultaneous access by both the
threads. The working thread repeats a loop in which it
locks the queue, pops one task, unlocks the queue and
starts processing the task. After finishing the task, this
procedure repeats until the working thread finds the
queue empty. Then it notifies the other processes and
waits until the listening thread inserts tasks of the new
round into the queue and resumes the computation (or
terminates the whole process). Yet unprocessed tasks
in a process are the tasks in the queue. A clever imple-
mentation of the algorithm amortises the latency by
allowing a worker which reacts to a work redistribu-
tion message to continue in processing of tasks in its
queue during the work redistribution.


As the task distribution in work stealing uses
a more complex communication pattern (broadcasting
and gathering) than the previous algorithms (point-
to-point round-trip), we will denote this latency L′,
whereby L′ ≥ L. However, L′ differs from L only
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by a constant factor if N is a constant. This fac-
tor depends on the physical mechanism which is used
for communication among the processes. Note that
L′ ≈ L e.g. in a bus network or a network with a com-
plete interconnection graph. Similarly as by factoring,
there is no work imbalance at the end of the algorithm,
therefore the competitive ratio of work stealing only
depends on the number of rounds.


Theorem 3. For all W,N,L, L′ competitive ratio of
the work stealing algorithm with no a-priori knowledge
is O((lnW )/W ) and approaches 1 if W → ∞.


Proof. The number of rounds of work stealing in the
worst case can be determined as follows. Assume that
one of the worker processes finishes its first job of
size W/N , while no other worker process has finished
its first task. After the redistribution a second round
begins and the same situation happens: one worker
process finishes its job, while none of the other worker
processes has finished its first task. Etc. The total
number of yet unprocessed tasks (in the whole sys-


tem) is at most wi = W ((N − 1)/N)
i
at the begin-


ning of round i. At most N tasks are distributed at
the beginning of the last round r. Solving wr ≤ N for
maximal r yields


r =
ln (W/N)


ln (N/(N − 1))
(4)


The rest of the proof is similar to the proof of The-
orem 2. The competitive ratio of the work stealing al-
gorithm can be bounded from above:


CRworkstealing(W,N,L, L′) ≤


≤ WTmin/N+Tmax−Tmin+L′
(
ln (W/N)/ln N


(N−1)


)
WTmin/N+L =


= O((lnW )/W ) (5)


This completes the proof. ut


6 Comparison of deterministic
assignment algorithms


It is clear from theorems 1, 2 and 3 that the chunk-
ing algorithm can not compete with the factoring and
work stealing algorithms if the number of processes N
is constant and the number of tasks W is sufficiently
large in comparison with N (W ≈ N3 or larger).


We proved a common upper bound for competitive
ratios of the work stealing and factoring algorithms for
W → ∞. Both these algorithms guarantee a perfect
balance, therefore we can focus on their number of
rounds which determine the cost of assignment. In or-
der to keep things simple, we will assume L = L′ in the
sequel. If we directly compare the number of rounds in


work stealing (Eq. 4) and factoring (Eq. 2), then work
stealing does not perform worse than factoring when
T ≤ N + 1, because then


rworkstealing


rfactoring
=


ln N
N−1


ln 1+T (N−1)
(T−1)(N−1)


≤ 1


However, the comparison above is not fair, because
the work stealing algorithm with a-priori knowledge of
T = Tmax/Tmin is actually more efficient than in the
proof of Theorem 3 (although it does not makes use
of the knowledge of T ). For a given T , let us recon-
sider the scenario in which always one worker process
finishes all its tasks from the first round, while all the
other worker processes do as little work as possible.
While the worker computes its first job of size W/N
tasks, all the other workers must have computed at
least W/(NT ) tasks each. So every other worker has
at most W (T − 1)/(NT ) yet unprocessed tasks; in
sum, there are at most W (T − 1)(N − 1)/(NT ) un-
processed tasks in the whole system (which is
less than W (N − 1)/N tasks in the proof of
Theorem 3). In the second round, each worker
is assigned W (T − 1)(N − 1)/ (N2T ) tasks. When
a worker finishes its job from the second round, then
all the other workers have at most W ((T − 1)/(NT ))


2


yet unprocessed tasks each; in sum, there are at most
W ((T − 1)(N − 1)/(NT ))


2
yet unprocessed tasks in


the whole system. Etc. Generally, there are wi =
W ((T − 1)(N − 1)/(NT ))


i
yet unprocessed tasks in


the whole system at the beginning of round i. At most
N tasks are distributed at the beginning of the last
round r. Solving wr < N for maximal r yields


rworkstealing =
ln (W/N)


ln NT
(T−1)(N−1)


(6)


Fair comparison of the number of work stealing
rounds (Eq. 6) with the number of factoring rounds
(Eq. 2) yields


rworkstealing


rfactoring
=


ln (W/N)


ln NT
(T−1)(N−1)


ln (W/N)


ln
1+T (N−1)


(T−1)(N−1)


=
ln 1+T (N−1)


(T−1)(N−1)


ln NT
(T−1)(N−1)


< 1


This means the work stealing algorithm performs
better than the factoring algorithm for all W,N,L,
L′, T if L’=L. More precisely, the work stealing algo-
rithm performs better for L, L’ such that


ln 1+T (N−1)
(T−1)(N−1)


ln NT
(T−1)(N−1)


<
L


L′


because then L′rworkstealing ≤ Lrfactoring. We stress
that an a-priori knowledge of T is rarely available in
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practice and must therefore be estimated. With an in-
accurate estimation of T , the factoring algorithm per-
forms worse than in our analysis.


The work stealing algorithm is a clear winner. It
has no parameters and requires no tuning. Moreover, it
can be used (after some modifications) in applications
where processes may fail or where the number of tasks
may grow in run-time.


7 Conclusions


We analysed online performance of chunking, factor-
ing and work stealing assignment algorithms in a de-
terministic model. The chunking algorithm requires an
a-priori knowledge of the maximal task’s duration and
achieves competitive ratio N (which does not depend
on W ) for W = Ω(N3), where N denotes the num-
ber of processes and W denotes the number of tasks.
The performance of chunking algorithm is thus very
poor, at least from the point of view of competitive
analysis. The factoring algorithm requires an a-priori
knowledge of the factor T = Tmax/Tmin. Its competi-
tive ratio is bounded from above by O(ln (W )/W ) and
approaches 1 when W → ∞, which is very desirable.
The same holds for the deterministic work stealing al-
gorithm, which performs better than the factoring al-
gorithm and requires no a-priori information.


The last result is valid under two assumptions:
1. the underlying communication mechanism provides
an efficient implementation of broadcasting and gath-
ering, which we assume to be as fast as round-trip
point-to-point communication; 2. the communication
latency is constant which does not depend on the mes-
sage size. The first assumption holds e.g. for bus and
fully-switched networks; the second assumption holds
for practically all contemporary networks, if the mes-
sage size does not exceed a certain threshold.
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Abstract. We study the state complexity of languages
that can be obtained as reversals of regular languages repre-
sented by deterministic finite automata. We show that the
state complexity of the reversal of a regular language with
state complexity n is between logn and 2n. We first prove
that the upper bound is tight in the ternary case. Then we
present binary languages reaching this upper bound on the
reversal. We also obtain some other partial results in the
binary case.


1 Introduction


Regular languages and finite automata are the old-
est and the simplest topics in computer science. They
have been investigated since the 1950s. Despite their
simplicity, some problems are still open. Probably the
most challenging is the question of how many states
are sufficient and necessary for two-way deterministic
automata to simulate two-way nondeterministic au-
tomata which is connected to the well-known
DLOGSPACE vs. NLOGSPACE problem.


Motivating by applications of regular languages in
software engineering, programming languages, and
other areas in computer science, as well as by their im-
portance in theory, this class of languages is intensively
studied in recent years; for the discussion, we refer the
reader to [8, 23]. Various areas in this field are now
deeply and intensively examined. One of such areas
is descriptional complexity which studies the cost of
description of languages represented by different for-
mal systems such as deterministic and nondetermin-
istic finite automata, two-way automata, regular ex-
pressions, or grammars.


Rabin and Scott in 1959 [18] described an algo-
rithm for the conversion of nondeterministic finite au-
tomata into deterministic automata known as the sub-
set construction. The algorithm shows that every
n-state nondeterministic automaton can be simulating
by at most 2n state deterministic automaton. In 1963,
Lupanov [16] proved the optimality of this construc-
tion by describing a ternary and even a binary regular
language accepted by an n-state nondeterministic au-
tomaton that requires exactly 2n deterministic states.


Maslov in 1970 [13] considered the state complex-
ity of union, product, and Kleene star. He gave bi-


nary worst-case examples for these three operations,
however he did not present any proofs. Birget in his
works [1, 2] examined intersection and union of several
languages, and also the question of the size of nonde-
terministic automaton for complements. The system-
atic study of the state complexity of operations on
regular languages began in the paper by Yu, Zhuang,
and Salomaa [24]. This work was followed by papers
studying state complexity of operations on unary lan-
guages [17] and on finite languages [3], complexity of
proportional removals [5], and shuffle in [4].


Another stream of research is the study of so called
“magic” numbers, where not only worst-case complex-
ities are important, but also all values that can be
obtained as a corresponding complexity are consid-
ered. The problem was stated by Japanese authors
Iwama, Kambayashi, and Takaki [9] who asked what
values can be obtained as the size of the minimal de-
terministic automaton equivalent to a given n-state
nondeterministic automaton. The values that cannot
be obtained in such a way are called “magic” numbers
in [10]. The following research showed that there are
no magic numbers in the ternary case [12], while a lot
of them exist in the unary case [6]. The binary case is
still open.


Similar results for the size of nondeterministic au-
tomata for complements can be found in [19], for the
union and intersection in [7], and for the reversal and
star in [11]. In all cases, the whole range of complexi-
ties can be obtained, however while in the case of union
and intersection the used alphabet is fixed, in the case
of reversal and star, the alphabet grows exponentially
with n.


In this paper, we continue the study of the state
complexity of reversals of regular languages. In 1966,
Mirkin [14] pointed out that Lupanov’s ternary worst-
case example is a reversal of a deterministic automa-
ton, which proves that the complexity of the rever-
sal of a language accepted by a ternary n-state deter-
ministic automaton is 2n. The binary language with
more than one accepting state reaching this upper
bound has been given in 1983 by Leiss [15]. In 2004,
the paper [20] claimed a binary worst-case example
with a single accepting state. Unfortunately, the re-
sult does not hold: in the case of n = 8, the number
of reachable states in the subset automaton for the re-
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versal is 252 instead of 256. Since the result has been
used in the literature several times, our first aim is
to present a correct example, and a correct proof. We
start with an observation that all states in the subset
automaton corresponding to the nfa that is obtained
as a reversal of a minimal dfa are pairwise inequiva-
lent. We show that the state complexity of the rever-
sal of an n-state dfa language is between log n and 2n,
and present a ternary worst-case example with a very
simple proof of reachability of all subsets. In a much
more difficult way, we prove that the upper bound 2n


is tight also in the binary case. Our witness automaton
has a single accepting state, and is uniformly defined
for all integers n. Therefore, it can be used in all cases
where the incorrect result from [20] was used. We next
find binary n-state deterministic automata that need
n+ 1 or n+ 2 deterministic states for their reversals.
Finally, we present binary 1-, 2-, and 3-state automata
that reach all particular values from log n to 2n as the
state complexity of their reversals.


2 Preliminaries


This section gives some basic definitions, notations,
and preliminary results used throughout the paper.
For further details, we refer to [21, 22].


Let Σ be a finite alphabet and Σ∗ the set of all
strings over the alphabet Σ including the empty
string ε. The length of a string w is denoted by |w|.
A language is any subset of Σ∗. We denote the cardi-
nality of a finite set A by |A| and its power-set by 2A.


A deterministic finite automaton (dfa) is a 5-tuple
M = (Q,Σ, δ, s, F ), where Q is a finite set of states,
Σ is a finite input alphabet, δ is the transition function
that maps Q×Σ to Q, s is the starting state, s ∈ Q,
and F is the set of accepting states, F ⊆ Q. In this
paper, all dfa’s are assumed to be complete, that is,
the next state δ(q, a) is defined for every state q in Q
and every symbol a in Σ. The transition function δ is
generalized to a function from Q×Σ∗ to Q in a natural
way. A string w in Σ∗ is accepted by the dfa M if the
state δ(s, w) is an accepting state of the dfa M . The
language accepted by the dfa M , is the set L(M) =
{w ∈ Σ∗ | δ(s, w) ∈ F}.


A nondeterministic finite automaton (nfa) is
a 5-tupleM = (Q,Σ, δ, S, F ), where Q,Σ, S and F are
defined identically as for a dfa, S is the set of start-
ing states, and δ is now the nondeterministic tran-
sition function that maps Q × Σ to 2Q. The transi-
tion function can be naturally generalized to the do-
main Q × Σ∗. A string w in Σ∗ is accepted by the
nfa M if the set δ(q0, w) contains an accepting state
of the nfa M. The language accepted by the nfa M is
L(M) = {w ∈ Σ∗ | δ(S,w) ∩ F 6= ∅}.


Two automata are equivalent if they recognize the
same language. A dfa (an nfa) M is called minimal if
every dfa (every nfa, respectively) that is equivalent to
M has at least as many states as M . It is well-known
that a dfa M = (Q,Σ, δ, s, F ) is minimal if all its
states are reachable from the starting state and no two
its different states are equivalent (states p and q are
equivalent if for all strings w in Σ∗, the state δ(p, w) is
accepting if and only if the state δ(q, w) is accepting).
Every regular language has a unique minimal dfa, up
to the naming of states. However, the same result does
not hold for nfa’s.


The state complexity of a regular language is the
number of states in its minimal dfa. A regular lan-
guage with deterministic state complexity n is called
an n-state dfa language.


Every nfa M = (Q,Σ, δ, S, F ) can be transformed
to an equivalent deterministic finite automaton M ′ =
(2Q, Σ, δ′, s′, F ′) thanks to an algorithm known as the
“subset construction” in the following way. Every state
of the dfa M ′ is a subset of the state set Q. The start-
ing state of the dfa M ′ is the set S. The transition
function δ′ is defined by δ′(R, a) =


⋃
r∈R δ(r, a) for


every state R in 2Q and every symbol a in Σ. A state R
in 2Q is an accepting state of the dfa M ′ if it con-
tains at least one accepting state of the nfa M. We
call the dfa M ′ the subset automaton corresponding
to the nfa M . The subset automaton M ′ need not
be minimal since some states may be unreachable or
equivalent.


We next give the definitions and some preliminary
results concerning the reversal operation.


Definition 1. The reversal wR of a string w is de-
fined as follows: εR = ε and if w = a1a1 · · · an with
ai ∈ Σ, then wR = anan−1 · · · a2a1. The reversal of
a language L is the language LR = {wR | w ∈ L}.


The reversal of a dfa A = (Q,Σ, δ, s, F ) is the
nfa AR obtained from A by reversing all transitions
and by swapping the role of starting and accept-
ing states, that is AR =


(
Q,Σ, δR, F, {s}), where


δR (q, a) = {p ∈ Q : δ (p, a) = q}.


Proposition 1. The reversal of a dfa A recognizes
the language L (A)


R
.


Proof. We prove that a string w is in L (A)
R


if and
only if the string w is accepted by the nfa AR.


Fig. 1. The string wR is accepted by the dfa A.
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Fig. 2. The string w is accepted by the nfa AR.


If w is in L (A)
R
, then wR is in L (A), and so


the starting state s goes to an accepting state f in F
by wR. It follows that the starting state f of the nfaAR


goes to the accepting state s of AR by w, and so w is
accepted by AR.


Next, if a string w is accepted by the nfa AR, then
there is a starting state f in F that goes to the ac-
cepting state s of AR by w. It turns out, that in the
dfa A, the starting state s goes to an accepting state f
by wR. Thus the string wR is in the language L (A),
and so the string w is in the language LR (A). ut


Since a language is regular if and only if it is rec-
ognized by a dfa or, equivalently, by an nfa, we get the
following result.


Corollary 1. The reversal of every regular language
is a regular language.


After the construction of nfa for the reversal of
a regular language we can use the subset construction
to get a dfa for the reversal. This gives the following
bounds on the size of the dfa.


Theorem 1. Let L be a regular language accepted by
a minimal n-state dfa. Then the minimal dfa for the
language LR has at most 2n and at least dlog2ne states.
Proof. Let A be an n-state dfa for a language L. The
reversal AR of the dfa A is an n-state nfa for the lan-
guage LR. After applying the subset construction to
this nfa AR, we get at most 2n-state dfa for the lan-
guage LR. Now since (LR)R = L, the lower bound
is dlog ne. ut


We now prove quite interesting result that in the
subset automaton corresponding to the reversal
of a minimal dfa, all states are pairwise inequivalent.
This means that we need not prove inequivalence of
states troughtout the paper.


Lemma 1. Let for each state q of an nfa there exists
a string wq such that wq is accepted by the nfa from
state q, but is not accepted from any other state. Then
in the corresponding subset automaton, all states are
pairwise inequivalent.


Proof. Let M = (Q,Σ, δ, S, F ) be an nfa, and let for
each state q in Q, wq be a string that is accepted by M
only from state q. Let S and T be two different subsets


in the subset automaton corresponding to the nfa M .
Then, without loss of generality,there exists a state q
in Q such that q ∈ S and q /∈ T . It follows that the
string wq is accepted by the subset automaton from
state S but not from state T . Thus the states S and T
are inequivalent. ut


Theorem 2. All states in the subset automaton cor-
responding to the reversal of a minimal dfa are pair-
wise inequivalent.


Proof. Let us show that every nfa obtained as the
reversal of a minimal dfa satisfies the condition in
Lemma 1. Let q be a state of the nfa. Since state q
is reachable in the given dfa, there exists a string x
such that the starting state of the dfa goes to state q
by x, as illustrated in Fig. 3.


Fig. 3. State q is reachable in the dfa A (left); p 6= q in the
nfa AR (right) implies two distinct conputations of the dfa
on the string x.


This means that the string xR is accepted by the
nfa from state q, see Fig. 3. We now prove that the
string xR is not accepted by the nfa from any other
state. Assume for contradiction that the string xR is
accepted by the nfa from a state p with p 6= q. It
turns out that the starting state of the dfa might go
by the string x to state q as well as to state p, which
is a contradiction since in the dfa we woud have two
different computations on the string x. Hence the nfa
satisfies the condition of Lemma 1, and so all states
in the corresponding subset automaton are pairwise
inquivalent. ut


3 Ternary alphabet


We start with the upper bound 2n in the ternary case.
The next theorem presents a ternary worst-case exam-
ple for the reversal with a very simple proof of reach-
ability of all subsets.


Theorem 3. For every integer n with n ≥ 3, there
exists an n-state dfa A over a three-letter alphabet
such that the minimal dfa for the reversal of the lan-
guage L(A) has 2n states.


Proof. Let A be the minimal n-state dfa shown in
Fig. 4. Construct an nfa for the reversal of the lan-
guage L(A) from the dfa A by reversing all transitions,
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Fig. 4. The ternary dfa A reaching the bound 2n.


Fig. 5. The nfa for the reversal of the language L(A).


and exchanging the starting and accepting states. The
nfa is shown in Fig. 5.


Let us show that the corresponding subset automa-
ton has 2n reachable and pairwise inequivalent states.
We first show that every set containing state 0 is reach-
able. The proof is by induction on the size of sets. The
basis, |S| = 1, holds true because state 0 is the start-
ing state of the subset automaton. Assume that every
set of size k, 1 ≤ k ≤ n−1, containing state 0 is reach-
able. Let S = {0, i1, i2, ..., ik} with 1 ≤ i1 < i2 < · · · <
ik ≤ n− 1 be a set of size k+1. Consider the set S′ =
{0, i2 − i1 + 1, ..., ik − i1 + 1}. The set S′ is of size k
and contains state 0, and so is reachable by the induc-
tion hypothesis. The set S′ goes to the set S by bci1−1


since S′ goes to {0, 1, i2 − i1 + 1, . . . , ik − i1 + 1} by b,
and then to S by ci1−1. It turns out that the set S is
reachable.


We next prove the reachability of sets with-
out state 0. Let S = {i1, i2, ..., ik} with 1 ≤ i1 < i2 <
· · · < ik ≤ n − 1. Then the set S is reached from the
set {0, i2 − i1, . . . , ik − i1}, containing state 0, by ai1 .
Finally, the empty set is reached from the set {1} by b.
This completes the proof since the inequivalence fol-
lows from Theorem 2. ut


4 Binary alphabet and upper bound


The authors of the paper [20] present a binary n-state
dfa and claim that its reversal requires 2n determinis-
tic states. Unfortunately, the example does not work:
in the case of n = 8, the resulting dfa has 252 reachable
states instead of 256. The next theorem describes cor-
rect binary n-state witness dfa’s with a single accept-
ing state, uniformly defined for every n with n ≥ 2.
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Fig. 6. The binary dfa A reaching the bound 2n.


a


b


21 n-1
a a a
b


3 4
a


b


b


a


b


a


b


a
0


Fig. 7. The nfa AR for the binary language L(A)R.


Theorem 4. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the language
L(A) has 2n states.


Proof. Let us consider a binary n-state dfa A in Fig. 6
with states 0, 1, . . . , n− 1, where n ≥ 4, state n is the
starting state and state 0 is the sole accepting state.
For all i = 4, 5 . . . , n− 1, state i goes to state i− 1 by
symbol a, and to itself by symbol b. State 3 goes to
state n − 1 by symbol a, and to state 2 by b. State 2
goes to state 1 by a, and to state 3 by b. State 1 goes
to state 0 by both symbols a and b. State 0 goes to
state 2 by a, and to itself by b. In the case of n = 2 or
n = 3, there are some small changes in the structure
of the automaton. If n = 2, then state 0 goes to state 1
by symbol a. If n = 3, then state 2 goes to itself by
symbol b.


In these two cases, we reverse the dfa A, and after
the determinisation of the reversal, we get a four-state
minimal dfa if n = 2 in Fig. 12, and an eight-state
minimal dfa if n = 3 in Fig. 17.


Now let n ≥ 4. Construct an nfa for the reversal
of the language L (A) by exchanging the starting and
accepting states, and by reversing all transitions in the
dfa A, see Fig. 7. We are going to show that the cor-
responding subset automaton has 2n reachable states.
To make the proof more understandable, we call the
set of states {0, 1, 2} the first part, and the set of states
{3, 4, . . . , n− 1} the second second part of the nfa.


We will consider two cases:
1. n = 3k + 1 or n = 3k + 2,
2. n = 3k,
where k is a positive integer.


1. If n = 3k + 1 or n = 3k + 2, then the number
of states in the first part is three, while the number
of states in the second part is 3 (k − 1) + 1 or
3 (k − 1)+2. Thus these two numbers are are relativily
prime. First, the set {0, 1} is reached from the starting
set {0} by symbol b. Now we demonstrate how to add
a new state ` to a set {0, 1}∪S, where S is a subset of
the second part with ` /∈ S, to get a set {0, 1}∪S∪
{`}. By symbol a, we can rotate states in both parts.
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Consider the set {0, 1, `}. Since the sizes of the two
parts are relatively primes, there exists an integer x
such that the set {0, 1, `} goes to the set {0, 2, 3} by
the string ax. Apply the string ax to the set {0, 1}∪S,
and then apply symbol b. We get the set {0, 1, 3}∪S′,
where S′ is a rotation of the set S by the string ax.
And now, again, there exists an integer y such that the
set {0, 1, 3} ∪S′ goes to the set {0, 1} ∪S ∪ {`} by ay.
So, in this way, we can reach every set {0, 1} ∪ S. Let
us show how to get every subset of states in first part
without changing the second part. Every set {0, 1}∪S
goes to the set {1, 2}∪S as well as to the set {0, 2}∪S
by an appropriate numbers of a’s. Every set {1, 2}∪S
goes to the set {2}∪S by bb, and then to {0}∪S and
{1} ∪ S by an appropriate numbers of a’s. Every set
{0, 2} ∪ S goes to the set {0, 1, 2} ∪ S by bb. Finally,
every set {1} ∪ S goes to the set ∅ ∪ S by bb. This
completes the proof of reachability if n = 3k + 1 or
n = 3k + 2.


2. If n = 3k, we can split the states of the nfa
into triples, the first part is a triple 0, and the second
part consists of triples 1, 2, . . . , k − 1. We first reach
the set {0, 1, 2} from the starting set {0} by the string
baabb. Let us show how to set a triple in the second
part without changing the other triples. We use the
automaton B shown in Fig. 8. In automaton B, every
set is reachable from the set {0, 1, 2}. Assume we want
to set the `-th triple with 2 ≤ ` ≤ k − 1, and let us


Fig. 8. The nfa AR from Proof of Theorem 4 for n = 6 (left
up corner), and dfa for L(A)R, the main part of the picture.
Red lines correspond to the transitions by symbol b, and
blue lines to the transitions by symbol a.


denote the states of this triple by `0, `1, `2. We choose
which configaration for this triple we want obtain, and
show that we set this configuration with the 0-th triple
set to {0, 1, 2}. When finally setting the first triple, we
also show how to set it with an arbitrary configuration
in the 0-th triple. So, first let ` ≥ 2. A configuration
in this triple is given by a subset S of {3, 4, 5}. We
first count the numbers of a’s in the string on a path
from {0, 1, 2} to {0, 1, 2} ∪ S in the dfa B, and denote
it by a#. Now consider some starting strings:


as0 = a3.(k−1−`+1),
as1 = a3.(k−1−`+1)−1,
as2 = a3.(k−1−`+1)−2;


different starting strings are needed because the num-
ber of a’s must be a multiply of 3 in the end.


Next we move the `-th triple to the place of first
triple by one the of starting strings as0 , as1 , as2 : if
a# (mod 3) = 0 we use as0 so we get `0, `1, `2 at
the place of the first triple, if a# (mod 3) = 1 we
use as1 so we get `1, `2, X at place of first triple, if
a# (mod 3) = 2 we use as2 so we get `2, X,X at place
of first triple whereX is a state from some other triple,
thus we cannot modify X.


Next we proceed by the string w and count the
number of a’s. If the starting string was as0 , after the
1st, 4th, 7th, . . . symbol a, we apply a rotation arot


where a arot = a3.(k−2), so that we do not modify
the other triples. Similarly, if the starting string was
as1 , we apply the rotation arot after the 2nd, 5th, 8th,
. . . symbol a. Finally, if the starting string was as2 , we
apply the rotation after the 3rd, 6th, 9th, . . . symbol a.


Now we have set the `-th triple, but still have to
move the triple to its place `: we just need to apply
the string a3(`−1) (a back string).


So the complete string consists of one of the strat-
ing strings, a new route string, and a back string. Thus
in this way, we can set the 0-th triple {0, 1, 2} with all
triples except for the first triple. We set the first triple
in a similar way, but now we use paths from {0, 1, 2} to
every state in the dfa B. That means that all subsets
are reachable. This completes the proof of reachability
for n = 3k. ut


5 Unary alphabet


We now show that we cannot reduce the size of the
alphabet to one symbol.


Theorem 5. The minimal dfa for the reversal of
every unary n-state dfa language has n states.


Proof. Every string w in a unary language L consists
only of symbols, for example, a. Therefore, w = wR,
and so L = LR. That means that the reversal of the
language L has also complexity n. ut
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6 Binary automata with one, two, and
three states


In this section, we examine the reversals of regular lan-
guages that can be accepted by one-, two- and three-
state dfa’s. We first observe that the reversal of a one-
state dfa language is the same language. It turns out
that that the reversal of no two-state dfa language can
be accepted by a one-state dfa, and so in this case, the
lower bound log 2 cannot be reached. On the other
hand, we show that all other possible values, that is,
2, 3, and 4, can be obtained as the size of the mini-
mal dfa for the reversal of a two-state binary dfa lan-
guage. We next prove that all values from 2 to 8 can be
reached as the number of states in the minimal dfa rec-
ognizing the reversal of a binary language represented
by a three-state deterministic finite automaton.


Theorem 6. The reversal of every one-state dfa lan-
guage is a one-state dfa language.


Proof. Let us prove the theorem by inspecting all one-
state automata. We only have two possibilities shown
in Fig. 9. If the state is accepting, then the automa-


Fig. 9. The one-state dfa accepting all strings (left), and
the one-state dfa accepting no strings (right).


ton accepts all strings. If the state is rejecting, the
automaton does not accept any string. In both cases,
the reversal is the same language, and so is accepted
by the same one-state dfa. ut
Theorem 7. For each α with 2 ≤ α ≤ 4, there exists
a two-state binary dfa A such that the minimal dfa for
the reversal of the language L(A) has exactly α states.


Proof. The corresponding automata for α = 2, 3, 4 are
shonw in Fig. 10, Fig. 11, and Fig. 12, respectively.
The figures show a two-state dfa, its reversal, and the
reachable states in the corresponding subset automa-
ton. By Theorem 2, the subset automata are minimal.


Theorem 8. For each α with 2 ≤ α ≤ 8, there exists
a three-state binary dfa A such that the minimal dfa
for the reversal of the language L(A) has exactly
α states.


Proof. Similarly as in the previous proof, we show
the appropriate three-state binary automata for α =
2, 3, 4, 5, 6, 7, 8 in Figures 13, 14, 15, 16, 17.


Fig. 10. The dfa A (top left), the reversal of A (bottom
left), the subset automaton for the reversal; α = 2.


Fig. 11. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 3.


7 Binary alphabet


In this section, we describe n-state dfa’s whose rever-
sals need exactly n+1 and n+2 deterministic states.
Notice that by Theorem 5, the reversal of an n-state
unary language needs exactly n-states.


Theorem 9. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the
language L(A) has n+ 1 states.


Proof. Let n ≥ 2. Consider the n-state dfa A shown
in Fig. 18 with states 1, 2, . . . , n, of which 1 is the
starting state and also the sole accepting state. For all
i = 1, 2, . . . , n − 1 state i goes by symbol a to state
i + 1, and state n goes by symbol a to itself. For all
i = 2, 3, . . . , n state i goes by symbol b to state i− 1,
and state 1 goes by b to itself. The dfa A is minimal
since for two states i, j with i < i, the string bi−1 is
accepted from state i but not from state j.


Construct an nfa for the reversal of the lan-
guage L (A) by swapping the starting and accepting
states, and by reversing all transitions in A. Let us
show that the corresponding subset automaton has
n + 1 reachable states . The set {1} is reachable be-
cause it is the starting state in the subset automaton.
The set {1} goes to the empty set by symbol a, and to
the set {1, 2} by symbol b. Every set {1, 2, . . . , i} with
2 ≤ i ≤ n−1 goes to the set {1, 2, . . . , i− 1} by a, and
to the set {1, 2, . . . , i+ 1} by b. The set {1, 2, . . . , n}
goes to itself by a and b. Thus the sets {1}, {1, 2}, . . .,
{1, 2, . . . , n}, and the empty set are reachable, while
no other set is reachable. It follows that the minimal
dfa for the reversal of L(A) has n+ 1 sets. ut
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Fig. 12. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 4. ut


Fig. 13. The dfa A (top left), the reversal of A (bottom
left), the subset automaton for the reversal; α = 2.


Fig. 14. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 3, 4.


Fig. 15. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 5, 6.


Fig. 16. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 7.


Theorem 10. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the language
L(A) has n+ 2 states.


Fig. 17. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 8. ut


Fig. 18. The n-state binary dfa requiring (n+1)-state dfa
for the reversal.


Fig. 19. The n-state binary dfa requiring (n+2)-state dfa
for the reversal.


Proof. Let n ≥ 2. Consider the n-state dfa A shown in
Fig. 19 with states 1, 2, . . . , n, of which 1 is the starting
and the sole accepting state. Each state i goes to state
i − 1 by symbol a, except for state 1 that goes to
state n by symbol a. Each state i goes to state 1 by
symbol b. The dfa A is minimal since for each state i,
the string ai−1 is accepted only from state i.


Construct an nfa for the reversal of the lan-
guage L (A) by swapping the starting and accepting
states, and by reversing all transitions in A. Let us
show that the corresponding subset automaton has
n+2 reachable states. The set {1} is the starting state
in the suset automaton. For all i = 1, 2, . . . , n− 1, the
set {i} goes to set {i+ 1} by symbol a, and the set {n}
goes to the set {1} by symbol a. The set {1} goes to set
{1, 2, . . . , n} by symbol b. Each set {i} with i ≥ 2 goes
to the empty set by symbol b. The set {1, 2, . . . , n}
goes to itself by symbols a and b. So the sets {1}, {2},
. . ., {n}, {1, 2, . . . , n}, and the empty set are reach-
able, while no other set is reachable. ut


8 Conclusions


We studied the state complexity of languages that can
be obtained as reversals of regular languages repre-
sented by deterministic finite automata. We showed
that the state complexity of the reversal of a regu-
lar language with state complexity n is between log n
and 2n. We gave a simple proof of a fact that the up-
per bound is tight in the ternary case. Then we pre-
sented binary languages reaching this upper bound on
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the reversal. Our witness deterministic automata have
a single accepting state, which can be used in some
results in the literature instead of an incorrect exam-
ple in [20]. We also obtained some other partial results
in the binary case for one-, two-, and three-state au-
tomata. We described automata, the reversal of which
has state complexity n, n + 1, and n + 2. In future,
we want to do statistics of reachable complexities for
the reversal of all automata up to five states. We also
want to find automata, with other complexities then
n, n+1, n+2, and 2n, and try to answer the question
whether all values from log n to 2n can be reached,
or whether there are some “magic numbers” for the
reversal.
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8. J. Hromkovič: Descriptional complexity of finite au-
tomata: Concepts and open problems. J. Autom. Lang.
Comb. 7, 2002, 519–531.


9. K. Iwama, Y. Kambayashi K. Takaki: Tight bounds on
the number of states of DFAs that are equivalent to
n-state NFAs. Theoret. Comput. Sci. 237, 2000, 485–
494.


10. K. Iwama, A. Matsuura, M. Paterson: A family of
NFAs which need 2n − α deterministic states. Theo-
ret. Comput. Sci. 301, 2003, 451–462.
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Abstract. Current approaches to the visualization
of component-based applications mostly use only associ-
ations and dependencies between components and provide
limited supplementary information. In this paper, we in-
troduce a data layer that is able to store and later present
more information about component elements which
are bound together, and through this knowledge provide
more understanding about the component itself. These in-
formation could be presented in different ways to provide
different views for component software developers, design-
ers, and architects. This data layer is general and is able
to visualize component based applications of any component
model. It is presented here together with its structure, im-
plementation and tooling. We share experiences obtained
in the process of designing and implementing this layer.
Special care is given to the implementation details which
were solved in the process and relevant tools like MOF and
EMF are presented. Results from the test application are
also part of this paper.


1 Introduction


Many component based applications are developed in
different component environments. Component mod-
els like EJB [8], CORBA [6], OSGi [9] and more can be
found in commercial applications and even more com-
ponent models – for example SOFA [19] or CoSi [20]
– are the subject of research.


The diversity of component models or even ap-
proaches to components [1] poses problem when one
needs to visually represent a component or compo-
nent-based application. UML 2.0 [5] component dia-
gram is often used for the visualization of component
dependencies. The problem is that dependencies alone
do not provide much information about the component
itself.


It would be beneficial if there was a way to know
more about the elements that make up the bindings
between components. Based on the diversity of compo-
nent models we can say these elements should bear the
information relevant in the concrete component model.
This means that general visualization approaches like
UML can’t represent this extra information.


This problem is best presented on a short example
of a CORBA component. Let us presume there is com-


Fig. 1. Address Component in UML.


ponent as shown in Example 1 and we would like to
display it in diagram. In UML this component would
look like in Figure 1.


Example 1.
component AddressComponent
{


// a t t r i b u t e s
readonly a t t r i b u t e s t r i n g d e s c r i p t i o n ;
readonly a t t r i b u t e NetworkState s t a t e ;


// f a c e t s
prov ide s AddressBook book ;
prov ide s AddressSearch search ;


// events
p u b l i s h e s ChangeState s t a t e N o t i f y ;


}


UML only supports displaying attributes and in-
terfaces the component provides. The CORBA-specific
flag “readonly” assigned to the attributes is missing
on this diagram and could only be added using stereo-
types, which would make the diagram clumsy. Events
which the component publishes bring difficulties for
the UML component diagram, because it provides no
simple way how to represent them.


If we would like to capture such additional infor-
mation in the visualization of component based appli-
cations, appropriate specific meta information would
need to be available for its concrete component model.
That would lead to as many representations as there
are component models, leading to significant fragmen-
tation of visual notations. A better solution is to have
a generic meta-model which can be instantiated for
individual component models. This means a new data
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Fig. 2. ENT data container.


layer implementing this meta-meta level has to be de-
signed. The representation of this problem based on
MOF (Meta Object Facility) layers [4] is in Figure 2.


On the M3 level there is a data structure able to
hold information about both component models and
component based application. On the M2 level there is
a definition of a component model (defined manually
for each component model to provide meaningful rep-
resentation) which explains the information stored on
the M1 level. The M1 level should support automated
walking through component-based applications.


In [2] we introduced the ENT meta-model which
brought understandable component representation for
both automated software agents and humans. It con-
tains support for a classification applicable to compo-
nent models, description of components and several
views to represent this data based on user’s point of
interest.


1.1 Goal and structure of this paper


In this paper we focus on the design and implemen-
tation of a data layer meeting the above requirements
on storing and using of these additional information
for visualization of component-based applications. The
layer implements the ENT meta-model as a MOF
structure, using Eclipse Modeling Framework as the
underlying technology. Besides describing the data
layer itself, we also want share the experiences gained
in the process of designing its implementation.


In the next section we briefly review the related
standards and research works in the areas of (com-
ponent) meta-modeling and visual representation. An
overview of ENT meta-model is provided in Section 3
to understand the rest of the paper, including the ex-
tensions introduced for the description of component
models and component based applications.


To build a data container according to the ENT
specification, a MOF model [4] was created in which
key features of the meta-model were identified and
model elements were designed. Implementation char-
acteristics were considered in this phase and the meta-
model was slightly modified. The structure of the
MOF model and the description of design steps can
be found in Section 4.


For its good fit with the data layer needs, the
Eclipse Modelling Framework (EMF) was chosen as
a model generator. More information about EMF, the
generated model and editor can be found in Section 5.


As a proof that the MOF model of ENT meta-
model was designed correctly, we implemented rep-
resentations of several component models. The list of
these component models and a case study can be found
in Section 6.


2 Component meta-modeling


The diversity of component models or even approaches
to components [1] has been mentioned in several stud-
ies, e.g. [12, 13]. There are differences in terms of the
target use of the component model (desktop GUI, en-
terprise applications, embedded or real-time systems),
the richness of the interface contract type (from a sin-
gle interface through a set similar to CORBA com-
ponents, to an extensible model as represented by the
iPOJO [14] research framework) as well as between flat
models like OSGi and hierarchical ones like SOFA.


The domain of meta-models is best represented
by the Meta-Object Facility (MOF) standard [4]. As
described in the Introduction, it uses a layered ap-
proach to create progressively more specific structures
defining the terms of a particular domain, their at-
tributes and relationships. MOF itself has been a sub-
ject of rich research. An interesting contribution is
Poernonomo’s work [15] on providing type-theoretical
foundation for the meta-models.


UML [5] component diagram is often used to vi-
sualize component based applications and since ver-
sion 2.0 of the notation it doesn’t suffer from problems
presented in [17] – mainly the inability to clearly dis-
tinguish provided and required interfaces. The UML
component diagram is nowadays a common tool for
the visualization of component dependencies. An
alternative visualization of component-based applica-
tions is presented in [16], this approach supports EFP
(extra functional properties) on top of a classical com-
ponent diagram.


3 Overview of the ENT meta-model


The ENT meta-model is a MOF M3 model whose main
characteristic is the use of faceted classification







Data layer for visualization 57


approach [3] to classify characteristic traits of compo-
nent models. The ENT meta-model is structured into
two levels. On the Component model level the main
characteristic features of a given component model are
defined and the characteristic traits of components de-
fined in this model are classified. On the Application
level the previous definitions are used and the inter-
face elements belonging to individual components are
identified. To support additional information, tags are
provided which can be added to components or single
component elements. The faceted view is used to rep-
resent components in way better readable to humans.


For complete ENT meta-model specification,
please refer to [2]. Compared to this base specification
the meta-model was extended in this work to support
relations and dependencies between components, see
Section 3.5.


3.1 Classification system


The ENT classification system has eight facets called
“dimensions”. These dimensions have predefined val-
ues and each dimension represents a different point of
view on a component. Some facets can have more then
one value, for instance Role which says if an element
is provided or required – in some cases an element can
exhibit both provided and required roles, as e.g. the
SOFA behaviour protocol [18].


– Nature = {syntax, semantics, nonfunctional}
– Kind = {operational, data}
– Role = {provided, required, neutral}
– Granularity = {item, structure, compound}
– Construct = {constant, instance, type}
– Presence = {mandatory, permanent, optional}
– Arity = {single, multiple}
– Lifecycle = {development, assembly, deployment,


setup, runtime}


3.2 Component model level


Complete characteristic features of a given component
model are identified on this level of understanding.


Identification of different component types is the
first step, because the component model consists of
one or more component types. As an example, there
is only one component type in OSGi (called Bundle);
in EJB on the other hand several different compo-
nent types can be identified because EJB applications
can be built from SessionBeans, EntityBeans or Mes-
sageDrivenBeans.


Every component type has its traits definitions
that define the kinds of elements (features) the con-
crete component can have on its surface. Traits thus
helps to fully characterize component of such a type.


Each trait definition is classified using ENT classifi-
cation giving different meaning to these trait defini-
tions. For example, CORBA components (cf. Exam-
ple 1) have traits facets (provided interfaces), recepta-
cles (required interfaces), event sinks, etc.


For other information that are important for the
component model and cannot be described us-
ing traits, tags are used. Tags can expand information
about component types or about elements in traits,
for instance to keep track about version, accessibility,
range and other additional parameters. Tag definitions
are defined on the component model level in order to
be available on the application level.


When the component model level is designed, set of
data structures for its component-based applications
is prepared. These data structures can fully describe
all applications implemented in the given component
model.


3.3 Application level


Components, from which an application is built from,
are represented on this level. The component model
has to be already defined on the component model
level because the application level references its ele-
ments. By creating these references on higher level,
the meaning is given to the application elements.


It means a concrete component is assigned a cor-
responding component type and based on that, a set
of its traits is gained. Traits alone do not say any-
thing about the particular component, but elements
that belong to the given trait do. Each trait has its
own element set – the interfaces, classes, events, etc.
found on the component’s surface. The component is
thus described by several sets of elements grouped to-
gether by their characteristic traits. The trait has only
grouping purpose and through the reference to its trait
definition gives meaning to all elements contained in
it. Concrete values of tags can be set on the component
and its elements, thus providing their more precise de-
scription.


For example, the “facets” trait of the component
from Example 1 is a set { (book,AddressBook), (search,
AddressSearch) } and the (description,string) element
has a tag set { (access,readonly) }.


3.4 Category sets


The level of traits and elements could contain a lot
of unwanted information for some sorts of users. For
example software architects are interested in other in-
formation than programmers of component-based ap-
plications. By using such data layer there could be
a danger of confusion when representing big and com-
plex applications.
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After representing a component-based application
according to the Application level, the received infor-
mation can therefore be organized using category sets.
These sets are defined by selector operators on the
trait classification, and can be supplemented by any
user of the ENT meta-model if another point of view
is needed. In [2] five category sets are presented, from
which we introduce here only the first one (E-N-T)
that gave name to the ENT meta-model.


Category sets say how to group and display traits.
The E-N-T category has three groups. In the first
group are elements that are contained in traits with di-
mension {role = provided}, this means those elements
which the component exports. Required elements are
similarly grouped as needs and elements that can be
both provided and required are called ties.


E-N-T (Exports-Needs-Ties)
fE = λC.(C.role = {provided})
fN = λC.(C.role = {required})
fT = λC.(C.role = {provided, required})


Fig. 3. ENT category set.


For example, the attributes and facets of the COR-
BA component in Example 1 belong to the “E” cat-
egory set, while the stateNotify event belongs to the
“N” set (because it signals the component requires an
event sink to which it needs to be connected).


3.5 Extensions of the ENT meta-model


The original ENT meta-model [2] was concerned only
with the representation of standalone components. We
wanted the ENT meta-model to be able to visualize
whole component based applications with dependen-
cies between components and we further wanted to
add support for hierarchical components. The exten-
sions of ENT meta-model are presented in this section.


A new meta-model entity Binding=(Element local,
Element alien, direction ∈ {provided, required}) was
created to represent bindings between components.
Bindings are realized through concrete elements that
are physically linked to each other, with additional
information about the binding direction – provided
means “from local to alien”, required means oppo-
site. Every component has its own list of bindings,
this list contains all bindings involving the elements
of the component. This means a Binding between ele-
ments of components A and B is in the lists of both
these components. This method has the advantage of
ensuring that the binding list is complete in any com-
ponent’s representation.


The ENT meta-model already contained lists of all
elements that can be bound, as element sets contained
in traits. This modification only allows to add infor-
mation which elements are actually bound to other
elements and does not create any new element.


The list of components which constitute a hierar-
chical component was added as an attribute to the par-
ent component structure. This modification together
with element bindings allows to represent hierarchi-
cal components. This kind of components can add its
own elements and export/import only some of the el-
ements that are contained by components it is built
from. These inner components are restricted in that
they can only bind with each other within the bound-
aries of their parent hierarchical component. In every
other respect they are normal components.


4 ENT model in MOF


This section introduces the data structures which form
a concrete implementation of the ENT meta-model, to
be used in visualization of component-based applica-
tions. The explanations in this section use the descrip-
tion of the process of creating this design and imple-
mentation, as it provides a way to share experiences
that other projects can draw from.


The MOF is a Domain Specific Language used to
define meta-models. The core of MOF is shared with
UML and its meta-models can be defined using UML
class diagram. This means the ENT meta-model can
be defined using MOF and the product of this defi-
nition will be UML class diagram which can later be
processed. Entities defined in this section can be im-
plemented in specific programming language and used
as data layer in any other project.


The creation of a MOF model is most easily started
from a formal definition of the corresponding domain
abstractions. We have to keep in mind that there can
be changes introduced by this MOF model because
the formal description doesn’t consider implementa-
tion limitations and details like references on objects.


We will present the ENT model thus created in
three separate parts. The Classification system is mod-
eled as a simple class ENTClassification with at-
tributes corresponding to classification facets. These
facets are modeled as enumerations, which is appropri-
ate given their needs. The facet attributes were iden-
tified as mandatory, with “single” multiplicity except
for Life-cycle and Role which have “multiple” multi-
plicity.


The component model level is represented by four
elements. ComponentModel entity is the main one and
is designed to keep all instances together on one place.
ComponentTypes and TraitDefinitions will be ac-
cessed via references gained from arrays stored in
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Fig. 4. Component model level in MOF.


ComponentModel. This level quite corresponds to its
formal description. The “note” attribute was added to
all these elements, to provide for descriptive informa-
tion about the implemented component model in this
data structure.


The application level is represented by five elements
and it is the most changed part of the ENT meta-
model compared to its formal description in [2]. The
changes were due to the extensions described in Sec-
tion 3.5. Component, Trait and Tag entities contain
references to their descriptors at the component model
level. Binding and Element entities are component mo-
del independent.


Fig. 5. Application level in MOF.


5 EMF implementation


The MOF model could be converted to a concrete
implementation manually, but EMF (Eclipse Model-
ing Framework) was chosen instead. EMF is used for
Model Driven Development and offers additional ser-
vices such as generating the model classes from UML,
and editors for the model in the form of an plugin for
the Eclipse integrated development environment. This
section describes the advantages brought by the use of
EMF.


EMF was used to generate a Java implementation
of the data layer from the MOF model of the ENT
meta-model. This implementation is called ENTMM
as an abbreviation for ENT meta-model. ENTMM
consists of interfaces and classes corresponding di-
rectly to the model entities presented in the previous
section. This implementation thus forms a run-time
ENT representation of any given component model
and its applications and will be used in every project
that uses the ENT meta-model; for some such future
projects see Section 7.


An editor of ENTMM data was created to pro-
vide GUI for component model definition described in
Section 3.2; it is very similar to editor displayed in
Figure 6. This editor is implemented as Eclipse plugin
and can’t be used without the Eclipse IDE.


EMF however offers more than just the advanced
code generator and Eclipse plug-ins to support model-
ing. One of its features is advanced work with the XML
format. Editors automatically save all model data in
an XML file which can be easily accessed using EMF-
generated resource classes. This brought us very usable
form of automated storing and loading representations
of various component models. This EMF ability goes
both ways so in the future there is the possibility of
using EMF buit-in features to save current application
models in XML.


Eclipse Modeling Framework is able to set many
features of the generated model in its editor and it is
strongly recommended to use this opportunity instead
of manual changes to generated code. EMF transforms
the UML diagram into its internal format of
“ECORE” file, where all information and settings re-
lated to the model are stored. Similarly there
is a “GENMODEL” file which is used to store set-
tings for the editors of the generated model and for
the generating process itself.


The base model created automatically had several
limitations mainly from practical point of view. For-
tunately, EMF is able to set many features for the
component model representation created in its editor.
After an automated transformation of UML into the
EMF basic ECORE format, a few additional changes
had to be performed.
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The most important one was to configure
the ECORE editor so that entity references are used
(instead of instances) for many model class attributes.
This prevented the undesired effect that the same trait
definition could not be shared by several component
representations.


6 Creating component model
representations


The ENTMM editor for Eclipse was used to create the
representation of several component models, namely
OSGi, EJB, CORBA, and SOFA (which have been al-
ready defined) and the CoSi [20] and MVE [11] models
(their definitions were newly created). In this process,
the plugins created by EMF and described in Section 5
were used.


By adding these plugins, a new file type appears
in Eclipse while creating new file, named “ENTMM
Model”. To start defining the representation, the user
has to choose this file type and select “Component
Model” as an “Model Object” when asked. ENTMM
editor like the one in Figure 6 will appear and by using
its simple interface, the user is able to define a new
component model easily.


Fig. 6. ENTMM editor in Eclipse IDE.


6.1 Case study of SOFA


As a case study, the representation of the SOFA com-
ponent model is presented below to show how sim-
ple it is to create a definition of a new component


model. SOFA [19] is a research component model from
Charles University, Prague. A SOFA component is in-
teracting with other components only via designated
provided and required interfaces. A component can be
viewed as both a black-box and gray-box entity.


Definition of SOFA component model in ENT is
provided in [2], and repeated below for understanding
of this case study.


Definition of SOFA component model in ENT:


SOFA component framework defines one kind of com-
ponents, with no component-level and element-level
tags and with four traits.


provides - provided interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {provided},
{structure}, {instance}, {permanent}, {multiple},
Lifecycle),


requires - required interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {required},
{structure}, {instance}, {permanent}, {multiple},
Lifecycle),


properties - provided interfaces
metatype = property,
classifier = ({syntax}, {data}, {provided}, {item},
{instance}, {permanent}, {multiple}, {development,
assembly, runtime}),


protocol - provided interfaces
metatype = protocol, and
classifier = ({semantics}, {operational}, {provided,
required}, {item}, {type}, {permanent}, {na},
{development, assembly, runtime}).


The representation of the SOFA component model
was created in ENTMM editor and the final view of
this implementation can be seen in Figure 6. As men-
tioned in Section 5, EMF stores data in XML format.
XML version of the SOFA component model repre-
sentation is given in Example 2. This representation
can be recreated by intuitive use of editor and filling
data from the formal definition to the prepared data
structure.


The generated XML structure does not follow all
rules of good XML data but EMF does not support
XML customization. This disadvantage is the only tax
to pay for automated storing and loading of compo-
nent models.


Example 2.
<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<ENTMM: ComponentModel xmi : v e r s i on =”2.0”
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xmlns : xmi=”http ://www. omg . org /XMI”
xmlns :ENTMM=”http :///ENTMM. ecore ”
name=”SOFA”>


<componentSet t r a i t S e t =”// @tra i tSe t . 2
// @tra i tSe t . 3 // @tra i tSe t . 0
// @tra i tSe t .1”/>


<t r a i t S e t name=”prov ide s ”
metatype=” i n t e r f a c e ”>


< t r a i t C l a s s i f i e r g r a n u l a r i t y=
” s t r u c t u r e ” a r i t y=”mul t ip l e ”
cons t ruc t=”in s t anc e ”
presence=”permanent”>


<ro l e>provided</ro l e>
< l i f e c y c l e >development</ l i f e c y c l e >
< l i f e c y c l e >assembly</ l i f e c y c l e >
< l i f e c y c l e >deployment</ l i f e c y c l e >
< l i f e c y c l e >setup</ l i f e c y c l e >
< l i f e c y c l e >runtime</ l i f e c y c l e >


</ t r a i t C l a s s i f i e r >
</t r a i t S e t>
<t r a i t S e t name=”r e q u i r e s ”


metatype=” i n t e r f a c e ”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >


</t r a i t S e t>
<t r a i t S e t name=”p r o p e r t i e s ”


metatype=”property”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >


</t r a i t S e t>
<t r a i t S e t name=”pro to co l ”


metatype=”pro to co l”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >


</t r a i t S e t>
</ENTMM: ComponentModel>


7 Future work


Having created the ENTMM implementation, work is
currently under way on the implementation of compo-
nent application loaders for the OSGi and CoSi frame-
works. These loaders should analyze component ap-
plication based on the used component model and
load information we are interested in. This informa-
tion will be stored in the implemented ENT meta-
model data structures. In future we will extend the
supported component models to include EJB, SOFA,
etc. based on actual needs.


We concurrently work on Component model visu-
alizer based on ENT faceted views and of course on the
ENT meta model EMF implementation. This applica-
tion will support multiple ENT views and automated
application loading using implemented component ap-
plication loaders. This should give us a tool able to


provide component application visualization for many
component models and with multiple views based on
ENT philosophy.


All these efforts should result in advanced visual-
izer of component based applications fulfilling these
points:


1. Dynamic loading of any component based appli-
cation no matter which component model is used.


2. Component displayed with additional information.


3. Support of different views, based on user needs.


The visualized component should look similar to
component visualized in Figure 7. This kind of visu-
alization will meet all requirements discussed in this
paper.


Fig. 7. AddressComponent visualized in ENT style.


8 Conclusion


This paper presented an extended ENT meta-model
with the support for inter-component dependencies.
The process of creating the MOF-based representa-
tion of this model was described to share as much
experience as possible, including relevant class dia-
grams. Based on these diagrams a EMF-generated tool
was presented which is used to create representations
of concrete component models, with a discussion of
its advantages and several interesting points we met
in the process of generating the implementation Java
code from the class diagrams.


Finally we presented component models that were
implemented using the generated Eclipse IDE plugin.
Brief description how to use this plugin is also pro-
vided and supplemented with a case study of the rep-
resentation of the SOFA component model. Both the
XML format and the graphic view of the final product
were presented.
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The key contribution of this paper is the descrip-
tion of a MOF-based data layer able to hold and inter-
pret rich information about various component mod-
els and their concrete components. This layer can be
used in many scenarios, including representing visually
complex component-based applications.


This paper can also be used to learn experiences we
gained in the process of the transformation from for-
mal model definitions to this implementation. These
experiences can be used as a whole, providing tuto-
rial how to transform meta-model from paper to real
life application, or separately when the reader is inter-
ested only in some parts like creating a MOF model
or using the EMF tool.
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11. M. Roušal and V. Skala: Modular visualization envi-
ronment - MVE. Proceedings of International Confer-
ence ECI 2000, Herlany, Slovakia.


12. N. Medvidovic and R.N. Taylor: A classification and
comparison framework for software architecture de-
scription languages. In: IEEE Transactions on Soft-
ware Engineering 26 (1) 2000, 70–93.


13. I. Crknovic, M. Chaudron, S. Sentilles, and A. Vulgar-
akis: A classification framework for component models.
Proceedings of the 7th Conference on Software Engi-
neering and Practice in Sweden, 2007.


14. C. Escoffier and R.S. Hall: Dynamically adaptable ap-
plications with iPOJO service components. Proceed-
ings of 6th International Symposium on Software Com-
position, Braga, Portugal, 2007.


15. I. Poernomo: A type theoretic framework for formal
metamodelling. In: Architecting Systems with Trust-
worthy Components, Lecture Notes in Computer Sci-
ence 3938/2006, Springer-Verlag 2006.


16. R. Monge, C. Alves, C. and A. Vallecillo: A graphical
representation of COTS-based software architectures.
Proceedings of IDEAS, April 2002.
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Abstract. Search for sequence similarity in large-scale
databases of DNA and protein sequences is one of the
essential problems in bioinformatics. To distinguish ran-
dom matches from biologically relevant similarities, it is
customary to compute statistical P-value of each discov-
ered match. In this context, P-value is the probability that
a similarity with a given score or higher would appear by
chance in a comparison of a random query and a random
database. Note that P-value is a function of the database
size, since a high-scoring similarity is more likely to exist
by chance in a larger database.
Biological databases often contain redundant, identical, or
very similar sequences. This fact is not taken into account
in P-value estimation, resulting in pessimistic estimates.
One way to address this problem is to use a lower effective
database size instead of its real size. In this work, we pro-
pose to estimate the effective size of a database by its com-
pressed size. An appropriate compression algorithm will ef-
fectively store only a single copy of each repeated string,
resulting in a file whose size roughly corresponds to the
amount of unique sequence in the database. We evaluate
our approach on real and simulated databases.


1 Introduction


Recent progress in genome sequencing technologies led
to rapid increase in the size of DNA sequence data-
bases. Perhaps the most common way of accessing
these databases is through sequence homology search,
where users search in the database for sequences sim-
ilar to their query of interest [1]. Highly similar se-
quences have often evolved from a common ances-
tor and may also share the same function. Homology
search is thus the first step in elucidating the function
and evolutionary history of a newly sequenced genome.


To formally define sequence homology search as
a computational problem, we consider a query Q and
a database D, which are both strings composed of
nucleotides (symbols from the alphabet {A,C,G, T}).
We typically introduce a scoring function that assigns
a positive score to matching nucleotides in the two se-
quences, and negative score to mismatches. Insertion


⋆ This research is funded by European Community
FP7 grants IRG-224885 and IRG-231025, VEGA grant
1/0210/10, and Comenius University grant number
UK/151/2010.


and deletion of nucleotides also invokes penalty. The
goal is then to find a region in the query and a region of
the sequence database with the highest possible score.
This task can be accomplished either by a dynamic
programming algorithm [21], or by fast heuristic meth-
ods, such as BLAST [1]. Regardless of the method, the
result is a set of high scoring pairs (substring of a query
matched to a substring of a database) together with
their similarity scores.


Typical genomic databases are large: human
genome alone has approx. 3.2 GB, and the GenBank
traditional database [4] contains more than 100 GB
of DNA sequences as of April 2010. In these large
databases, many query sequences will have high
scoring matches purely by chance. To distinguish real
matches from spurious ones, we need to assess their
statistical significance.


Traditionally, the statistical significance of a high
scoring pair is assessed by P -value. If the high scor-
ing pair has score s, its P -value is the probability of
a match with score s or better occurring in homology
search of a randomly generated query in a randomly
generated database. The P -value obviously depends
on the sizes of the query and the database, but to
achieve more realistic P -values, we can also take into
account other properties of the sequences, such as fre-
quencies of individual nucleotides [17].


Consider an illustration in Fig.1. For a given
score s, we can visualize the sequence database D as
a set of points in the sequence space with the neigh-
bourhoods that include all sequences with similarity
score s or higher. In this sequence space, the query Q
is located at the boundary of one of these neighbour-
hoods. If the neighbourhoods cover a large fraction of
the sequence space, the P-value is high, because a ran-
domly generated query will have a high probability of
falling into one of those neighbourhoods, resulting in
score larger than s.


While for a given database the P -values could be
computed exactly, such a computation would be im-
practical. Instead, one uses various approximations as-
suming that the sequence in the database is randomly
generated by an i.i.d. process or a Markov chain
(e.g., [9]). These assumptions are often violated by real
databases.
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Fig. 1. Illustration of P -value computation. The points
represent sequences in database D and the shaded areas
show their neighbourhoods with scores that are at least as
good as the similarity score of query Q. Left: Database
with randomly distributed sequences. Right: Database
with clustered sequences.


For instance, the database may contain several se-
quences that are evolutionarily related. Such se-
quences will often contain only a small number of
changes: for example, DNA sequences of human and
chimpanzee are identical in 99% of nucleotides over
most of their lengths. In addition, recently introduced
next generation sequencing technologies made it fi-
nancially viable to sequence multiple individuals from
the same species, leading to various personal human
genome projects [23]. Sequences of different individ-
uals from the same species may differ as little as one
in thousand nucleotides. Consequently, databases may
contain many highly similar sequences, and it is not
appropriate to model them as completely random.


Consider again the example in Fig.1. The illustra-
tion on the right shows a database with clusters of sim-
ilar sequences that have overlapping neighbourhoods,
covering a much smaller fraction of the sequence space
than the database on the left. Consequently, the esti-
mate based on the assumption of random distribution
of sequences in the database will necessarily overes-
timate the P -value, potentially leading to rejection of
high scoring pairs as matches likely to occur by chance.


One of the solutions to this problem proposed in
the literature is to remove the redundancies, such as
closely related sequences, from the sequence data-
base [22]. New query can be first searched against such
non-redundant database, the statistical significance of
resulting matches can be evaluated, and then a sec-
ondary search can be launched against the whole data-
base. In this paper, we propose a different solution.
One of the main parameters used in P -value computa-
tion is the database size n. Instead of the real database
size, we propose to use an effective database size n′


(n′ < n) which will account for redundancies in the
database. For example, if we take a random database
of size n, and double its contents by including second
exact copy of each sequence, the effective size of such


new database will still be n′ = n, even though its real
size is 2n.


Note that the notion of effective database size has
been previously used to adjust for border effects in
case of short queries and databases [17], and an option
for setting it to an arbitrary value is included in most
software tools for homology search. Analogously, sta-
tistical models in population genetics use population
size as a parameter, but instead of the actual number
of individuals, one typically uses effective population
size to compensate for various effects that are not con-
sidered by the model, such as population size changing
over time [11].


2 Kolmogorov complexity of DNA
sequences


For our purposes, the effective database size should
be an estimate of the amount of unique sequence in
the database D, taking into account substrings that
may be present in D in many exact or approximate
copies. One way of describing the information content
of a database is its Kolmogorov complexity [16].


Kolmogorov complexity K(D) of a sequence D is
the bit length of the shortest program P for a fixed
universal Turing machine that outputs sequence D.
Kolmogorov complexity can be understood as a lower
bound (up to a constant additive term) of compression
achievable by any general-purpose algorithm. A string
of length n sampled uniformly at random from a fixed
alphabet is on average almost incompressible [16, Sec-
tion 2.8.1]. In particular, a string over a four-letter
alphabet requires on average approximately 2n bits
(with up to an O(log n) additive term). Thus if we
believe that the databases with the same Kolmogorov
complexity will behave similarly, we should use n′ =
K(D)/2 as an estimate of the effective database size
of database D.


At a first glance, Kolmogorov complexity seems
to be an ideal estimator to use in this context. It
accounts for possible major differences between the
real database and a randomly generated one. In par-
ticular, using Kolmogorov complexity would compen-
sate for differences in frequencies of individual nu-
cleotides (database containing only a long stretch of
As will have a small effective size), and redundant
sequence content (sequences that have only few dif-
ferences can be described very efficiently in a small
space). Moreover, the concept of Kolmogorov com-
plexity has been successfully used in similar contexts
before, in applications such as computing distance be-
tween genomes [15] (see also [10, 18] for overview).


The exact Kolmogorov complexity of database D
is not computable. Yet in practice, we can use vari-
ous compression algorithms instead of computing the
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Kolmogorov complexity. For a fixed compression algo-
rithm, the compressed size c(D) of database D is an
upper bound on the Kolmogorov complexity K(D),
and we can use value n′ = c(D)/2 as an estimate of
the effective database size. Several efficient algorithms
specifically tuned to compression of DNA sequences
are available (see [6, 7, 14, 3]).


As we will see in the next section, the upper bounds
on P -values (or conservative estimates) are generally
desirable in cases where exact P -values cannot be com-
puted. Since the P -values increase monotonically with
the database size, using an upper bound on the effec-
tive database size should not by itself lead to non-
conservative bounds.


Unfortunately, using Kolmogorov complexity may
not necessarily lead to conservative bounds in all in-
stances. As an extreme case, base-4 expansion of many
fundamental constants, such as π, can be generated
by a constant-size program. First n bits generated by
such a program can be used as a sequence database of
size n, replacing digits 0, . . . , 3 with nucleotides. Kol-
mogorov complexity of such database is O(logn) (we
need a constant number of bits to represent the pro-
gram, and logn bits to represent the real size of the
database), yet for all practical purposes, this database
behaves as a random database of size n [2].


Thus using a Kolmogorov complexity and compres-
sion-based estimates of effective database size does not
necessarily lead to conservative estimates of P -values
in homology search. In the next section, we explore
practical issues of using these compression-based esti-
mates in an experimental setting.


3 Estimating effective database size
through compression


Here, motivated by the discussion in the previous sec-
tion, we explore the use of compression software for es-
timating the effective database size. The methodology
is very simple. First, we compress the database and
measure the size of the resulting file in bytes. Then,
we multiply this size by four to account for the fact
that in a uniformly random database, we need two
bits to encode each nucleotide. In this way, we obtain
an estimate of the effective database size which can
be used in any formula or algorithm for estimating
P -values on uniformly distributed databases.


The P -values are used to reject high scoring pairs
that have a high probability of occurring by chance. In
a typical search there will be many spurious matches
with high P -values, and only a few top-scoring
matches will represent genuine similarities with com-
mon evolutionary origins. Since our main task is to
separate these few good matches from many spuri-
ous matches, we would like the P -value estimator to


be conservative, i.e., the estimates should be strictly
higher than the exact P -values, so that the estimated
P -value represents an upper bound on the probability
of a particular match being a false positive.


We have decided to experimentally evaluate the
accuracy of the P -values obtained by the compression
method in a simple scenario motivated by the next
generation sequencing technologies. In this scenario,
a sequencing machine generates many short sequences
(reads). These reads need to be mapped as substrings
to previously known reference genomes. In most cases,
the reads will match the reference sequence exactly,
but sometimes we will see one or two mismatches.
These mismatches can be either due to sequencing er-
rors, or (more interestingly) due to differences between
individuals.


In our simplified scenario, the database D is a sin-
gle string of length n, the query Q is a string of
length m, and we are searching in D for a substring of
length m with the smallest Hamming distance from Q.
In contrast to the full homology search problem, we al-
ways consider the whole query (each read has to map
completely to the reference), and we also disallow in-
sertions and deletions.


We will say that the distance of query Q from
database D is the minimum Hamming distance
between Q and some substring of length m from data-
base D. This Hamming distance will represent our
score. P -value for a particular Hamming distance h
is then the number of all m-tuples that are at a dis-
tance of at most h from D, divided by 4m (the number
of all possible m-tuples). Note that in this definition
of P -value, we keep the database fixed, and only the
query is random, chosen uniformly from all possible
queries of length m. In contrast, most methods con-
sider both query and database as random.


The main advantage of this simplified model is that
we can compute these P -values exactly in a reasonable
amount of time, and compare them to the P -values es-
timated based on the randomly generated database of
corresponding effective size, thus evaluating the accu-
racy of our concept. The rest of this section is orga-
nized as follows. First, we introduce the algorithm for
exact computation of P -values in our simplified sce-
nario. Then we explore several cases of generated and
real databases.


The file compression algorithms typically detect
symbols or small groups of symbols that occur in the
text more frequently than the others, and encode them
by shorter codewords. Thus, the size of the compressed
database is related to the entropy of the source gener-
ating the database. In addition to that, some methods
try to detect longer strings that are repeated exactly
or with mismatches multiple times, and to store only
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one copy of each such string as well as differences be-
tween the approximate copies.


In our experiments, we first try to separate these
two phenomena by using artificially generated data-
bases, and in the end, we apply compression software
to real DNA sequences, where both of these issues are
at play.


3.1 Algorithm to compute exact P -values


We have implemented an algorithm that simulta-
neously computes P -values for a given database D
and all of its prefixes, and for all distances h =
0, 1, . . . , hmax. In experiments we use values hmax = 3
and m = 15.


The algorithm proceeds along the database D and
at each position updates two arrays M and H.
Array M of size 4m stores for each m-tuple Q′ its
distance to the current prefix of the database, pro-
vided that this distance is at most hmax (otherwise it
uses a special ∞ value). The second array H stores
for each distance h ≤ hmax the number of m-tuples
with distance exactly h from the current prefix of the
database D.


When we read a new nucleotide of the database,
we need to consider the last m-tuple of the current
prefix. We enumerate all m-tuples at a distance of at
most hmax from this new m-tuple, and for each we
update arrays M and H as appropriate. Values in H
can be easily converted to the desired P -values for the
current prefix at different distance thresholds. Note
that this algorithm is feasible only for small values
of m, because it requires Θ(4m) memory.


The algorithm can be used to compute exact
P -value for a given real sequence database, which we
consider as a reference value. It can also be applied to
randomly generated databases, leading to estimates
of P -values that would be obtained in a model, where
both the database and the query are random. To em-
ulate the proposed method, we compress a sequence
database, compute its effective size, and then use the
P -value estimates obtained from random databases of
the matching size.


Finally, we also consider a simple method, where
we use random databases of the same size as the orig-
inal database, without compression. P -values com-
puted in this way correspond to the commonly used
techniques for P -value estimation without using the
effective database size mechanism.


3.2 Entropy


The four nucleotides do not occur in genomes equally
frequently. A commonly used measure of DNA com-
position is GC-content: the percentage of Cs and Gs


in the given sequence. GC-content varies widely in
different genomes, or even between segments of the
same genome. An i.i.d. database with GC-content g
has entropy H(g) = −g lg(g/2)− (1− g) lg((1− g)/2),
and therefore can be encoded by approximatelyH(g)n
bits, for example by the arithmetic encoding [20].


Following our general approach, we can try to use
the formulas for the uniform nucleotide frequencies
and effective database size E(n, g) = H(g)n/2 to es-
timate the P -values for the actual database of size n
and GC-content g.


We have tested the performance of such estimates
on randomly generated databases with GC-contents
75% and 90%, averaging values for five randomly gen-
erated databases. Table 1 shows the real P -values,
P -values predicted by our compression method, and
P -values obtained by the simple method of consid-
ering a database of length n and GC-content 50%
(disregarding the real GC-content in the P -value es-
timate). All estimates were computed by our algo-
rithm from Section 3.1. For real P-values the algorithm
was applied to the generated database with a skewed
GC-content, for simple and predicted estimates to five
random databases of appropriate size with
GC-content 50%.


For small P -values the real and simple estimates
are quite similar, which is expected since in a short
database very few m-tuples occur multiple times, even
if the composition of the database is skewed. As a re-
sult, the compression method gives non-conservative
estimates, because it uses a much smaller database
size. For larger P -values, the compression estimates
become conservative, and are closer to the true
P -value than the simple estimates. This is because
a database with high GC-content is less likely to con-
tain m-tuples with low GC-content, and thus a larger
database size is required to achieve the same P -value.
For example, among estimates for GC-content 75%
shown in Table 1, compression estimates become con-
servative for databases larger than 107 and 105 nu-
cleotides for h = 0 and h = 2, respectively.


We can study the situation analytically for the case
when the query appears in the database without a mis-
match. Let Xi be the event that query Q has an oc-
currence with distance at most h at position i in the
random database of GC-content g, and let X be the
total number of occurrences of query Q with at most
h mismatches in the whole database. For g = 0.5, we
can compute the probability of Xi by summing over
the number of mismatches


P (Xi|Q, g = 0.5) =
h∑


k=0


(
m


k


)(
3


4


)k (
1


4


)m−k


.


For general g we have to distinguish between mis-
matches on G/C positions and mismatches on A/T
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h=0 h=2
Database size 104 105 106 107 104 105 106 107


Real (GC 75%) 9.3 · 10−6 9.3 · 10−5 9.2 · 10−4 8.4 · 10−3 8.8 · 10−3 7.0 · 10−2 3.2 · 10−1 7.2 · 10−1


Predicted (GC 75%) 8.4 · 10−6 8.5 · 10−5 8.4 · 10−4 8.4 · 10−3 8.3 · 10−3 8.1 · 10−2 5.7 · 10−1 1.0
Simple (GC 75%) 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 9.2 · 10−3 8.8 · 10−2 6.0 · 10−1 1.0


Real (GC 90%) 9.2 · 10−6 8.7 · 10−5 6.7 · 10−4 3.9 · 10−3 6.5 · 10−3 3.3 · 10−2 1.1 · 10−1 2.6 · 10−1


Predicted (GC 90%) 6.5 · 10−6 6.8 · 10−5 6.8 · 10−4 6.8 · 10−3 6.4 · 10−3 6.5 · 10−2 4.9 · 10−1 1.0
Simple (GC 90%) 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 9.2 · 10−3 8.8 · 10−2 6.0 · 10−1 1.0


Table 1. P -values for random databases of various lengths n, GC-content 75% or 90% and the query distance h = 0 or
h = 2. Real P-values are computed by the algorithm described in Section 3.1. Predicted P-values take into account the
entropy of the database, using effective database size H(g)n/2. The simple method for computing P-values disregards
the GC-content and considers a random database of size n and 50% GC-content.


positions in the query. Let z be the number of Gs and
Cs in Q, then


P (Xi|Q, g) =
h∑


i=0


h−i∑
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.


The expected number of occurrences can be computed
by linearity of expectation (for simplicity, we ignore
the edge effect at positions n−m+ 2, . . . , n, which is
negligible for large n):


E(X|Q, g) =
n∑


i=1


E(Xi|Q) = nP (Xi|Q, g).


We will approximate the distribution of variable X by
a Poisson distribution with the mean λ = E(X|Q, g).
This commonly used approximation [17] disregards de-
pendencies between occurrences at adjacent positions
and also assumes that n is large and λ relatively small.
In our simulations it led to very good estimates of
P -values (data not shown). If X is from Poisson dis-
tribution, the probability of at least one occurrence of
a given query Q is P (X > 0|Q, g) = 1−e−λ. To obtain
the final P -value, we have to consider this expression
for different queries, or more precisely, for groups of
queries with the same number Gs and Cs, of which Qz


is one representative:


Preal = P (X > 0|g) =
m∑


z=0


(
m


z


)
2−mP (X > 0|Qz, g).


The compression estimate Pest uses the same formula
but g = 0.5 and E(n, g) instead of n. For h = 0,
E(X|Q, g) simplifies to n2−mgz(1−g)m−z, and in par-
ticular E(X|Q, 0.5) = n4−m does not depend on z,


and therefore Pest = 1 − e−E(n,g)4−m


. For small x,
function 1 − e−x can be well approximated by x [8].
Using this approximation, we obtain


Pest


Preal
=


E(n, g)4−m∑m
z=0


(
m
z


)
2−mn2−mgz(1− g)m−z


= H(g)/2.


Therefore for small P -values, where the approximation
of 1− e−x is sufficiently accurate, the estimate Pest is
lower by approximately a factor of H(g)/2 than the
real P-value. This implies that no correction for en-
tropy is in fact necessary for small P -values.


On the other hand, when h = 0 but n is sufficiently
large, the compression estimates become conservative.
In particular, let us assume that


n >
m2−m ln(2)


H(g)2−m−1 − (1− g)m
=


1.386


H(g)
m4m + o(m4m).


This implies e−E(n,g)4−m


< 2−me−n2−m(1−g)m . The
right-hand side is one of the terms of the sum


m∑
z=0


(
m


z


)
2−me−n2−mgz(1−g)m−z


,


and therefore the left-hand side is upper-bounded by
the whole sum as well. This implies Pest ≥ Preal.


This simple bound is not very interesting, since it
works only for very large n, where P-values are very
close to one. Nonetheless, it agrees with our observa-
tion that the compression estimate is appropriate for
sufficiently large n. Perhaps a tighter bound on n can
be obtained by considering additional elements of the
sum.


3.3 Redundancy


Next, we consider artificial databases that are con-
catenation of many mutually similar sequences of the
same length k. In the experiments we use k = 104.
To generate the database, we first sample a string
S = s1s2 . . . sk of length k uniformly at random. This
string will be the center of the cluster of similar se-
quences.


The i-th sequence in the concatenated database is
obtained from S by randomly mutating several nu-
cleotides of S so that the nucleotide j is the same
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h=0 h=2
Database size 104 105 106 107 104 105 106 107


Real 9.3 · 10−6 8.1 · 10−5 6.5 · 10−4 4.3 · 10−3 9.2 · 10−3 6.8 · 10−2 3.4 · 10−1 8.8 · 10−1


GenCompress 9.3 · 10−6 7.7 · 10−5 6.8 · 10−4 6.5 · 10−3 9.2 · 10−3 7.3 · 10−2 4.9 · 10−1 1.0
bzip2 1.0 · 10−5 9.2 · 10−5 8.1 · 10−4 8.0 · 10−3 1.0 · 10−2 8.7 · 10−2 5.5 · 10−1 1.0
Simple 9.3 · 10−6 9.3 · 10−5 9.3 · 10−4 9.3 · 10−3 9.2 · 10−3 8.8 · 10−2 6.0 · 10−1 1.0


Table 2. P -values for the artificial clustered database. Real P-values were computed by the algorithm from Section 3.1
applied directly to the clustered database. GenCompress and bzip2 estimates use different compression tools to compute
effective database size. The simple method for computing P-values considers a uniformly generated random database
of size n.


h=0 h=2
Database size 1.6 · 104 2.1 · 105 1.5 · 106 1.1 · 107 1.6 · 104 2.1 · 105 1.5 · 106 1.1 · 107


Real 1.1 · 10−5 1.4 · 10−4 9.4 · 10−4 6.0 · 10−3 1.0 · 10−2 1.1 · 10−1 4.6 · 10−1 9.1 · 10−1


GenCompress 9.3 · 10−6 1.2 · 10−4 8.5 · 10−4 6.0 · 10−3 9.2 · 10−3 1.1 · 10−1 5.7 · 10−1 1.0
GC corrected 1.1 · 10−5 1.4 · 10−4 9.6 · 10−4 6.8 · 10−3 1.1 · 10−2 1.3 · 10−1 6.1 · 10−1 1.0
bzip2 1.5 · 10−5 1.9 · 10−4 1.3 · 10−3 9.4 · 10−3 1.5 · 10−2 1.7 · 10−1 7.2 · 10−1 1.0
Simple 1.5 · 10−5 1.9 · 10−4 1.4 · 10−3 1.1 · 10−2 1.5 · 10−2 1.8 · 10−1 7.4 · 10−1 1.0


Table 3. P -values for genomic data from human, chimpanzee, and rhesus. Real P-values were computed by the
algorithm from Section 3.1 applied directly to the genomic sequences. GenCompress and bzip2 estimates use different
compression tools to compute effective database size. GC corrected shows the GenCompress estimate corrected for the
average database entropy. The simple method for computing P-values considers a uniformly generated random database
of size n.


as sj with the probability of 90%, and with the prob-
ability of 10% it changes to another nucleotide chosen
randomly from the remaining three. This way, we get
a clustered database of sequences that differ from the
center of the cluster on 10% positions on average.


For clustered databases of various sizes, we com-
pute the real P -value simple estimate, which uses ef-
fective size equal to the real size of the database with-
out compression, and two estimates based on two dif-
ferent lossless compression programs GenCompress [6]
and bzip2. The results are shown in Table 2.


Bzip2 is based on Burrows–Wheeler transform [5]
which tends to create blocks of identical symbols if the
input contains repeated substrings. The transformed
text is then encoded by other compression techniques,
such as Huffman encoding. To save memory, bzip2 di-
vides a file into blocks and processes each block sep-
arately, which may have negative effect on the com-
pressed size.


GenCompress [6] is an algorithm developed specifi-
cally for compressing DNA sequences. It finds approx-
imate repeats in the compressed sequence and encodes
them by a sequence of edit operations. GenCompress
is a single-pass algorithm that proceed along the in-
put sequence and in each step it finds the best prefix
that can be encoded as an approximate repeat of some
substring of already encoded input sequence.


In this experiment, estimates based on data com-
pression are mostly conservative and better than the
estimates obtained by the simple methods.


3.4 Real data


Finally, we have applied the compression method of
estimating the effective database size to real genomic
data from human, chimpanzee, and rhesus macaque.
Our set consisted of a portion of human chromo-
some 22 and corresponding portions of genome from
the two other primates. We have omitted larger blocks
that did not have counterparts in neither chimpanzee,
nor macaque. The sequence data and the genome
alignments were obtained from the UCSC genome
browser [13].


The database contains a short block of the human
sequence followed by the corresponding block in the
two other genomes, followed by another block in hu-
man, etc. Therefore, similar sequences are close to each
other which improves compression with algorithms
such as bzip2 that always consider only a block of the
whole file.


The results of the test for different input sizes are
shown in Table 3. As we can see, with GenCompress
we often underestimate real P -values, while bzip2
achieves only a very small improvement compared to
the simple method without compression.
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Earlier, we have reached a conclusion that skewed
GC-content should not automatically imply lower ef-
fective database sizes since this would lead to under-
estimation of small P -values. However, compression
algorithms estimate the effective database size based
on both sequence redundancy and lower sequence en-
tropy in case of locally high or low GC-contents. That
could be the reason why GenCompress estimates are
non-conservative.


We have attempted to further correct for this issue
by computing an average database entropyH ′. The ef-
fective database size estimated by GenCompress was
then multiplied by the correction factor of 2/H ′. This
approach leads to surprisingly good P -value estimates
that were also conservative in our experiments (Ta-
ble 3, line GC corrected).


To estimate the value H ′ for this experiment, we
have computed entropy separately for non-overlapping
windows of size 1000 to capture different properties of
individual genomic regions. We have estimated
a Markov chain of second order from each window of
the sequence and computed an entropy of this Markov
chain, that is, entropy where the probability of each
nucleotide is conditioned on the two previous nucleo-
tides to capture local dependencies in DNA sequences.
The average entropy H ′ of the whole database was
then computed as an average of entropy values from
all windows.


4 Conclusion


In this paper, we have considered methods for more
accurate estimation of P -values in the context of se-
quence homology search. In particular, we propose to
adjust the size of the database to compensate for the
structure present in the database due to the fact that
individual sequences are related by evolution.


We have explored the idea of using compression
to estimate the effective database size, and we have
demonstrated by experiments that the use of the com-
pression algorithms leads to non-conservative P -value
estimates for small P -values. This is at least partially
caused by the fact that besides identifying longer re-
peated substrings, compression algorithms also com-
pensate for sequences with low entropy. We have
shown that such compensation should not be consid-
ered, at least in the case of small P -values. We have
suggested a simple way to disentangle the portion of
the compression coming from locally low entropy and
shown that the correction leads to better P -value es-
timates.


The compression would be a fast and efficient way
of estimating the effective database size. Even though
most of the general purpose compression algorithms
(such as bzip2) cannot handle distant large blocks of


similarity common in DNA sequence databases,
one could use fast methods for identifying such
blocks [12, 19] to speed up the algorithms developed
specifically for compression of DNA sequences [6, 7,
14, 3].


Finally, we would like to extend our work to more
complex scenarios of homology search. Longer query
sequences will require handling of insertions, deletions,
and matches that involve only portions of the query
sequence. More complex scoring schemes on both nu-
cleotide and protein sequences also need to be exam-
ined.
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16. M. Li and P. Vitányi: An introduction to Kolmogorov
complexity and its applications. Springer, 2008.


17. A.Y. Mitrophanov and M. Borodovsky: (2006). Statis-
tical significance in biological sequence analysis. Brief-
ings in Bioinformatics, 7(1), 2006, 2–24.


18. O.U. Nalbantoglu, D.J. Russell, and K. Sayood: Data
compression concepts and algorithms and their appli-
cations to bioinformatics. Entropy (Basel, Switzer-
land), 12 (1), 2010, 34.


19. B. Paten, J. Herrero, S. Fitzgerald, K. Beal, P. Flicek,
I. Holmes, and E. Birney: Genome-wide nucleotide-
level mammalian ancestor reconstruction. Genome Re-
search, 18 (11), 2008, 1829–1833.


20. Rissanen, J. and Langdon, G. (1979). Arithmetic
coding. IBM Journal of Research and Development,
23(2):149–162.


21. T.F. Smith and M.S. Waterman: Identification of com-
mon molecular subsequences. Journal of Molecular Bi-
ology, 147 (1), 1981, 195–197.


22. B.E. Suzek, H. Huang, P. McGarvey, R. Mazumder,
and C.H. Wu: UniRef: comprehensive and non-
redundant UniProt reference clusters. Bioinformatics,
23 (10), 2007, 1282–1288.


23. J.C. Venter: Multiple personal genomes await. Nature,
464 (7289), 2010, 676–677.








Approximate throughput maximization in scheduling
of parallel jobs on hypercubes?


Ondřej Zaj́ıček
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Abstract. We study scheduling of unit-time parallel jobs
on hypercubes. A parallel job has to be scheduled between its
release time and deadline on a subcube of processors. The
objective is to maximize the number of early jobs. We pro-
vide an efficient 1.5-approximation algorithm for the prob-
lem.


1 Introduction


We study the scheduling of unit-time parallel jobs on
a parallel machine with a hypercube topology of a pro-
cessor network. Each job is specified by an integral re-
lease time and deadline, and the number of processors
it needs, which is required to be a power of two, to
respect the hypercube topology. The jobs have to be
scheduled between their release times and deadlines
and the goal is to maximize the number of jobs com-
pleted before their deadline.


If we consider scheduling of sequential jobs
(i.e., jobs requiring a single processor) instead of par-
allel jobs, the problem is trivial. The natural algorithm
always schedules the jobs with the smallest deadlines
(among the available jobs). A standard exchange ar-
gument shows that this is an optimal schedule. Once
parallel jobs are introduced, this no longer works.


Usually, parallel scheduling problems are NP-hard
because they include some partitioning problem.
Either partitioning the processors among the jobs, or
partitioning the jobs into groups with the same total
processing time is involved. In our case, the hyper-
cube topology, where processors are connected to form
a hypercube and jobs (having a size that is a power
of two) are scheduled on appropriate subhypercubes,
together with the restriction to unit processing times
make these packing problems easy. If we were able to
compute which jobs should be scheduled in each time-
slot, we could always assign the chosen jobs to sub-
cubes in a greedy manner from the largest job to the
smallest one.


? This research was partially supported by Institute for
Theoretical Computer Science, Prague (proj. 1M0545
of MŠMT ČR), grant IAA100190902 of GA AV ČR and
by Institutional Research Plan No. AV0Z10190503.


However, there is no known polynomial algorithm
even to decide whether it is possible to schedule all
jobs within their constraints (feasibility testing). Ye
and Zhang [3] showed that it is possible to maximize
the number of completed jobs if all the release times
are equal. This was generalized to the case of nested
intervals given by the release times and the deadlines,
see [4].


For general release times and deadlines, there are
positive results for the ‘tall/small’ model, in which
only jobs that request one or all processors are allowed.
Baptiste and Schieber [1] showed that feasibility test-
ing in the ‘tall/small’ model is polynomially solvable.
The article contains two algorithms for the ‘tall/small’
problem, see also [2] for an alternative proof. However,
the maximization of the number of completed jobs is
open even for two processors, which is a special case
of the tall/small variant.


Our previous result [5] used the same model (sche-
duling of hypercubes with general release times and
deadlines) but instead of an offline solution it pre-
sented an 1.6-competitive online algorithm. We refined
some ideas from this result and extended it
to take advantage of the offline setting to get an
1.5-approximation algorithm.


2 Preliminaries


The problem has a parameter m giving the number
of machines. An instance of the problem consists of
a set of n jobs. Each job J has an integral release
time rJ , an integral deadline dJ and a size sJ (the
number of requested processors). The numbers m and
sJ are powers of two. As all times are integers and
jobs’ processing times are equal to one, instead of time
we can consider timeslots (aligned unit-time intervals)
and every job requests one timeslot.


We say that job J is feasible at timeslot T if rJ ≤ T
and T < dJ . We say that job J is available at time-
slot T if it is feasible and not scheduled yet. We say
that job J is urgent at timeslot T if dJ = T+1. A sche-
dule assigns to each processed job J find a timeslot T
such that J is feasible at T , and sJ processors, so that
no processor is assigned to two jobs at the same time.
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The objective is to find a schedule maximizing the
number of processed jobs.


We fix an ordering ≺ on jobs that is a strict li-
near ordering based on the ordering of deadlines, in
a case of equal deadlines it is defined arbitrarily. For
example, we take an ordering defined by formula
Ji ≺ Jj ⇔ di < dj ∨ (di = dj ∧ i < j). We suppose,
w.l.o.g., that any algorithm chooses the ≺-minimal job
from the available jobs of the same size when it needs
to choose one job of that size.


We use ALG to denote the analyzed algorithm and
OPT to denote an optimal offline algorithm. Jobs of
size m are called max-jobs, smaller jobs are called non-
max jobs. Jobs of size 2i are called i-jobs (where i is
some integer).


3 Algorithm


The algorithm is based on the online algorithm
from [5], which is a memoryless online algorithm that
in each timeslot examines a set of available jobs and
chooses the maximal subset of jobs to process in that
timeslot according to these rules (in the order of im-
portance):


– Prefer more smaller jobs over one bigger job.
– Prefer an urgent job over an non-urgent job.
– Prefer a bigger job over a smaller job.
– Prefer ≺-minimal jobs between jobs of the same


size.


We call such subset of available jobs a T -preferred set.
The algorithm is modified so that in the timeslots


where a set of available jobs contains some max-jobs
and exactly one non-max job M that has deadline
smaller than all these available max-jobs but it is still
non-urgent, the algorithm not only chooses to process
the max-job with the smallest deadline (by rules 3
and 4) but also marks job M . If job M is schedu-
led later, the algorithm just clears the mark. But if
job M expires later without being scheduled (when
the algorithm processed the last timeslot before the
deadline of the marked job), the algorithm examines
all max-jobs scheduled from the time when job M was
marked, chooses the one with the largest deadline and
replaces it with job M (and also clears its mark). In
that case we call job M a replacer job. Because the
replaced max-job has a bigger deadline than replacer
job M , it will reappear in a set of available jobs. The
algorithm continues with processing the next timeslot
(the timeslot that is equal to the deadline of job M).
Note that when one job is marked, another job cannot
be marked until the mark is cleared.


The algorithm is described by the following pseu-
docode representing a loop body. Global variables


are T for current timeslot, A for a set of available jobs
and MJ , MT for a marked job and its timeslot, other
variables are local to the loop iteration.


1. Add jobs with release time T to set A.
2. Compute T -preferred set S from the set of avail-


able jobs A (specified below).
3. If set A contains exactly one non-max job M ,


which is not a member of set S, let MJ := M ,
MT := T (mark job M and timeslot T ).


4. Remove jobs that are members of set S from set
A, store set S as a schedule for timeslot T .


5. Remove jobs with deadline of T + 1 from set A.
6. If job MJ was removed in the previous step,


examine the computed schedules from time-
slot MT to timeslot T to find a scheduled max-
job J with the largest deadline, change schedule
for timeslot containing job J to contain job MJ
instead, and add job J to the set A.


7. Repeat with T := T+1, until all jobs are processed
and set A is empty.


To complete the description of the algorithm, it re-
mains to describe how to compute a T -preferred set S.
In timeslot T it is possible to schedule any set of jobs
satisfying that each its member is available during T
and a sum of sizes of its members is less than or equal
to m. Let such a set be called a T -schedulable set.


Let us consider a set of all T -schedulable sets. First,
we restrict ourselves to the T -schedulable sets that
maximize the number of jobs. Second, we restrict our-
selves to the sets that maximize the number of urgent
jobs. And finally, we restrict ourselves to the sets that
maximize the sum of the sizes of the jobs. Let the re-
maining schedulable sets be called T -conforming sets.


Lemma 1. All T -conforming sets have the same
number of jobs of specific sizes.


Proof. Let us have two T -conforming sets S1 and S2


that have different number of i-jobs (w.l.o.g. S1 con-
tains more i-jobs than S2) and the same number of
smaller jobs. As both S1 and S2 have the same number
of jobs and the same sum of sizes of jobs, the difference
between number of i-jobs has to be an even number
(otherwise it would not be possible to balance the sum
of sizes by bigger jobs) and there has to be some j-job
(j > i) in S2 and not in S1 (for the same reason).
We can remove one j-job from S2 and add two more
i-jobs (that are in S1 and not in S2) and we still get
a T -schedulable set, but with more jobs than S1 (and
S2). As S1 maximizes the number of jobs (between all
T -schedulable sets), this is a contradiction. ut


Let ni be the number of i-jobs in any T -conforming
set (this is well-defined by Lemma 1). We choose the
T -preferred set as a set containing (for each i) ni
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≺-smallest i-jobs from all i-jobs available during T .
Obviously, the T -preferred set is also a T -conforming
set.


Our algorithm needs to compute a T -preferred set
for timeslot T . The T -preferred set can be constructed
efficiently by the following procedure:


1. Sort available jobs (set A, input to the procedure)
according to their job sizes in increasing order. In
the case of a tie, ≺-smaller jobs are preferred.


2. Choose as many jobs as possible (the sum of the
sizes of the chosen jobs is not allowed to exceed m)
in the sorted order. Let C be the set of chosen jobs.


3. If all jobs were chosen, finish and return C.
Otherwise, let X be the first job that was not cho-
sen.


4. Find the smallest non-urgent job Y that is suf-
ficiently large so that its removal from C makes
enough space to be able to add X to C. In case of
a tie, a ≺-bigger job is preferred.


5. If Y was not found in the previous step and X
is urgent, then repeat the search but look for an
urgent job instead of a non-urgent job.


6. If Y was found in step 5 or 6, let C ′=C\{X}∪{Y },
otherwise let C ′ = C.


7. Return C ′.


Lemma 2. Set C from the procedure can be trans-
formed to any schedulable set that maximizes the num-
ber of jobs by replacing some jobs with jobs of the same
size and at most one job of an arbitrary size with a job
of size sX .


Proof. C is obviously a schedulable set that maximizes
the number of jobs; therefore, it contains the same
number of jobs as any schedulable set that maximizes
the number of jobs; therefore, to reach such sets we
may restrict to one-for-one job replacements. We may
ignore replacements with jobs smaller than X because
all such jobs are already in C. Replacements with big-
ger jobs are limited by the number of free machines. It
is not possible to replace a job with a job larger than
job X, otherwise there would be enough free machines
to choose X in step 2. It is also not possible to replace
two (smaller) jobs with jobs of the same size as job X,
by the same argument. ut
Theorem 1. For time T , the procedure finds the
T -preferred set.


Proof. By Lemma 2, we can transform set C to the
T -preferred set by some job replacements. There is
no need for replacements between jobs of the same
size because if there are k i-jobs in C ′, then they are
k ≺-smallest available i-jobs. The remaining replace-
ment (Y with X) is chosen to maximize the number
of urgent jobs (X is the ≺-smallest between possible


choices, if X is not an urgent job, then Y is neither)
and remove smallest jobs to maximize the sum of sizes
of jobs. ut


4 Approximation ratio


We will use a charging scheme to prove the upper
bound for the approximation ratio of ALG. A charging
scheme is a set of rules for a specification of weighted
edges between the set of jobs in ALG schedule and
the set of jobs in OPT schedule to create a bipartite
graph. This graph obeys some constraints: For each
job in OPT schedule the sum of the weights of incident
edges is exactly 1 and for each job in ALG schedule
the sum of weights of incident edges is at most 1.5.
These constraints (and the fact that this scheme spec-
ifies such a matching for OPT and ALG schedules of
every instance) imply that the approximation ratio of
the algorithm is at most 1.5.


We introduce some terminology. When there is an
edge between two jobs with weight x we write that
the job in OPT schedule sends x and the job in ALG
schedule receives x. The charging scheme uses mainly
two kinds of edges: diagonal edges and vertical edges.
A diagonal edge is an edge from a job in OPT sche-
dule to the same job in ALG schedule in a different
timeslot. A vertical edge is an edge from a job in OPT
schedule to any job in ALG schedule in the same time-
slot.


We use a job in two slightly different meanings.
First, there is a particular job from an instance of
a problem. Second, the job is scheduled by a particular
schedule to some machines and some timeslot. The po-
sition occupied by some job in the particular schedule
is also called the job. Specifically, we use ALG-job for
the position of a job in ALG schedule and OPT-job for
the position of a job in OPT schedule. Obviously, the
charging edges do not connect jobs in the first sense,
but ALG-jobs and OPT-jobs.


A job not scheduled by ALG (but possibly sche-
duled by OPT) is called an unscheduled job. A job
scheduled by OPT and either not scheduled by ALG
during that or earlier timeslots (but possibly schedu-
led later) or scheduled by replacement (a replacer job)
is called a free job. The motivation for such definition
is that a free job is a job that is available for ALG at
the timeslot in which it is scheduled by OPT. Because
a decision to do a replacement is done later in the run
of the algorithm, replacer jobs (scheduled by OPT)
are also counted as free jobs. An important property
of free job J is that the relevant timeslots (from release
time of job J to the timeslot when job J is scheduled
by OPT) in ALG schedule do not contain enough free
machines to schedule job J .
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If there is a max-job in ALG schedule and in the
same timeslot there is only one non-max free job (re-
gardless of the number of non-free jobs) in OPT sche-
dule, then we call this non-max free job a red job. Note
that in such case the red job is the only non-max job
available to ALG (otherwise ALG would also choose
it by rule 1) and therefore it is marked by ALG and
is a candidate to be a replacer job. Other free jobs are
called white jobs, non-free jobs (scheduled first by ALG
and later by OPT, or scheduled in the same timeslot
by ALG and OPT) are called black jobs.


The charging scheme is specified as follows: Each
black job charges one diagonal edge (to the same job
in ALG schedule), each white job charges one vertical
edge (upwards to an unspecified job in the same time-
slot). Each red job charges 1/2 diagonally and 1/2 ver-
tically. We will specify exact rules for a distribution of
vertical edges to ALG-jobs later.


Matching of i-jobs at timeslot T is a process that
finds a maximal matching between a set of i-jobs in
ALG schedule of timeslot T and a set of white i-jobs
in OPT schedule of timeslot T . If there is a job sche-
duled at timeslot T by both ALG and OPT, then it
is matched with itself, remaining jobs are matched ar-
bitrarily with one restriction: any red jobs J in ALG
schedule are matched at the end, only when no other
jobs remain. Some i-jobs may be left unmatched in
ALG or OPT schedule, but not in both schedules.


We will use modified variants of lemmas from [5]:


Lemma 3. If non-red ALG-job A (scheduled at some
timeslot T ) is matched with OPT-job B, then A re-
ceives nothing diagonally (from OPT-job A).


Proof. If job A is white, it is obvious (white jobs does
not charge diagonally). If job A is black, we prove it
by contradiction. Suppose ALG-job A receives diag-
onally from (black) OPT-job A. Jobs A and B have
to be different jobs, because OPT-job B is white. Be-
cause B is a white job, it follows that ALG did not
schedule B before or at timeslot T . Because A is black,
OPT scheduled A after timeslot T . Thus both A and B
were available to both ALG and OPT at timeslot T ,
but ALG scheduled A and didn’t schedule B and OPT
scheduled B and didn’t schedule A. This is a contra-
diction because A and B are jobs of the same size and
both algorithms choose the ≺-minimal jobs from avail-
able jobs of the same size. ut
Lemma 4. For every timeslot it is possible to find
a distribution of weight of all incoming vertical edges
between ALG-jobs of the timeslot such that every job
in ALG schedule can be categorized to at least one of
these classes:


– Class C (common): The job receives at most
1/2 vertically.


– Class M (matched): The job receives 1 vertically
from the matched job. If the job is non-red, it could
also receive 1/2 vertically from another job.


– Class U (urgent): The job is urgent and receives
at most 1 vertically.


– Class R (replacer): The job is a replacer job and
receives at most 1 vertically.


Proof. The proof is done independently for each time-
slot. We show that for each free job in OPT schedule
we find the same job or two other jobs in ALG schedule
(in the same timeslot). Let T be any fixed timeslot. We
use ALGT (and OPTT ) schedule for ALG (and OPT)
schedule restricted to timeslot T .


If there is no job in ALGT schedule, then all jobs
in OPTT schedule have to be black, because any free
OPTT job could also be scheduled by ALG at T .
So suppose there are some jobs in ALGT schedule
and the biggest job among them is an i-job. Jobs
smaller than 2i will be called small jobs. It is easy
to see that there is no more than one small free job in
OPTT schedule—otherwise ALG should schedule two
(or more) small jobs instead of the i-job. We distin-
guish two cases: one small free job and no small free
job.


Case 1: There is exactly one small free job J in
OPTT schedule. First we match i-jobs in T . We split
the timeslot in ALGT schedule to slots of size 2i. In
each slot there is either one i-job or more small jobs
(there is neither an empty slot nor a slot with one
small job, otherwise the free space in that slot is large
enough that ALG should schedule the job J in it).
Now we assign those slots to OPTT free jobs. The
idea is that each OPTT free i-job gets one slot and
larger free jobs get proportionally more slots. Slots
with matched i-jobs are assigned to matched OPTT


free i-jobs. If there are remaining OPTT free i-jobs,
they get slots with more small jobs. If we disregard
job J then the rest is correct: matched ALGT i-jobs
are class M jobs, smaller jobs (assigned together to one
job) are class C as well as remaining i-jobs assigned
together to larger jobs. Unused ALGT jobs may be
class C as they receive nothing vertically. Now we find
the assignment for job J . There are two cases:


Case 1.1: There is at least one slot with more small
jobs. Then we assign it in the first place to job J (and
those small jobs are class C) and the lemma holds.


Case 1.2: There are only i-jobs in ALGT schedule
(and one i-job called job K is assigned to job J).
We have three cases distinguished by the structure of
OPTT schedule.


Case 1.2.1: There is at least one free i-job (job L)
in OPTT schedule. Then job L is matched with some
ALGT i-job (job L′). Job L′ receives 1 vertically from
job L; hence, it is a class M job and it is non-red
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(because there is at most one red job in ALGT sche-
dule and there are more i-jobs in ALGT schedule than
in OPTT schedule, therefore the eventual red job left
unmatched as it would be matched at the end), there-
fore it can receive additional 1/2 from job J . Job K
receives remaining 1/2 from job J , is a class C job and
the lemma holds.


Case 1.2.2: There is no free i-job in OPTT sche-
dule but there are some larger free jobs. Then there
are two unused slots in ALGT schedule, because the
sum of sizes of larger OPTT jobs is a multiple of 2i+1


and the number of ALGT i-jobs assigned to them is
even. Therefore, there are at least two ALGT i-jobs
available, they receive 1/2 from job J and are class C.


Case 1.2.3: Job J is the only free job in OPTT


schedule. If there are more than one ALGT i-job then
two of them receive 1/2 and are class C. If there is only
one job M , then M has to be max-job, because there
is no empty slot (ALGT is full of i-jobs). In that case
job J (which is not a max-job because it is a small job)
is a red job and therefore charges just 1/2 to job M
and job M is class C.


Case 2: There is no small free job in OPTT sche-
dule. Let j-jobs be the smallest free OPTT jobs, ob-
viously j ≥ i. First we match j-jobs (which does
nothing if j > i). We split timeslot T in ALGT sche-
dule to slots of size 2j . No such slot is empty (other-
wise, ALG should schedule some free j-jobs scheduled
by OPT at T ). At most one slot is not full (because
job sizes are powers of two we can always pack jobs
from two half-empty slots to make one slot empty or
full). Now we assign the slots to OPTT free jobs as we
did in the first case. If we have only slots with either
one j-job or with more smaller jobs then it is the same
argument as in first case (even easier because there is
no job J). But the one non-full slot can contain only
one job (job N), which is smaller than j-job. In that
case job N has to be urgent or a replacer job; oth-
erwise, ALG should schedule some free j-job instead
of job N , by rule 3. Therefore, job N is a class U or
class R job and the slot with job N may be used much
like a slot with two jobs. Even in this case the lemma
holds. ut
Theorem 2. The approximation ratio of ALG is at
most 1.5.


Proof. We described the charging scheme earlier. To
complete the proof it remains to show that each ALG
job receives at most 1.5 of the charged edges. Accord-
ing to Lemma 4, it is possible to distribute vertical
edges between ALG jobs in such a way that ALG jobs
can be divided to four classes C, M, U, and R. Class C
jobs receive at most 1/2 vertically (by definition) and
at most 1 diagonally (as every job). Non-red class M
jobs receive at most 1.5 vertically (by definition) and


nothing diagonally (by Lemma 3), Red class M jobs re-
ceive at most 1 vertically (by definition) and at most
1/2 diagonally. Class U and class R jobs receive at
most 1 vertically (by definition) and at most 1/2 diag-
onally if they are red. They receive nothing diagonally
from a black job because they are never black jobs
(class R jobs by definition and class U jobs because
they are urgent and therefore they cannot be schedu-
led later by OPT). Therefore, each ALG job receives
at most 1.5. ut


5 Conclusion


We addressed the offline scheduling problem of unit-
time parallel jobs on hypercubes to maximize the num-
ber of early jobs. We have presented an efficient
1.5-approximation algorithm for the problem. The re-
sult extends our previously published result [5].


A natural question is whether it is possible to find
the optimal solution to the problem (or at least some
restricted variant of the problem, like the tall/small
scheduling) in polynomial time. Another interesting
question is what approach should be used for the
weighted variant of the problem, where every job has
a weight and the objective is to maximize the sum of
weights of early jobs.
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