
Preface

The 9th workshop ITAT’09 – Information Technology – Applications and Theory (http://www.itat.cz)
was held in Horský hotel Král’ova studňa (http://www.kralova-studna.sk/), located 1300 meters above the
sea level in Low Tatras, Slovakia, from 25 to 29 September 2008.

ITAT workshop is a place of meeting of scientists and experts working in computer science mainly from the
Czech Republic and Slovakia. Official languages for oral presentations are Czech and Slovak; proceedings
papers are in English).

The emphasis of the workshop is on exchange of information between participants. Workshop offers a pos-
sibility for students to make a first public presentation and to discuss with more experienced scientists.
Therefore a big space is devoted to informal discussions. The place is traditionally chosen at least 1000 me-
ter above the sea level in a location not directly accessible by public transport.

Thematically workshop ranges from foundations of computer science, security, through data and semantic
web to software engineering. There were 51 submissions; these proceedings consists of

– 11 original scientific papers

All papers were refereed by at least two independent referees.

The workshop was organized by

– Institute of Informatics of University of P.J. Šafárik in Košice
– Faculty of Mathematics and Physics, Charles University in Prague
– Institute of Computer Science of Academy of Sciences of the Czech Republic, Prague

Partial support has to be acknowledged from projects of the Program Information Society of the Thematic
Program II of the National Research Program of the Czech Republic 1ET100300517 “Methods for intelli-
gent systems and their application in data mining and natural language processing” and Czech institutional
project MSM-0021620838 ”Modern methods, structures and systems of computer science”.

Hereby we express sincere thanks to our sponsors:

Profinit (http://www.profinit.eu/)

and CSKI (http://www.cski.cz/)

Filip Zavoral, Peter Vojtáš

Program Committee

Filip Zavoral, (Chair), Charles University, Prague, CZ
Gabriela Andrejková, University of P.J. Šafárik, Košice, SK
Mária Bieliková, Slovak University of Technology, Bratislava, SK
Leo Galamboš, Czech Technical University, Prague, CZ
Ladislav Hluchý, Slovak Academy of Sciences, Bratislava, SK
Tomáš Horváth, University of P.J. Šafárik, Košice, SK
Karel Ježek, The University of West Bohemia, Plzeň, CZ
Jozef Jirásek, University of P.J. Šafárik, Košice, SK
Jana Kohoutková, Masaryk University, Brno, CZ
Stanislav Krajči, University of P.J. Šafárik, Košice, SK
Věra Kůrková, Institute of Computer Science, AS CR, Prague, CZ
Markéta Lopatková, Charles University, Prague, CZ
Ján Paralič, Technical University, Košice, SK
Dana Pardubská, Comenius University, Bratislava, SK
Martin Plátek, Charles University, Prague, CZ
Jaroslav Pokorný, Charles University, Prague, CZ
Karel Richta, Charles University, Prague, CZ
Gabriel Semanišin, University of P.J. Šafárik, Košice, SK
Václav Snášel, Technical University VŠB, Ostrava, CZ
Vojtěch Svátek, University of Economics, Prague, CZ
Jiří Šíma, Institute of Computer Science, AS CR, Prague, CZ
Július Štuller, Institute of Computer Science, AS CR, Prague, CZ
Peter Vojtáš, Charles University, Prague, CZ
Jakub Yaghob, Charles University, Prague, CZ
Stanislav Žák, Institute of Computer Science, AS CR, Prague, CZ
Filip Železný, Czech Technical University, Prague, CZ

Organizing Committee

Tomáš Horváth, (chair), University of P.J. Šafárik, Košice, SK
Hanka Bílková, Institute of Computer Science, AS CR, Prague, CZ
Peter Gurský, University of P.J. Šafárik, Košice, SK
Róbert Novotný, University of P.J. Šafárik, Košice, SK
Jana Pribolová, University of P.J. Šafárik, Košice, SK
Veronika Vaneková, University of P.J. Šafárik, Košice, SK

Organization

ITAT 2009 – Information Technologies – Applications and Theory was organized by
University of P.J. Šafárik, Košice, SK
Institute of Computer Science, AS CR, Prague, CZ
Faculty of Mathematics and Physics, Charles University, Prague, CZ
Slovak Society for Artificial Intelligence, SK

Table of Contents

Web Information Extraction systems for Web Semantization . 1
J. Dedek

PrefWork - a framework for the user preference learning methods testing . 7
A. Eckhardt

Boosted surrogate models in evolutionary optimization . 15
M. Holeňa

Local safety of an ontology . 23
L. Homol’a, J. Štuller

Statistical machine translation between related and unrelated languages . 31
D. Kolovratník, N. Klyueva, O. Bojar

Benchmarking a B-tree compression method . 37
F. Křižka, M. Krátký, R. Bača

Input combination for Monte Carlo Localization . 45
D. Obdržálek

Improved rate upper bound of collision resistant compression functions . 53
R. Ostertág

Encoding monadic computations in C# using iterators . 61
T. Petricek

On existence of robust combiners for cryptographic hash functions . 71
M. Rjaško

Localization with a low-cost robot . 77
S. Slušný, R. Neruda, P. Vidnerová

Web Information Extraction systems for Web Semantization?

Jan Dedek

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

dedek@ksi.mff.cuni.cz

Institute of Computer Science, Academy of Science of the Czech Republic
Prague, Czech Republic

Abstract. In this paper we present a survey of web infor-
mation extraction systems and semantic annotation plat-
forms. The survey is concentrated on the problem of
employment of these tools in the process of web semanti-
zation. We compare the approaches with our own solutions
and propose some future directions in the development of
the web semantization idea.

1 Introduction

There exist many extraction tools that can process
web pages and produce structured machine under-
standable data (or information) that corresponds with
the content of a web page. This process is often called
Web Information Extraction (WIE). In this paper we
present a survey of web information extraction systems
and we connect these systems with the problem of web
semantization.

The paper is structured as follows. First we sketch
the basic ideas of semantic web and web semantiza-
tion. In the next two sections methods of web infor-
mation extraction will presented. Then description of
our solutions (work in progress) will continue. And
finally just before the conclusion we will discuss the
connection of WIE systems with the problem of web
semantization.

1.1 The Semantic Web in use

The idea of the Semantic Web [4] (World Wide Web
dedicated not only to human but also to machine –
software agents) is very well known today. Let us just
shortly demonstrate its use with respect to the idea of
Web Semantization (see in next section).

The Fig. 1 shows a human user using the (Seman-
tic) Web in three possible manners: a keyword query,
a semantic query and by using a software agent. The
difference between the first two manners (keyword and
semantic query) can be illustrated with the question:
“Give me a list of the names of E.U. heads of state.”
? This work was partially supported by Czech projects:

IS-1ET100300517, GACR-201/09/H057, GAUK 31009
and MSM-0021620838.

Looking for information on the Web

Fig. 1. The Semantic/Semantized Web in use.

This example from interesting article [16] by Ian Hor-
rocks shows the big difference between use of a seman-
tic query language instead of keywords. In the seman-
tic case you should be given exactly the list of names
you were requesting without having to pore through
results of (probably more then one) keyword queries.
Of course the user have to know the syntax of the
semantic query language or have a special GUI1 at
hand.

The last and the most important possibility (in the
semantic or semantized setting) is to use some (per-
sonalized) software agent that is specialized to tasks of
some kind like planning a business trip or finding the
most optimal choice from all the relevant job offers,
flats for rent, cars for sale, etc.

Both the semantic querying and software agents
engagement is actually impossible to realize without
any kind of adaptation of the web of today in the se-
mantic direction.

1.2 Web Semantization

The idea of Web Semantization [9] consist in grad-
ual enrichment of the current web content as an au-
tomated process of third party annotation for mak-

1 Such handy GUI can be found for example in the KIM
project [20].

2 Jan Dedek

Web Information
Extraction Method

General
Applicable

Specific

Domain Specific

Form Specific

Structure of
Document

e.g. HTML tables

Text

Regexp Level

Deep Linguistic
Analysis

Fig. 2. Division of extraction methods.

ing at least a part of today’s web more suitable for
machine processing and hence enabling it intelligent
tools for searching and recommending things on the
web (see [3]).

The most strait forward idea is to fill a seman-
tic repository with some information that is automat-
ically extracted from the web and make it available to
software agents so they could access to the web of to-
day in semantic manner (e.g. through semantic search
engine).

The idea of a semantic repository and a public ser-
vice providing semantic annotations was experimen-
tally realized in the very recognized work of IBM Al-
maden Research Center: the SemTag [13]. This work
demonstrated that an automated semantic annotation
can be applied in a large scale. In their experiment
they annotated about 264 million web pages and gen-
erated about 434 millions of semantic tags. They also
provided the annotations as a Semantic Label Bureau
– a HTTP server providing annotations for web doc-
uments of 3rd parties.

2 Web information extraction

The task of a web information extraction system is to
transform the web pages into program-friendly struc-
tures such as a relational database. There exists a rich
variety of Web Information Extraction systems. The
results generated by distinct tools usually can not be
directly compared since the addressed extraction tasks
are different. The extraction tasks can be distinguished
according several dimensions: the task domain, the au-
tomation degree, the techniques used, etc. These di-
mensions are analyzed in detail in the recent publica-
tions [6] and [18]. Here we will concentrate on a lit-
tle bit more specific division of WIE according to the
needs of the Web Semantization (see in Sect. 5). The
division is demonstrated on the Fig. 2 and should
not be considered as disjoint division of the methods
but rather as emphasization of different aspects of the
methods. For example many extraction methods are
domain and form specific at the same time.

The distinguishing between general applicable
methods and the others that have meaningful appli-
cation only in some specific setting (specific domain,
specific form of input) is very important for Web Se-
mantization because when we try to produce anno-
tations in large scale, we have to control which web
resource is suitable for which processing method (see
in Sect. 5).

2.1 General applicable

The most significant (and probably the only one) gen-
erally applicable IE task is so called Instance Resolu-
tion Task. The task can be described as follows: Given
a general ontology, find all the instances from the on-
tology that are present in the processed resource. This
task is usually realized in two steps: (1) Named En-
tity Recognition (see in Sect. 3.1), (2) Disambiguation
of ontology instances that can be connected with the
found named entities. Success of the method can be
strongly improved with coreference resolution (see in
Sect. 3.1).

Let us mention several good representatives of this
approach: the SemTag application [13], the KIM
project [20] and the PANKOW annotation method [7]
based on smart formulation of Google API queries.

2.2 Domain specific

Domain and from specific IE approaches are the typ-
ical cases. More specific information is more precise,
more complex and so more useful and interesting. But
the extraction method has to be trained to each new
domain separately. This usually means indispensable
effort.

A good example of domain specific information ex-
traction system is SOBA [5]. This complex system is
capable to integrate different IE approaches and ex-
tract information from heterogeneous data resources,
including plain text, tables and image captions but
the whole system is concentrated on the single domain

WIE systems for Web Semantization 3

of football. Next similarly complex system is ArtE-
quAKT [1], which is entirely concentrated on the do-
main of art.

2.3 Form specific

Beyond general applicable extraction methods there
exist many methods that exploit specific form of the
input resource. The linguistic approaches usually
process text consisting of natural language sentences.
The structure-oriented approaches can be strictly ori-
ented on tables [19] or exploit repetitions of structural
patterns on the web page [21] (such algorithm can be
only applicable to pages that contain more than one
data record), and there are also approaches that use
the structure of whole site (e.g. site of single web shop
with summary pages with products connected with
links to pages with details about single product) [17].

3 Information extraction from
text-based resources

In this section we will discuss the information extrac-
tion from textual resources.

3.1 Tasks of information extraction

There are classical tasks of text preprocessing and lin-
guistic analysis like

Text Extraction – e.g from HTML, PDF or DOC,
Tokenization – detection of words, spaces, punctua-

tions, etc.,
Segmentation – sentence and paragraph detection,
POS Tagging – part of speech assignment, often in-

cluding lemmatization and morphological analy-
sis,

Syntactic Analysis (often called linguistic parsing)
– assignment of the grammatical structure to given
sentence with respect to given linguistic formalism
(e.g. formal grammar),

Coreference Resolution (or anaphora resolution) –
resolving what a pronoun, or a noun phrase refers
to. These references often cross boundaries of
a single sentence.

Besides these classical general applicable tasks, there
are further well defined tasks, which are more closely
related to the information extraction. These tasks are
domain dependent. These tasks were widely developed
in the MUC-6 conference 1995 [15] and considered as
semantic evaluation in the first place. These informa-
tion extraction tasks are:

Named Entity Recognition: This task recognizes
and classifies named entities such as persons, loca-
tions, date or time expression, or measuring units.
More complex patterns may also be recognized as
structured entities such as addresses.

Template Element Construction: Populates tem-
plates describing entities with extracted roles (or
attributes) about one single entity. This task
is often performed stepwise sentence by sentence,
which results in a huge set of partially filled tem-
plates.

Template Relation Construction: As each temp-
late describes information about one single entity,
this tasks identifies semantic relations between en-
tities.

Template Unification: Merges multiple elementary
templates that are filled with information about
identical entities.

Scenario Template Production: Fits the results
of Template Element Construction and Template
Relation Construction into templates describing
pre-specified event scenarios (pre-specified“queries
on the extracted data”).

Appelt and Israel [2] wrote an excellent tutorial
summarizing these traditional IE tasks and systems
built on them.

3.2 Information extraction benchmarks

Contrary to the WIE methods based on the web page
structure, where we (the authors) do not know about
any well established benchmark for these methods2,
the situation in the domain of text based IE is fairly
different. There are several conferences and events con-
centrated on the support of automatic machine pro-
cessing and understanding of human language in text
form. Different research topics as text (or information)
retrieval3, text summarization4 are involved.

On the filed of information extraction, we have to
mention the long tradition of the Message Understand-
ing Conference5 [15] starting in 1987. In 1999 the event
of Automatic Content Extraction (ACE) Evaluation6

started, which is becoming a track in the Text Analysis
Conference (TAC)7 this year (in 2009).
2 It is probably at least partially caused by the vital devel-

opment of the presentation techniques on the web that
is still well in progress.

3 e.g. Text REtrieval Conference (TREC)
http://trec.nist.gov/

4 e.g. Document Understanding Conferences
http://duc.nist.gov/

5 Briefly summarized in http://en.wikipedia.org/

wiki/Message Understanding Conference.
6 http://www.itl.nist.gov/iad/mig/tests/ace/
7 http://www.nist.gov/tac

4 Jan Dedek

All these events prepare several specialized data-
sets together with information extraction tasks and
play an important role as information extraction
benchmarks.

4 Our solutions

4.1 Extraction based on structural similarity

Our first approach for the web information extraction
is to use the structural similarity in web pages con-
taining large number of table cells and for each cell
a link to detailed pages. This is often presented in web
shops and on pages that presents more than one object
(product offer). Each object is presented in a similar
way and this fact can be exploited.

As web pages of web shops are intended for hu-
man usage creators have to make their comprehension
easier. Acquaintance with several years of web shops
has converged to a more or less similar design fashion.
There are often cumulative pages with many products
in a form of a table with cells containing a brief de-
scription and a link to a page with details about each
particular product.

Our main idea is to use a DOM tree representation
of the summary web page and by breadth first search
encounter similar subtrees. The similarity of these sub-
trees is used to determine the data region – a place
where all the objects are stored. It is represented as
a node in the DOM tree, underneath it there are the
similar sub-trees, which are called data records.

We8 have developed and implemented this idea [14]
on the top of Mozilla Firefox API and experimentally
tested on table pages from several domains (cars, note-
books, hotels). Similarity between subtrees was Lev-
enshtein editing distance (for a subtree considered as
a linear string), learning thresholds for decision were
trained.

4.2 Linguistic information extraction

Our second approach [11, 12, 10] for the web informa-
tion extraction is based on deep linguistic analysis. We
have developed a rule-based method for extraction of
information from text-based web resources in Czech
and now we are working on its adaptation to Eng-
lish. The extraction rules correspond to tree queries on
linguistic (syntactic) trees made form particular sen-
tences. We have experimented with several linguistic
tools for Czech, namely Tools for machine annotation
– PDT 2.0 and the Czech WordNet.

Our present system captures text of web-pages, an-
notates it linguistically by PDT tools, extracts data

8 Thanks go mainly to Dušan Maruščák and Peter Vojtáš.

and stores the data in an ontology. We have made ini-
tial experiments in the domain of reports of traffic ac-
cidents. The results showed that this method can e.g.
aid summarization of the number of injured people.

To avoid the need of manual design of extraction
rules we focused on the data extraction phase and
made some promising experiments [8] with the ma-
chine learning procedure of Inductive Logic Program-
ming for automated learning of the extraction rules.

This solution is directed to extraction of informa-
tion which is closely connected with the meaning of
text or meaning of a sentence.

5 The Web Semantization setting

In this section we will discuss possibilities and obstruc-
tions connected with the employment of web informa-
tion extraction systems in the process of web seman-
tization.

One aspect of the realization of the web seman-
tization idea is the problem of integration of all the
components and technologies starting with web crawl-
ing, going through numerous complex analyses (docu-
ment preprocessing, document classification, different
extraction procedures), output data integration and
indexing, and finally implementation of query and pre-
sentation interface. This elaborate task is neither easy
nor simple but today it is solved in all the extensive
projects and systems mentioned above.

The novelty that web semantization brings into ac-
count is the cross domain aspect. If we do not want to
stay with just general ontologies and general applica-
ble extraction methods then we need a methodology
how to deal with different domains. The system has to
support extension to a new domain in generic way. So
we need a methodology and software to support this
action. This can for example mean: to add a new on-
tology for the new domain, to select and train proper
extractors and classifiers for the suitable input pages.

5.1 User initiative and effort

An interesting point is the question: Whose effort will
be used in the process of supporting new domain in
the web semantization process? How skilled such user
has to be? There are two possibilities (demonstrated
on the Fig 3). The easier one is that we have to em-
ploy very experienced expert who will decide about
the new domain and who will also realize the support
needed for the new domain. In the Fig 3 this situation
is labeled as Provider Initiated and Provider Trained
because the expert works on the side of the system
that provides the semantics.

6 Jan Dedek

mentation of tables. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD International Conference
on Management of Data, New York, NY, USA, ACM,
2004, 119–130.

18. B. Liu: Web Data Mining. Springer-Verlag, 2007.
19. D. Pinto, A. Mccallum, X. Wei, and B.W. Croft: Table

extraction using conditional random fields. In SIGIR
’03: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in in-
formaion retrieval, New York, NY, USA, ACM Press,
2003, 235–242.

20. B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and
A. Kirilov: Kim – a semantic platform for informa-
tion extraction and retrieval. Nat. Lang. Eng., 10, 3-4,
2004, 375–392.

21. H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu:
Fully automatic wrapper generation for search engines.
In WWW Conference, 2005, 66–75.

PrefWork - a framework for the user preference
learning methods testing?

Alan Eckhardt1,2

1 Department of Software Engineering, Charles University,
2 Institute of Computer Science, Czech Academy of Science,

Prague, Czech Republic
eckhardt@ksi.mff.cuni.cz

Abstract. PrefWork is a framework for testing of meth-
ods of induction of user preferences. PrefWork is thor-
oughly described in this paper. A reader willing to use Pref-
Work finds here all necessary information - sample code,
configuration files and results of the testing are presented
in the paper. Related approaches for data mining testing
are compared to our approach. There is no software avail-
able specially for testing of methods for preference learning
to our best knowledge.

1 Introduction

User preference learning is a task that allows many dif-
ferent approaches. There are some specific issues that
differentiate this task from a usual task of data min-
ing. User preferences are different from measurements
of a physical phenomenon or a demographic informa-
tion about a country; they are much more focused on
the objects of interest and involve psychology or econ-
omy.

When we want to choose the right method for user
preference learning, e.g. for an e-shop, the best way
is to evaluate all possible methods and to choose the
best one. The problems with the testing of methods
for preference learning are:

– how to evaluate these methods automatically,
– how to cope with different sources of data, with

different types of attributes,
– how to measure the suitability of a method,
– to personalise the recommendation for every user

individually.

2 Related work

The most popular tool related to PrefWork is the open
source projec t Weka [1]. Weka is in development for
many years and has achieved to become the most wide-
ly used tool for data mining. It offers many classifica-
tors, regression methods, clustering, data preprocess-
ing, etc. However this variability is also its weakness
? The work on this paper was supported by Czech

projects MSM 0021620838, 1ET 100300517 and GACR
201/09/H057.

- it can be used for any given task, but it has to be
customised, the developer has to choose from a very
wide range of possibilities. For our case, Weka is too
strong.

RapidMiner [2] has a nice user interface and is in
a way similar to Weka. It is also written in Java and
has source codes available. However the ease of use
is not better than that of Weka. The user interface
is nicer than in Weka but the layout of Weka is more
intuitive (allowing to connect various components that
are represented on a plane).

R [3] is a statistical software that is based on its
own programming language. This is the biggest incon-
venience - a user willing to use R has to learn yet
another programming language.

There are also commercial tools as SAS miner [4],
SPSS Clementine [5], etc. We do not consider these,
because of the need to buy a (very expensive) licence.

We must also mention the work of T. Horváth -
Winston [6], which was developed recently. Winston
may suit our needs, because it is light-weighted, has
also a nice user interface, but in the current stage there
are few methods and no support for the method test-
ing. It is more a tool for the data mining lecturing
than the real world method testing.

We are working with ratings the user has associ-
ated to some items. This use-case is well-known and
used across the internet. An inspiration for extend-
ing our framework is many other approaches to user
preference elicitation. An alternative to ratings has
been proposed in [7, 8] - instead of ratings, the sys-
tem requires direct feedback from the user about the
attribute values. The user has to specify in which val-
ues the given recommendation can be improved. This
approach is called critique based recommendations.

Among other approaches, we should mention also
work of Kiessling [9], which uses the user behaviour as
the source for the preference learning.

We also need some implementations of algorithms
of the user preference learning that are publicly avail-
able for being able to compare various methods among
themselves. This is a strength of PrefWork - any
existing method, which works with ratings, can be

8 Alan Eckhardt

integrated into PrefWork using a special adaptor
for each tool (see Section 4.3). There is a little bit
old implementation of collaborative filtering Cofi [10]
and a brand new one (released 7.4.2009) Mahout [11],
developed by Apache Lucene project. Cofi uses Taste
framework [12], which became a part of Mahout. The
expectations are that Taste in Mahout would perform
better than Cofi, so we will try to migrate our
PrefWork adaptor for Cofi to Mahout. Finally there is
IGAP [13] - a tool for learning of fuzzy logic programs
in form of rules, which correspond to user preferences.
Unfortunately, IGAP is not yet available publicly for
download.

We did not find any other mining algorithm spe-
cialised on user preferences available for free down-
load, but we often use already mentioned Weka. It
is a powerful tool that can be more or less easily in-
tegrated into our framework and provide a reasonable
comparison of a non-specialised data mining algorithm
to other methods that are specialised for preference
learning.

3 User model

For making this article self-contained, we describe in
brief our user model, as in [14]. In this section, we de-
scribe our user model. This model is based on a scoring
function that assigns the score to every object. User
rating of an object is a fuzzy subset of X(set
of all objects), i.e. a function R(o) : X → [0, 1], where
0 means the least preferred and 1 means the most pre-
ferred object. Our scoring function is divided into two
steps.

Local preferences In the first step, which we call lo-
cal preferences, all attribute values of object o are nor-
malised using fuzzy sets fi : DAi

→ [0, 1]. These fuzzy
sets are also called objectives or preferences over at-
tributes. With this transformation, the original space

of objects’ attributes X =
N∏

i=1

DAi
is transformed into

X ′=[0, 1]N . Moreover, we know that the object o∈X ′

with transformed attribute values equal to [1, . . . , 1] is
the most preferred object. It probably does not
exist in the real world, though. On the other side,
the object with values [0, . . . , 0] is the least preferred,
which is more probable to be found in reality.

Global preferences In the second step, called global
preferences, the normalised attribute values are aggre-
gated into the overall score of the object using an ag-
gregation function @ : [0, 1]N → [0, 1]. Aggregation
function is also often called utility function.

Aggregation function may have different forms; one
of the most common is a weighted average, as in the
following formula:

@(o) =(2 ∗ fPrice(o) + 1 ∗ fDisplay(o) + 3 ∗ fHDD(o)+
1 ∗ fRAM (o))/7 ,

where fA is the fuzzy set for the normalisation of at-
tribute A.

Another totally different approach was proposed
in [15]. It uses the training dataset as partitioning of
normalised space X ′. For example, if we have an object
with normalised values [0.4, 0.2, 0.5] with rating 3, any
object with better attribute values (e.g. [0.5, 0.4, 0.7])
is supposed to have the rating at least 3. In this way,
we can find the highest lower bound on any object with
unknown rating. In [15] was also proposed a method
for interpolation of ratings between the objects with
known ratings and even using the ideal (non-existent)
virtual object with normalised values [1, ..., 1] with rat-
ing 6.

4 PrefWork

Our tool PrefWork was initially developed as a master
thesis of Tomáš Dvořák [16], who has implemented it
in Python. In this initial implementation, only Id3 de-
cision trees and collaborative filtering was implemen-
ted. For better ease of use and also for the possibility
of integrating other methods, PrefWork was later re-
written to Java by the author. Many more possibilities
were added until the today state. In the following sec-
tions, components of PrefWork are described.

Most of the components can be configured by XML
configurations. Samples of these configurations and
Java interfaces will be provided for each component.
We omit methods for configuration from Java inter-
faces such as configTest(configuration,section)
which is configured using a configuration from a sec-
tion in an XML file. Also data types of function argu-
ments are omitted for brevity.

4.1 The workflow

In this section a sample of workflow with PrefWork is
described.

The structure of PrefWork is in Figure 1. There
are four different configuration files - one for database
access configuration (confDbs), one for datasources
(confDatasources), one for methods (confMethods)
and finally one for PrefWork runs (confRuns). A run
consists of three components - a set of methods, a set
of datasets and a set of ways to test the method. Every
method is tested on every dataset using every way to

PrefWork - a framework for the user . . . 9

Test

CSV File

Results
Interpreter

Inductive
Method

Database/
CSV

Datasource Data

How to divide
data to

training and testing
sets

Train data/Test data
Predicted rating

Results of method testing

Results confDbs
confDatasources

confMethods
confRuns

Fig. 1. PrefWork structure.

test. For each case, results of the testing are written
into a csv file.

A typical situation a researcher working with
PrefWork finds himself in is: “I have a new idea X. I am
really interested, how it performs on that dataset Y.”

The first thing is to create corresponding Java
class X that implements interface InductiveMethod
(see 4.3) and add a section X to confMethods.xml.
Then copy an existing entry defining a run (e.g. IFSA,
see 4.5) and add method X to section methods. Run
ConfigurationParser and correct all errors in the new
class (and there will be some, for sure). After the run
has finished correctly, process the csv file with results
to see how X performed in comparison with other
methods.

A similar case is when introducing a new dataset
into PrefWork - confDatasets.xml and confDBs.xml
have to be edited if the data are in SQL database
or in a csv file. Otherwise a new Java class (see 4.2)
able to handle the new type of data has to be created.
For example, we still have not implemented the class
for handling of arff files - these files have the defini-
tion of attributes in themselves, so the configuration
in confDatasets.xml would be much more simple (see
Section 4.2 for an example of a configuration of a data-
source with its attributes).

4.2 Datasource

Datasource is, as the name hints, the source of data
for inductive methods. Currently, we are working only
with ratings of objects. Data are vectors, where the
first three attributes typically are: the user id, the ob-
ject id and the rating of the object. The attributes of
the object follow. There is a special column that con-

tains a random number associated to each rating. Its
purpose will described later.

Every datasource has to implement the following
methods:

interface BasicDataSource{
boolean hasNextRecord();
void setFixedUserId(value);
List<Object> getRecord();
Attribute[] getAttributes();
Integer getUserId();
void setLimit(from, to,

recordsFromRange);
void restart();
void restartUserId();

}

There are two main attributes of datasource - a list
of all users and a list of ratings of the current user.
getUserId returns the id of the current user. The
most important function is getRecord, which returns
a vector containing the rating of the object and its
attributes. Following calls of getRecords return all
objects rated by the current user. A typical sequence
is:

int userId = data.getUserId();
data.setFixedUserId(userId);
data.restart();
while(data.hasNextRecord()){
List<Object> record =

data.getRecord();

// Work with the record
...

}

10 Alan Eckhardt

Another important function is setLimit, which limits
the data using given boundaries from and to. The
random number associated to each vector returned
by getRecord has to fit into this interval. If
recordsFromRange is false, then the random number
should be outside of the given interval on the contrary.
This method is used when dividing the data into train-
ing and testing sets. For example, let us divide the data
to 80% training set and 20% testing set. First, we call
setLimit(0.0,0.8,true) and let the method train
on these data. Then, setLimit(0.0,0.8,false) is
executed and vectors returned by the datasource are
used for the testing of the method.

Let us show a sample configuration of a datasource
that returns data about notebooks:

<NotebooksIFSA>
<attributes>
<attribute><name>userid</name>
<type>numerical</type>

</attribute>
<attribute><name>notebookid</name>
<type>numerical</type>

</attribute>
<attribute><name>rating</name>
<type>numerical</type>
</attribute>

<attribute><name>price</name>
<type>numerical</type>

</attribute>
<attribute><name>producer</name>
<type>nominal</type>

</attribute>
<attribute><name>ram</name>
<type>numerical</type>

</attribute>
<attribute><name>hdd</name>
<type>numerical</type>

</attribute>
</attributes>
<recordsTable>
note_ifsa

</recordsTable>
<randomColumn>
randomize

</randomColumn>
<userID>userid</userID>
<usersSelect>
select distinct userid from note_ifsa
</usersSelect>

</NotebooksIFSA>

First, a set of attributes is defined. Every attribute
has a name and a type - numerical, nominal or list.
An example of list attribute is actors in a film. This
attribute can be found in the IMDb dataset [17].

Let us also note the select for obtaining the user
ids (section usersSelect) and the name of the column
that contains the random number used in setLimit
(randomColumn).

Other types of user preferences. PrefWork as it is
now supports only ratings of objects. There are many
more types of data containing user preferences - user
clickstream, user profile, filtering of the result set etc.

PrefWork does not work with any information
about the user, either demographic like age, sex, place
of birth, occupation etc. or his behaviour. These types
of information may bring a large improvement in the
prediction accuracy, but they are typically not present
- users do not want to share any personal information
for the sole purpose of a better recommendation.
Another issue is the complexity of user information;
a semantic processing would have to be used.

4.3 Inductive method

InductiveMethod is the most important interface - it is
what we want to evaluate. Inductive method has two
main methods:

interface InductiveMethod {
int buildModel(trainingDataset,

userId);
Double classifyRecord(record,

targetAttribute);
}

buildModel uses the training dataset and the userId
for the construction of a user preference model. After
having it constructed, the method is tested - it is be-
ing given records via method classifyRecord and is
supposed to evaluate them.

Various inductive methods were implemented.
Among the most interesting are our method Statisti-
cal ([18, 15]) and Instances ([15]), WekaBridge that
allows to use any method from Weka (such as Sup-
port vector machine) and ILPBridge that transforms
data to a prolog program and then uses Progol [19] to
create the user model. CofiBridge allows to use Cofi
as a PrefWork InductiveMethod.

A sample configuration of method Statistical is:

<Statistical>
<class>Statistical</class>
<rater>
<class>WeightAverage</class>
<weights>VARIANCE</weights>
</rater>
<representant>
<class>AvgRepresentant</class>
</representant>

PrefWork - a framework for the user . . . 11

<numericalNormalizer>
Linear

</numericalNormalizer>
<nominalNormalizer>

RepresentantNormalizer
</nominalNormalizer>
<listNormalizer>

ListNormalizer
</listNormalizer>

</Statistical>

Every method requires a different configuration, only
the name of the class is obligatory. Note that the
methods based on our two-step user model (Statis-
tical and Instances for now) can be easily configured
to test different heuristics for the processing of differ-
ent types of attributes. Configuration contains three
sections: numericalNormalizer, nominalNormalizer
and listNormalizer for the specification of the
method for the particular type of attribute. Also see
Section 4.5 for an example of this configuration.

4.4 Ways of the testing of the method

Several possible ways for the testing of methods can
be defined, the division to training and testing sets
is the most typically used. The method is trained on
the training set (using buildModel) and then tested on
the testing set (using classifyRecord). Another typical
method is k-fold cross validation that divides data into
k sets. In each of k runs, one set is used as the testing
set and the rest as the training set.

interface Test {
void test(method, trainDataSource,

testDataource);
}

When the method is tested, the results in the form
userid, objectid, predictedRating, realUserRating
have to be processed. The interpretation is done by
a TestResultsInterpreter. The most common is
DataMiningStatistics, which computes such measures
as correlation, RMSE, weighted RMSE, MAE, Kendall
rank tau coefficient, etc. Others are still waiting to be
implemented - ROC curves or precision-recall statis-
tics.

abstract class TestInterpreter {
abstract void writeTestResults(

testResults);
}

4.5 Configuration parser

The main class is called ConfigurationParser. The de-
finition of one test follows:

<IFSA>
<methods>
<method>
<name>Statistical</name>
<numericalNormalizer>
Standard2CPNormalizer

</numericalNormalizer>
</method>
<method><name>Statistical</name>
</method>
<method><name>Mean</name></method>
<method><name>SVM</name></method>
</methods>
<dbs>
<db>
<name>MySQL</name>
<datasources>NotebooksIFSA
</datasources>
</db>
</dbs>
<tests>
<test>
<class>TestTrain</class>
<ratio>0.05</ratio>
<path>resultsIFSA</path>
<testInterpreter>
<class>DataMiningStatistics
</class>

</testInterpreter>
</test>
<test>
<class>TestTrain</class>
<ratio>0.1</ratio>
<path>resultsIFSA</path>
<testInterpreter>
<class>DataMiningStatistics
</class>

</testInterpreter>
</test>
</tests>

</IFSA>

First, we have specified which methods are to be
tested - in our case it is two variants of Statistical,
then Mean and SVM. Note that some attributes of
Statistical, which was defined in confMethods, can be
“overridden” here. The basic configuration of Statisti-
cal is in Section 4.3. Then the datasource for testing of
the methods is specified – we are using MySql database
with datasource NotebooksIFSA. Several datasources
or databases can be specified here. Finally, the ways
of the testing and interpretation are given in section
tests. TestTrain requires ratio of the training and the
testing sets, the path where the results are to be writ-
ten, and the interpretation of the test results.

12 Alan Eckhardt

date;Ratio;dataset;method;userId;mae;rmse;weightedRmse;monotonicity;tau;weightedTau;correlation;buildTime;
testTime;countTrain;countTest;countUnableToPredict

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,855;0,081;1,323;1,442;0,443;0,358;0,535;94;47;10;188;0;

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,868;0,078;1,216;1,456;0,323;0,138;0,501;32;0;13;185;0;

28.4.2009
12:18;0,05;NotebooksIFSA;Statistical,StandardNorm2CP;1;0,934;0,083;1,058;1,873;0,067;0,404;0,128;31;16;12;186;0;

28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;0,946;0,081;1,161;1,750;0,124;0,016;0,074;15;16;4;194;0
28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;0,844;0,076;1,218;1,591;0,224;0,215;0,433;0;16;6;192;0
28.4.2009 12:31;0,025;NotebooksIFSA;Statistical,Peak;1;1,426;0,123;1,407;1,886;0,024;0,208;-0,063;16;0;4;194;0

Fig. 2. A sample of results in a csv file.

The definitions of runs are in confRuns.xml in sec-
tion runs. The specification of the run to be executed
is in section run of the same file.

4.6 Results of testing

In Figure 2 is a sample of the resulting csv file. In
our example, there are three runs with method Sta-
tistical with normaliser StandardNorm2CP and three
runs with normaliser Peak. Runs were performed on
different settings of the training and the testing sets,
so the results are different even for the same method.

The results contain all necessary information re-
quired for generation of a graph or a table with the
results. Csv format was chosen for its simplicity and
wide acceptance, so any other possible software can
handle it. We are currently using Microsoft Excel and
its Pivot table that allows aggregation of results by
different criteria. Among other possibilities is also the
already mentioned R [3].

Example figures of the output of PrefWork are in
Figures 3 and 4. The lines represent different meth-
ods, X axis represents the size of the training set and
the Y axis the value of the error function. In Fig-
ure 3 the error function is Kendall rank tau coefficient
(the higher it is the better) and in Figure 4 is RMSE
weighted by the original rating (the lower the better).
The error function can be chosen, as is described in
Section 4.4.

It is impossible to compare PrefWork to another
framework generally. A simple comparison to other
such systems is in Section 2. This can be done only
qualitatively; there is no attribute of frameworks that
can be quantified. The user itself has to choose among
them the one that suits his needs the most.

4.7 External dependencies

PrefWork is dependent on some external libraries. Two
of them are sources for inductive methods - Weka [1]
and Cofi [10]. Cofi also requires taste.jar.

Average of Tau coefficient

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

2 5 10 15 20 40 75
Training set size

Ta
u

co
ef

fic
ie

nt
weka,SVM
Mean
Statistical, Linear regression
Statistical,2CP-regression
weka,MultilayerPerceptron

Fig. 3. Tau coefficient.

Average of Weighted RMSE

0,55

0,75

0,95

1,15

1,35

1,55

2 5 10 15 20 40 75
Training set size

W
ei

gh
te

d
R

M
SE

weka,SVM
Mean
Statistical, Linear regression
Statistical,2CP-regression
weka,MultilayerPerceptron

Fig. 4. Weighted RMSE.

PrefWork - a framework for the user . . . 13

PrefWork requires following jars to function cor-
rectly:

Weka weka.jar
Cofi cofi.jar
Cofi taste.jar

Logging log4j.jar
CSV parsing opencsv-1.8.jar
Configuration commons-configuration-1.5.jar
Configuration commons-lang-2.4.jar
MySql mysql-connector-java-5.1.5-

bin.jar
Oracle ojdbc1410.2.0.3.jar

Tab. 1. Libraries required by PrefWork.

5 Conclusion

PrefWork has been presented in this paper with a thor-
ough explanation and description of every component.
Interested reader should be now able to install Pref-
Work, run it, and implement a new inductive method
or a new datasource.

The software can be downloaded at http://www.
ksi.mff.cuni.cz/∼eckhardt/PrefWork.zip
as an Eclipse project containing all java sources and all
required libraries or can be downloaded as SVN check-
out at [20]. The SVN archive contains Java sources and
sample configuration files.

5.1 Future work

We plan to introduce time dimension to PrefWork.
Netflix [21] datasets uses a timestamp for each rat-
ing. This will enable to study the evolution of the
preferences in time, which is a challenging problem.
However, the integration of the time dimension into
PrefWork can be done in several ways and the right
one is yet to be chosen.

Allowing other sources of data apart from the rat-
ings is a major issue. The clickthrough data can be
collected without any effort of the user and can be sub-
stantially larger than the number of ratings. But its in-
tegration into
PrefWork would require a large reorganisation of ex-
isting methods.

References

1. I.H. Witten, E. Frank: Data Mining: Practical Ma-
chine Learning Tools and Techniques, 2nd Edition.
Morgan Kaufmann, San Francisco (2005).

2. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz,
T. Euler: Yale: Rapid prototyping for complex data
mining tasks. In Ungar, L., Craven, M., Gunopulos, D.,

Eliassi-Rad, T., eds.: KDD’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, New York, NY, USA, ACM
(August 2006), 935–940.

3. R-project. http://www.r-project.org/.
4. SAS enterprise miner. http://www.sas.com/.
5. SPSS Clementine. http://www.spss.com/software/

modeling/modeler/.
6. Š. Pero, T. Horváth: Winston: A data mining assis-

tant. In: To appear in proceedings of RDM 2009, 2009.
7. P. Viappiani, B. Faltings: Implementing example-based

tools for preference-based search. In: ICWE’06: Pro-
ceedings of the 6th international conference on Web
engineering, New York, NY, USA, ACM, 2006, 89–90.

8. P. Viappiani, P. Pu, B. Faltings: Preference-based
search with adaptive recommendations. AI Commun.
21, 2-3, 2008, 155–175.

9. S. Holland, M. Ester, W. Kiessling: Preference min-
ing: A novel approach on mining user preferences for
personalized applications. In: Knowledge Discovery in
Databases: PKDD 2003, Springer Berlin / Heidelberg,
2003, 204–216.

10. Cofi: A Java-Based Collaborative Filtering Library.
http://www.nongnu.org/cofi/.

11. Apache Mahout project. http://lucene.apache.

org/mahout/.
12. Taste project. http://taste.sourceforge.net/old.

html.
13. T. Horváth, P. Vojtáš: Induction of fuzzy and anno-

tated logic programs. In Muggleton, S., Tamaddoni-
Nezhad, A., Otero, R., eds.: ILP06 - Revised Selected
papers on Inductive Logic Programming. Number 4455
in Lecture Notes In Computer Science, Springer Ver-
lag, 2007, 260–274.

14. A. Eckhardt: Various aspects of user preference
learning and recommender systems. In Richta, K.,
Pokorný, J., Snášel, V., eds.: DATESO 2009. CEUR
Workshop Proceedings, Česká technika - nakladatel-
stv́ı ČVUT, 2009, 56–67.

15. A. Eckhardt, P. Vojtáš: Considering data-mining tech-
niques in user preference learning. In: 2008 Interna-
tional Workshop on Web Information Retrieval Sup-
port Systems, 2008, 33–36.

16. T. Dvořák: Induction of user preferences in seman-
tic web, in Czech. Master Thesis, Charles University,
Czech Republic, 2008.

17. The Internet Movie Database. http://www.imdb.

com/.
18. A. Eckhardt: Inductive models of user preferences for

semantic web. In Pokorný, J., Snášel, V., Richta, K.,
eds.: DATESO 2007. Volume 235 of CEUR Workshop
Proceedings., Matfyz Press, Praha, 2007, 108–119.

19. S. Muggleton: Learning from positive data. 1997, 358–
376

20. PrefWork - a framework for testing methods for
user preference learning. http://code.google.com/p/
prefwork/.

21. Netflix dataset, http://www.netflixprize.com.

Boosted surrogate models in evolutionary optimization?

Martin Holeňa

Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 18207 Praha 8, Czech Republic, martin@cs.cas.cz, web: cs.cas.cz/~martin

Abstract. The paper deals with surrogate modelling,
a modern approach to the optimization of empirical ob-
jective functions. The approach leads to a substantial de-
crease of time and costs of evaluation of the objective func-
tion, a property that is particularly attractive in evolution-
ary optimization. In the paper, an extension of surrogate
modelling with regression boosting is proposed. Such an ex-
tension increases the accuracy of surrogate models, thus
also the agreement between results of surrogate modelling
and results of the intended optimization of the original ob-
jective function. The proposed extension is illustrated on
a case study in the area of searching catalytic materials op-
timal with respect to their behaviour in a particular chem-
ical reaction. A genetic algorithm developed specifically for
this application area is employed for optimization, multi-
layer perceptrons serve as surrogate models, and a method
called AdaBoost.R2 is used for boosting. Results of the case
study clearly confirm the usefulness of boosting for surro-
gate modelling.

1 Introduction

For more than two decades, evolutionary algorithms,
especially their most frequently encountered represen-
tative – genetic algorithms, belong to the most suc-
cessful methods for solving difficult optimization tasks
[3, 11, 31, 32, 42]. The popularity of evolutionary algo-
rithms is to some extent due to their biological inspi-
ration, which increases their comprehensibility out-
side computer science. Nevertheless, they share sev-
eral purely mathematical properties of all stochastic
optimization methods, most importantly, the valuable
ability of to escape a local optimum and continue the
search for a global one, and the restriction of the infor-
mation on which they rely to function values only.
Consequently, they do not need information about gra-
dients or second-order partial derivatives, differently
to smooth optimization methods (such as steepest de-
scent, conjugate gradient methods, the popular Le-
venberg-Marquardt method, etc.). This makes them
particularly attractive for the optimization of empiri-
cal objective functions, the values of which cannot be
analytically computed, but have to be obtained ex-
perimentally, through some measurement or testing.
? The research reported in this paper has been supported

by the grant No. 201/08/1744 of the Grant Agency of
the Czech Republic and partially supported by the Insti-
tutional Research Plan AV0Z10300504.

Indeed, the impossibility to compute analytically the
function values of such a function makes also an ana-
lytical computation of its gradient and second-order
derivatives impossible, whereas measurement errors
usually hinder obtaining sufficiently accurate estima-
tes of the derivatives.

Like other methods relying solely on function val-
ues, evolutionary algorithms need the objective func-
tion to be evaluated in quite a large number of points.
In the context of optimization of empirical objective
functions, this can be quite disadvantageous because
the evaluation of such a function in the points form-
ing one generation of an evolutionary algorithm is of-
ten costly and time-consuming. Hence, the above men-
tioned advantages of using evolutionary algorithms for
the optimization of empirical objective functions are
frequently counterbalanced by considerably high costs
and time needed for the evaluation of such functions.
An area, where the trade-off between successful op-
timization and costly objective function evaluations
plays a crucial role, is the computer-aided search for
new materials and chemicals optimal with respect to
certain properties [2]. Here, evolutionary algorithms
are used in more than 90 % of optimization tasks,
and the rarely encountered alternatives are simulated
annealing [9, 22, 23], simplex method [17], and holo-
graphic search strategy [37, 38, 41], which also use sole-
ly function values, therefore needing a similarly high
number of objective function evaluations as evolution-
ary algorithms. Testing a generation of materials or
chemicals typically needs hours to days of time and
costs hundreds to thousands euros. Therefore, the evo-
lutionary optimization rarely runs for more than ten
generations.

The usual approach to decreasing the cost and
time of optimization of empirical objective functions
is to evaluate the objective function only sometimes
and to evaluate a suitable regression model of that
function otherwise. The employed model is termed
surrogate model of the empirical objective function,
and the approach is referred to as surrogate modelling.
Needless to say, the time and costs needed to evalu-
ate a regression model are negligible compared to an
empirical objective function. However, it must not be
forgotten that the final optimized function coincides
with the original empirical objective function only in
some points, whereas in the remaining points it coin-

16 Martin Holeňa

cides only with its surrogate model. Consequently, the
agreement between the results of surrogate modelling
and the results of the intended optimization of the
original objective function depends on the accuracy of
the approximation of the original objective function
by the surrogate model.

This paper suggests to increase the accuracy of sur-
rogate models by means of boosting. Boosting is a pop-
ular approach to increasing the accuracy of classifica-
tion, and due to the success of classification boosting,
also several methods of regression boosting have al-
ready been proposed. However, so far no attempt has
been reported to combine regression boosting with sur-
rogate modelling. Hence, the purpose of the research
reported in the paper is basically a proof of concept: to
extend surrogate modelling through the incorporation
of regression boosting, and to validate that extension
on several sufficiently complex case studies. One of
those case studies is described in the paper.

In the following section, basic principles of surro-
gate modelling and its strategies in evolutionary opti-
mization are recalled, and important surrogate models
are listed. Section 3 recalls the principles of boosting
and explains a particular method of regression boost-
ing that will be employed later in a case study in mate-
rials science. That case study is sketched and its main
results are presented in Section 4.

2 Surrogate modelling

Surrogate modelling is a general approach to the op-
timization of costly objective functions in which the
evaluation of the objective function is restricted to
points that are considered to be most important for
the progress of the employed optimization method [5,
25, 27, 30, 39, 40]. It is most frequently encountered in
connection with the optimization of empirical objec-
tive functions, but has been equally successfully ap-
plied also to expensive optimization tasks in engineer-
ing design in which the objective function is not em-
pirical, but its evaluation is connected with intensive
computations [25]. In the context of computer-aided
search for new materials and chemicals optimal with
respect to certain properties, surrogate modelling can
be viewed as replacing real experiments with simulated
virtual experiments in a computer: such virtual ex-
periments are sometimes referred to as virtual screen-
ing [2].

Although surrogate modelling is a general opti-
mization approach (cf. its application in the context
of conventional optimization in [5]), it is most fre-
quently encountered in connection with evolutionary
algorithms. The reason is that in evolutionary opti-
mization, the approach leads to the approximation of
the landscape of the fitness function, i.e., to a method

that is known to be useful in general [19, 20, 29]. In evo-
lutionary algorithms, most important for the progress
of the method are on the one hand points that best in-
dicate the global optimum (typically through highest
values of the fitness function), on the other hand points
that most contribute to the diversity of the population.

In the context of evolutionary optimization, surro-
gate modelling has the following main steps:
(i) Collecting an initial set of points in which the ob-

jective function has already been empirically eval-
uated. This can be the first generation or several
first generations of the evolutionary algorithm, but
such points are frequently available in advance.

(ii) Approximating the objective function by a surro-
gate model, with the use of the set of all points in
which it has been empirically evaluated.

(iii) Running the evolutionary algorithm for a popu-
lation considerably larger than is the desired pop-
ulation size, with the empirical objective function
replaced by the surrogate model.

(iv) Forming the next generation of the desired size
as a subset of the large population obtained in
the preceding step that includes points most im-
portant according to considered criteria for the
progress of optimization (such as indication of glo-
bal optimum, diversity).

(v) Empirically evaluating the objective function in
all points that belong to the next generation of
the desired size, and returning to step (ii).
Actually, the above steps (ii)–(v) correspond to

only one possible strategy of surrogate modelling in
evolutionary optimization: the individual-based con-
trol, sometimes also referred to as pre-selection [40].
An alternative strategy to the steps (ii)–(v) is to run
the algorithm for only the desired population size, in-
terleaving one generation/several generations in which
the original objective function is empirically evaluated
with a certain number of generations in which the sur-
rogate model is evaluated. This is the generation-based
control of surrogate modelling in evolutionary opti-
mization.

For empirical objective functions, it is typical to be
highly nonlinear. Therefore, nonlinear regression mod-
els should be used as surrogate models. They can be
basically divided into two large groups according to
whether the set of functions among which the sur-
rogate model has to be chosen has an explicit finite
parametrization.

1. So far, mostly parametric models have been used
for surrogate modelling. From the point of view of
their role in this context and/or their overall im-
portance, the following kinds of parametric nonlin-
ear regression models are most worth mentioning:
(i) Multilayer feed-forward neural networks, more

precisely, the nonlinear mappings computed

Boosted surrogate models . . . 17

by such networks. Their attractiveness for non-
linear regression in general and for surrogate
modelling in particular [20] is due to their uni-
versal approximation capability, which actual-
ly means that linear spaces of functions com-
puted by certain families of multilayer feed-
forward neural networks are dense in some ge-
neral function spaces [18, 21, 26]. For exam-
ple, considering the most common represen-
tative of such networks – multilayer percep-
trons, the linear space formed by all functions
computed by the family of perceptrons with
one hidden layer and infinitely smooth acti-
vation functions is dense in the space Lp(µ)
of functions with the p-th power of absolute
value finitely integrable with respect to a fi-
nite measure µ, in the space C(X) of functions
continuous on a compact X, and in Sobolev
spaces generalizing Lp(µ) to functions that are
differentiable up to a given order. In the ap-
plication domain of catalytic materials, from
which the case study presented in Section 4 is
taken, nearly all examples of regression analy-
sis published since mid 1990s rely on multi-
layer feed-forward neural networks, typically
on multilayer perceptrons (Figure 1). In the
last edition of “Handbook of heterogeneous
catalysis”, more than 20 such examples are
listed, as well as several additional, based on
other kinds of such networks – radial basis
function networks and piecewise-linear neural
networks [16]. Therefore, these three kinds of
neural networks are now briefly recalled:
– Multilayer perceptrons (MLPs) can have

an arbitrary number of hidden layers, and
the basis functions of their linear space
of computed functions are constructed by
means of sigmoidal activation functions,
such as logistic sigmoid, hyperbolic tan-
gent, or arctangent [13, 43].

– Radial basis function (RBF) networks al-
ways have only one hidden layer, and the
basis functions of their space of computed
functions are radial, i.e., the function value
depends only on the distance of the vector
of input values from some centre, specific
to the function [7].

– Piecewise-linear neural networks are sim-
ply MLPs with piecewise-linear activation
functions. Their linear space of computed
functions is dense only in C(X), but on
the other hand, they allow a straightfor-
ward extraction of logical rules describing
the relationships between input and out-
put values of the network [15].

Fig. 1. Example MLP architecture with two hidden layers,
used in the case study presented in Section 4.

(ii) Support vector regression based on positive
semi-definite kernels [34, 36]. It is worth men-
tioning that they generalize the above recalled
RBF networks, and also the historically first
kind of nonlinear regression – polynomial re-
gression.

(iii) Gaussian process regression [28] is listed here
also due to a relationship to radial basis func-
tion networks, but most importantly due to
the fact that it has already been successfully
employed in surrogate modelling [6].

2. Nonparametric regression models are, in general,
more flexible than parametric models, but the flex-
ibility is typically paid for by more extensive com-
putations. Therefore, their importance has been
increasing only during the last two decades, fol-
lowing the increasing power of available comput-
ers [12, 14]. Nevertheless, there is one noteworthy
exception:
(v) Regression trees have been successfully used

already since the early 1980s [4]. They are ac-
tually a modification of a classification met-
hod, therefore the regression function is piece-
wise-constant. That property accounts for re-
latively low computational requirements of re-
gression trees, but also decreases their flexibil-
ity, otherwise the main advantage of nonpara-
metric methods.

3 Boosting regression models

Boosting is a method of improving classification ac-
curacy that consists in developing the classifier iter-
atively, and increasing the relative influence of the
training data that most contributed to errors in the
previous iterations on its development in the subse-
quent iterations [33]. The usefulness of boosting for
classification has incited its extension to regression [8].
Both for classification and for regression, the basic ap-
proach to increasing the relative influence of particular

18 Martin Holeňa

training data is re-sampling the training data accord-
ing to a distribution that gives them a higher probabil-
ity of occurrence. This is equivalent to re-weighting the
contributions of the individual training pairs (xj , yj),
with higher weights corresponding to higher values of
the error measure.

Since surrogate models are regression models, any
method for regression boosting (such as [8, 10, 35])
is suitable for them. In the following, the met-
hod AdaBoost.R2 will be explained in detail, pro-
posed in [8].

Similarly to other adaptive boosting methods, each
of the available pairs (x1, y1), , (xp, yp) of input
and output data is in the first iteration of
AdaBoost.R2 used exactly once. This corresponds to
re-sampling them according to the uniform probabil-
ity distribution P1 with P1(x1) = 1

p for j = 1, . . . , p.
In addition, the weighted average error of the 1st iter-
ation is set to zero, Ē1 = 0.

In the subsequent iterations (i ≥ 2), the following
sequence of steps is performed:

1. A sample (ξ1, η1), . . . , (ξp, ηp) is obtained through
re-sampling (x1, y1), . . . , (xp, yp) according to the
distribution Pi−1.

2. Using (ξ1, η1), . . . , (ξp, ηp) as training data, a re-
gression model Fi is constructed.

3. A [0,1]-valued squared error vector Ei of Fi with
respect to (x1, y1), . . . , (xp, yp) is calculated as

Ei = (Ei(1), . . . , Ei(p)) =

=
((Fi(x1)− y1)2, . . . , (Fi(xp)− yp)2)

maxk=1,...,p(Fi(xk)− yk)2
. (1)

4. The weighted average error of the i-th iteration is
calculated as

Ēi =
1
p

p∑

k=1

Pi(xk, yk)Ei(k). (2)

5. Provided Ēi < 0.5 , the probability distribution for
re-sampling (x1, y1), . . . , (xp, yp) is for k = 1, . . . , p
updated according to

Pi(xk, yk) =

=
Pi−1(xk, yk)

(
Ēi

1−Ēi

)(1−Ei(k))

∑p
i=1 Pi−1(xk, yk)

(
Ēi

1−Ēi

)(1−Ei(k))
. (3)

6. The boosting approximation in the i-th iteration is
set to the median of the approximations F1, . . . , Fi

with respect to the probability distribution
(

Ē1

1− Ē1
, . . . ,

Ēi

1− Ēi

)
. (4)

The errors used to asses the quality of the boost-
ing approximation are then called boosting errors, e.g.,
boosting MSE, or boosting MAE, where MSE refers to
the mean squared error between the computed and
measured values, whereas MAE refers to the mean
absolute error, i.e., to the mean Euclidean distance
between them. For simplicity, also the approximation
in the first iteration, F1, is called boosting approxima-
tion if boosting is performed, and the respective errors
are then called boosting errors, although boosting ac-
tually does not introduce any modifications in the first
iteration.

The above formulation of the method deals only
with the case Ēi < 0.5. For Ēi ≥ 0.5, the original
formulation of the method in [8] proposes to stop the
boosting. However, that is not allowed if the stopping
criterion should be based on an independent set of
validation data. Indeed, the calculation of Ēi does not
rely on any such independent data set, but it relies
solely on the data employed to construct the regres-
sion model. A possible alternative for the case Ēi ≥ 0.5
is reinitialization, i.e., proceeding as in the 1st itera-
tion [1].

In connection with using feed-forward neural net-
works as surrogate models, it is important to be aware
of the difference between the iterations of boosting
and the iterations of neural network training. Boost-
ing iterates on a higher level, one iteration of boosting
includes a complete training of an ANN, which can
proceed for many hundreds of iterations. Nevertheless,
both kinds of iterations are similar in the sense that
starting with some iteration, over-training is present.
Therefore, also over-training due to boosting can be
reduced through stopping in the iteration after which
the error for an independent set of data first time in-
creases. Moreover, cross-validation can be used to find
the iteration most appropriate for stopping.

4 Case study in materials science

The extension of surrogate modelling with boosting
will now be illustrated on a case study using data from
the investigation of catalytic materials for the high-
temperature synthesis of hydrocyanic acid. That in-
vestigation and its results have been recently described
in [24]. It has been performed through high-throughput
experiments in a circular 48-channel reactor. In most
of those experiments, the composition of the materials
was designed by means of a genetic algorithm devel-
oped specifically for heterogeneous catalysis [44]. More
precisely, the algorithm was running for 7 generations
of population size 92, and in addition 52 other cata-
lysts with manually designed composition were inves-
tigated. Consequently, data about altogether 696 cat-
alytic materials were gathered.

Boosted surrogate models . . . 19

The composition and preparation of the investi-
gated catalytic materials and the conditions in which
they had been tested have been in detail described
in [24]. Here, only the independent and dependent
variables are recalled, the latter corresponding to the
considered possible objective functions:

– independent variables: material used as support,
and proportions of the 10 metal additives Y, La,
Mo, Re, Ir, Ni, Pt, Zn, Ag, Au (an 11th metal, Zr,
was left out due to the fact that the proportions
of all active compounds sum up to 100 %);

– dependent variables, i.e., objective functions: con-
versions of CH4 and NH3, and yield of HCN.

As the surrogate model, MLPs were employed, in
accordance with their leading role among nonlinear
regression models in the area of catalytic ma-
terials [2, 16]. Each considered neural network had
14 input neurons: 4 of them coding the material used
as support, the other 10 corresponding to the propor-
tions of the 10 metal additives belonging to indepen-
dent variables; output neurons were 3, corresponding
to the possible objective functions (Figure 1).

The most appropriate MLP architectures were
searched by means of cross-validation, using only data
about catalysts from the 1.–6. generation of the ge-
netic algorithm and about the 52 catalysts with manu-
ally designed composition, thus altogether data about
604 catalytic materials. Data about catalysts from the
7. generation were completely excluded and left out
for validating the search results. To use as much in-
formation as possible from the available data, cross-
validation was applied as the extreme 604-fold vari-
ant, i.e., leave-1-out validation. The set of architec-
tures within which the search was performed was de-
limited by means of the heuristic pyramidal condition:
the number of neurons in a subsequent layer must not
increase the number of neurons in a previous layer.
Denote nI , nh and nO the numbers of input, hidden
and output neurons, respectively, and nH1 and nH2

the numbers of neurons in the first and second hid-
den layer, respectively. Then the pyramidal condition
reads:
(i) for MLPs with 1 hidden layer: nI ≥ nH ≥ nO, in

our case 14 ≥ nH ≥ 3 (12 architectures);
(ii) for MLPs with 2 hidden layers: nI ≥ nH1 ≥

nH2 ≥ nO, in our case 14 ≥ nH1 ≥ nH2 ≥ 3
(78 architectures).
To investigate the usefulness of boosting in our

case study, the same data were used and the same
set of architectures was considered as for architecture
search. In each iteration, a leave-1-out validation was
performed, in the way briefly outlined in the preceding
section: The mean squared error of the performance of
the catalytic materials serving in the individual folds

as test data was calculated, and averaged over all the
604 folds. The criterion according to which boosting is
considered useful to an architecture was: the average
boosting MSE in the 2nd iteration has to be lower than
in the 1st iteration. The iteration till which the aver-
age boosting MSE continuously decreased was then
taken as the final iteration of boosting.

According to that criterion, boosting was useful
to 9 from the 12 considered architectures with one
hidden layer and to 65 from the 78 considered archi-
tectures with two hidden layers. To validate the most
promising results of the investigation of the useful-
ness of boosting in our case study, the data from the
7th generation of the genetic algorithm were used. The
validation included the 5 architectures that were most
promising for boosting from the point of view of the
lowest boosting MSE on test data in the final iteration.
These were the architectures (14,10,6,3), (14,14,8,3),
(14,13,5,3), (14,10,4,3) and (14,11,3), for which the fi-
nal iterations of boosting were 32, 29, 31, 19 and 3, re-
spectively. For each of them, the validation proceeded
as follows:

1. In each iteration up to the final boosting iteration
corresponding to the respective architecture, a sin-
gle MLP was trained with data about the 604 cat-
alytic materials considered during the architecture
search.

2. Each of those MLPs was employed to approximate
the conversions of CH4 and NH3 and the yield of
HCN for the 92 materials from the 7. generation
of the genetic algorithm.

3. In each iteration, the medians with respect to the
probability distribution (4) of the approximations
of the two conversions and of the HCN yield ob-
tained up to that iteration were used as the boost-
ing approximations.

4. From the conversions and the yield predicted by
the boosting approximations, and from the mea-
sured values, the boosting MSE and MAE were
calculated for each MLP.

The boosting errors (MSE and MAE) are sum-
marized in Figure 2, whereas Figure 3 compares the
boosting approximations of the conversions of CH4

and NH3 and of the yield of HCN in the 1st and final
iteration with their measured values. The presented
results clearly confirm the usefulness of boosting for
the five considered architectures. For each of them,
boosting led to an overall decrease of both considered
error measures, the MSE and MAE, on new data from
the 7th generation of the genetic algorithm. Moreover,
the decrease of the MSE (which is the measure em-
ployed during the investigation of the usefulness of
boosting) is uninterrupted or nearly uninterrupted till
the final boosting iteration. On the other hand, the

20 Martin Holeňa

Fig. 2. History of the boosting MSE and MAE on the data
from the 7th generation of the genetic algorithm for MLPs
with the five architectures included in the validation of
boosting.

scatter plots in Figure 3 do not indicate any apparent
difference between the effect of boosting on the three
properties employed as catalyst performance measures
in our case study – conversion of CH4, conversion of
NH3, and yield of HCN. Hence, the performed valida-
tion confirms the usefulness of boosting irrespectively
of which of those performance measures is considered.

5 Conclusions

The paper dealt with surrogate modelling, a mod-
ern approach to the optimization of empirical objec-
tive functions, which is particularly attractive in evo-
lutionary optimization. It proposed to extend surro-
gate modelling with regression boosting, to increase
the accuracy of surrogate models, thus also the agree-
ment between results of surrogate modelling and re-
sults of the intended optimization of the original ob-
jective function. Needless to say, regression boosting
is not new, though it is less common than the popular
classification boosting. However, novel is its combina-
tion with surrogate models, which adds the advantage
of increased accuracy to the main advantage of sur-
rogate modelling – decreasing the time and costs of
optimization of empirical objective functions.

Theoretical principles of both surrogate modelling
and boosting are known, therefore the main purpose of
the reported research was to validate the feasibility of
the proposed extension of surrogate modelling on sev-
eral sufficiently complex case studies, one of which was
sketched in this paper. The presented case study re-
sults clearly confirm the usefulness of boosting. For the

five most promising architectures, boosting leads to
an overall decrease of both considered error measures,
MSE and MAE, on new data from the 7th generation
of the genetic algorithm. Moreover, the decrease of the
MSE (which is the boosting error employed during the
investigation of the usefulness of boosting) is uninter-
rupted or nearly uninterrupted till the final boosting
iteration. On the other hand, the scatter plots in Fig-
ure 3 do not indicate any apparent difference between
the effect of boosting on the three catalyst properties
considered as possible objective functions in our case
study – conversion of CH4, conversion of NH3, and
yield of HCN. Hence, the performed validation con-
firms the usefulness of boosting irrespectively of which
of these objective functions is selected.

References

1. H. Altinçay: Optimal resampling and classifier proto-
type selection in classifier ensembles using genetic al-
gorithms. Pattern Analysis and Applications 7, 2004,
285–295.

2. M. Baerns and M. Holeňa: Combinatorial Develop-
ment of Solid Catalytic Materials. Design of High-
Throughput Experiments, Data Analysis, Data Mining.
World Scientific, Singapore, 2009.

3. T. Bartz-Beielstein: Experimental Research in Evolu-
tionary Computation. Springer Verlag, Berlin, 2006.

4. L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone: Classification and Regression Trees.
Wadsworth, Belmont, 1984.

5. A.J. Brooker, J. Dennis, P.D. Frank, D.B. Serafini,
V. Torczon, and M. Trosset: A rigorous framework
for optimization by surrogates. Structural and Multi-
disciplinary Optimization, 17, 1998, 1–13.

6. D. Büche, N.N. Schraudolph, and P. Koumoutsakos:
Accelerating evolutionary algorithms with gaussian
process fitness function models. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications
and Reviews 35, 2005, 183–194.

7. M.D. Buhmann: Radial Basis Functions: Theory and
Implementations. Cambridge University Press, Cam-
bridge, 2003.

8. H. Drucker: Improving regression using boosting tech-
niques. In A.J.C. Sharkey, editor, Proceedings of the
14th International Conference on Machine Learning,
Springer Verlag, London, 1997, 107–115.

9. A. Eftaxias, J. Font, A. Fortuny, J. Giralt, A. Fabregat,
and F. Stber: Kinetic modelling of catalytic wet air
oxidation of phenol by simulated annealing. Applied
Catalysis B: Environmental 33, 2001, 175–190.

10. J. Friedman: Greedy function approximation: A gra-
dient boosting machine. Annals of Statistics 29, 2001,
1189–1232.

11. D. Goldberg: Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley, Reading,
1989.

Boosted surrogate models . . . 21

12. L. Györfi, M. Kohler, A. Krzyzak, and H. Walk:
A Distribution-Free Theory of Nonparametric Regres-
sion. Springer Verlag, Berlin, 2002.

13. M.T. Hagan, H.B. Demuth, and M.H. Beale: Neural
Network Design. PWS Publishing, Boston, 1996.

14. T.J. Hastie and R.J. Tibshirani: Generalized Additive
Models. Chapman & Hall, Boca Raton, 1990.

15. M. Holeňa: Piecewise-linear neural networks and their
relationship to rule extraction from data. Neural Com-
putation 18, 2006, 2813–2853.

16. M. Holeňa and M. Baerns: Computer-aided strategies
for catalyst development. In G. Ertl, H. Knözinger,
F. Schüth, and J. Eitkamp, editors, Handbook of Het-
erogeneous Catalysis, Wiley-VCH, Weinheim, 2008.

17. A. Holzwarth, P. Denton, H. Zanthoff, and
C. Mirodatos: Combinatorial approaches to het-
erogeneous catalysis: Strategies and perspectives for
academic research. Catalysis Today 67, 2001, 309–318.

18. K. Hornik: Approximation capabilities of multilayer
neural networks. Neural Networks 4, 1991, 251–257.

19. Y. Jin: A comprehensive survery of fitness approxima-
tion in evolutionary computation. Soft Computing 9,
2005, 3–12.

20. Y. Jin, M. Hüsken, M. Olhofer, and B. Sendhoff:
Neural networks for fitness approximation in evolu-
tionary optimization. In Y. Jin, editor, Knowledge
Incorporation in Evolutionary Computation, Springer
Verlag, Berlin, 2005, 281–306.

21. P.C. Kainen, V. Kůrková, and M. Sanguineti: Esti-
mates of approximation rates by gaussian radial-basis
functions. In Adaptive and Natural Computing Algo-
rithms, Springer Verlag, Berlin, 2007, 11–18.

22. B. Li, P. Sun, Q. Jin, J. Wang, and D. Ding: A
simulated annealing study of Si, Al distribution in the
omega framework. Journal of Molecular Catalysis A:
Chemical 148, 1999, 189–195.

23. A.S. McLeod and L.F. Gladden: Heterogeneous cat-
alyst design using stochastic optimization algorithms.
m Journal of Chemical Information and Computer Sci-
ence 40, 2000, 981–987.

24. S. Möhmel, N. Steinfeldt, S. Endgelschalt, M. Holeňa,
S. Kolf, U. Dingerdissen, D. Wolf, R. Weber, and
M. Bewersdorf: New catalytic materials for the
high-temperature synthesis of hydrocyanic acid from
methane and ammonia by high-throughput approach.
Applied Catalysis A: General 334, 2008, 73–83.

25. Y.S. Ong, P.B. Nair, A.J. Keane, and K.W. Wong:
Surrogate-assisted evolutionary optimization frame-
works for high-fidelity engineering design problems. In
Y. Jin, editor, Knowledge Incorporation in Evolution-
ary Computation, Springer Verlag, Berlin, 2005, 307–
331.

26. A. Pinkus: Approximation theory of the MPL model
in neural networks. Acta Numerica 8, 1998, 277–283.

27. K. Rasheed, X. Ni, and S. Vattam: Methods for using
surrogate modesl to speed up genetic algorithm oprim-
ization: Informed operators and genetic engineering.
In Y. Jin, editor, Knowledge Incorporation in Evolu-
tionary Computation, Springer Verlag, Berlin, 2005,
103–123.

28. E. Rasmussen and C. Williams: Gaussian Process for
Machine Learning. MIT Press, Cambridge, 2006.

29. A. Ratle: Accelerating the convergence of evolution-
ary algorithms by fitness landscape approximation. In
A.E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwe-
fel, editors, Parallel Problem Solving from Nature,
Springer Verlag, Berlin, 1998, 87–96.

30. A. Ratle: Kriging as a surrogate fitness landscape in
evolutionary optimization. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 15,
2001, 37–49.

31. C.R. Reeves and J.E. Rowe: Genetic Algorithms: Prin-
ciples and Perspectives. Kluwer Academic Publishers,
Boston, 2003.

32. R. Schaefer: Foundation of Global Genetic Optimiza-
tion. Springer Verlag, Berlin, 2007.

33. R. Schapire: The strength of weak learnability. Ma-
chine Learning 5, 1990, 197–227.

34. B. Schölkopf and A.J. Smola: Learning with Kernels.
MIT Press, Cambridge, 2002.

35. D.L. Shrestha: Experiments with AdaBoost.RT, an im-
proved boosting scheme for regression. Neural Compu-
tation 18, 2006, 1678–1710.

36. I. Steinwart and A. Christmann: Support Vector Ma-
chines. Springer Verlag, New York, 2008.

37. A. Tompos, J.L. Margitfalvi, E. Tfirst, L. Végvári,
M.A. Jaloull, H.A. Khalfalla, and M.M. Elgarni: De-
velopment of catalyst libraries for total oxidation of
methane: A case study for combined application of
”holographic research strategy and artificial neural net-
works” in catalyst library design. Applied Catalysis A:
General 285, 2005, 65–78.

38. A. Tompos, L. Vǵvári, E. Tfirst, and J.L. Margit-
falvi: Assessment of predictive ability of artificial
neural networks using holographic mapping. Combi-
natorial Chemistry and High Throughput Screening
10, 2007, 121–134.

39. H. Ulmer, F. Streichert, and A. Zell: Model-assisted
steady state evolution strategies. In GECCO 2003: Ge-
netic and Evolutionary Computation, Springer Verlag,
Berlin, 2003, 610–621.

40. H. Ulmer, F. Streichert, and A. Zell: Model assisted
evolution strategies. In Y. Jin, editor, Knowledge In-
corporation in Evolutionary Computation, Springer
Verlag, Berlin, 2005, 333–355.

41. L. Végvári, A. Tompos, S. Göbölös, and J.F. Mar-
gitfalvi: Holographic research strategy for catalyst li-
brary design: Description of a new powerful optimisa-
tion method. Catalysis Today 81, 2003, 517–527.

42. M.D. Vose: The Simple Genetic Algorithm. Founda-
tions and Theory. MIT Press, Cambridge, 1999.

43. H. White: Artificial Neural Networks: Approxima-
tion and Learning Theory. Blackwell Publishers, Cam-
bridge, 1992.

44. D. Wolf, O.V. Buyevskaya, and M. Baerns: An evo-
lutionary approach in the combinatorial selection and
optimization of catalytic materials. Applied Catalyst
A: General 200, 2000, 63–77.

22 Martin Holeňa

Fig. 3. Comparison of the boosting approximations of the conversions of CH4 and NH3 and of the yield of HCN in the
1st and final iteration with their measured values for the 92 catalytic materials from the 7th generation of the genetic
algorithm.

Local safety of an ontology?

Lukáš Homǒla1 and Július Štuller2

1 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University
lukashomola@hotmail.com

2 Institute of Computer Science, Academy of Sciences of the Czech Republic
stuller@cs.cas.cz

Abstract. The ability to import ontologies safely, that is,
without changing the original meaning of their terms, has
been identified as crucial for the collaborative development
and the reuse of (OWL) ontologies.
In this paper, we propose the notion of local safety of an on-
tology and we identify scenarios in which this notion may
be useful in guiding the development of an ontology that is
to import other ontologies safely.

1 Introduction

Defined as explicit specifications of conceptualizations
of a domain of knowledge (or of a discourse) [1], ontolo-
gies are (virtually) always manifestations of a shared
understanding of a domain. They typically take the
form of a formal (e.g., logical) theory that fixes the
vocabulary of a domain and, through constraining pos-
sible interpretations and well-formed use of the vocab-
ulary terms, provides meaning for the vocabulary.

Ontologies have been advocated as a tool to sup-
port human communication, knowledge sharing and
reuse, and interoperability between distributed sys-
tems. As such, ontologies have a range of applica-
tions in fields like knowledge management, informa-
tion retrieval and integration, cooperative information
systems, bioinformatics, medicine, linguistics, e-com-
merce, etc. Today, they are perhaps best known as the
key technology of the Semantic Web vision.

The construction of a typical ontology is a collab-
orative process that involves direct cooperation among
multiple individuals or groups of ontology engineers
and domain experts (sometimes from different do-
mains of expertise and different organizations) and/or
indirect cooperation through the reuse of previously
published, autonomously developed ontologies.

Most often, each team participating in the develop-
ment of an ontology focuses on a part of it (a “compo-
nent ontology”) that pertains to the team’s domain of
? The work was supported by the project No. 1M0554

“Advanced Remedial Processes and Technologies” of the
Ministry of Education, Youth and Sports of the Czech
Republic and partly by the Institutional Research Plan
AV0Z10300504 “Computer Science for the Information
Society: Models, Algorithms, Applications”. The first
author also acknowledges the financial support of the
Department of Mathematics at his institution.

expertise/authority and cooperates with other teams
to relate the part it is working on with other parts.
Performing an upgrade of even only one such a com-
ponent ontology may require the participation of all
the teams as different component ontologies are, when
combined together, interrelated, depend on and affect
one another (changing one component ontology may
thus necessitate changes to the others and might re-
quire teams to reconcile their changes).

By reusing an ontology we mean using it as an
input to develop a new ontology. In such a process,
significant parts of the reused ontology are often ex-
tracted, refined, extended or otherwise adapted and
then combined with other ontologies to form the final
assembly.

One of the prerequisites for efficient collaborative
ontology construction and maintenance is the ability
to combine ontologies in a controlled way. The interac-
tion among component ontologies should be controlled
and well-understood in order to reduce the communi-
cation that is needed among different teams and to
avoid expensive reconciliation processes. Ideally, con-
trolled interaction should allow different teams to de-
velop, test and upgrade their ontologies independently,
to replace a component ontology or extend an ontology
with minimal side effects. The issue is also vital for on-
tology reuse, especially in the case when the reused on-
tology, rather than being adapted and used as a draft
to develop an ontology component, is linked to and
remains under the control of its original developers,
who may perform changes to it autonomously.

2 Problem definition

The Web Ontology Language (OWL) [2], a widely ac-
cepted W3C recommendation for creating and sharing
ontologies on the Web, provides only very limited sup-
port for combining ontologies.

OWL adopts an importing mechanism, imple-
mented by the owl:imports3 construct, which allows
one to include in an OWL ontology all the statements

3 http://www.w3.org/2002/07/owl#imports, to be pre-
cise

24 Lukáš Homǒla, Július Štuller

contained in some other OWL ontology. In the import-
ing ontology, there is no logical difference between the
statements that are imported and the proper ones.

A number of recent papers by Grau et al. [3–7]
stressed the particular relevance of the ability to im-
port OWL ontologies “safely”, that is, in such a way
that the imported terms (the terms of the imported
ontologies) preserve their original meaning (the mean-
ing these terms have in the imported ontologies) in the
importing ontology. This ability is applicable in typi-
cal scenarios of OWL ontology development such as in
the following one (see the above-mentioned works by
Grau et al. for a motivating example):

– an ontology engineer distinguishes between the so-
called external terms and the so-called local terms
of the ontology O he or she is developing;

– the local terms are those whose meaning is as-
sumed to be fully described in the ontology O it-
self, possibly with the help of the remaining, ex-
ternal terms;

– the meaning of the external terms is assumed to
be only partially described in the ontology O – in
terms of their use in the description of the local
terms – and to be further described in some other
ontologies (preexistent or concurrently developed)
that are to be imported into O;

– the use of the external terms in the statements of
the ontology O is expected not to alter the original
meaning these terms have in the ontologies to be
imported.

In the paper, we continue in the study, initiated
by Grau at al., of the methodology for OWL ontology
development in the scenario given above. We propose
the notion of local safety of an ontology and discuss
under which conditions and how this notion can be
used to guide the development of OWL ontologies.

3 Preliminaries

In this section we introduce description logics (DLs) [8],
a family of logic-based knowledge representation for-
malisms, which underly modern ontology languages
such as OWL. OWL consists of three (sub)languages
of increasing expressive power, two of which, namely
OWL Lite and OWL DL, roughly correspond to the
DLs SHIF and SHOIN , respectively.

DLs view the world as being populated by ob-
jects and allow one to represent the relevant notions of
the domain of interest in terms of concepts, roles and
(possibly) individuals, representing sets of elements,
binary relationships between elements and single el-
ements, respectively. Starting from atomic concepts,
atomic roles and individuals, which are denoted sim-
ply by a name, complex concepts and complex roles are

built using concept and role constructors. We assume
the sets C, R and I of (respectively) atomic concepts,
atomic roles and individuals to be countably infinite
and mutually disjoint and to be fixed for every DL.
An ontology O formalized in a DL takes the form of
a finite set of terminological and role axioms, which
are used to suitably organize and interrelate multiple
concept and role descriptions. DLs are distinguished
by constructors and/or types of axioms they provide.
We will use the term L-axiom (L-ontology) to empha-
size we are talking about an axiom (an ontology) in
the DL L.

In the abstract notation we will use the letters A, B
to denote atomic concepts, r, s to denote atomic roles,
and a, b for individuals (all the letters possibly with
a subscript). The letters C, D will be used to denote
a concept (atomic or complex), R, S to denote a role,
and α, β to denote an axiom.

As the minimal DLs of practical interest are usu-
ally considered the DLs EL and AL, which both are
fragments of the smallest propositionally closed DL
ALC. In ALC, concepts are composed inductively ac-
cording to the following syntax rule:

C, D → A (atomic concept) |
⊥ (bottom concept) | > (top concept) |
¬C (concept negation) |
C uD (conjunction) |C tD (disjunction) |
∃R.C (existential restriction) |
∀R.C (value restriction).

Valid constructs for EL are: ⊥, C u D and ∃R.C.
In AL, the syntax of complex concepts is the follow-
ing: ⊥, >, ¬A (atomic concept negation), CuD, ∃R.>
(limited existential restriction), and ∀R.C.

DLs EL,AL andALC provide no role constructors.
The listed ALC constructors are not all indepen-

dent (> = ¬⊥, C t D = ¬(¬C u ¬D), ∀R.C =
¬(∃R.¬C)). In fact, ALC can be obtained from both
EL and AL by adding the concept negation construc-
tor.

A terminological axiom in EL, AL and ALC is an
expression of the following forms: A ≡ C (concept de-
finition), A v C (concept specialization) or C v D
(general concept inclusion, GCI). The abbreviation of
the form C ≡ D (concepts equality) stands for the two
GCIs C v D and D v C. EL, AL and ALC provide
no role axioms.

S is an extension of ALC in which an atomic role
can be declared transitive using the role axiom of the
form Trans(r).

Further extensions of DLs are indicated by ap-
pending letters to the DL’s name. Advanced concept
constructors include number restrictions of the form

Local safety of an ontology 25

≥ nR (indicated by appending the letter N), quali-
fied number restrictions ≥ nR.C (appending Q) and
nominals {a} (appending O). In the case of num-
ber restrictions and qualified number restrictions, the
dual constructors ≤ nR and ≤ nR.C are introduced
as abbreviations for ¬(≥ n + 1R) and ¬(≥ n + 1R.C),
respectively. Nominals allows to construct a concept
representing a singleton set containing one individ-
ual. Enumeration {a1, . . . , an} is an abbreviation for
{a1} t . . . t {an}.

Yet other extensions include role constructors, of
which the inverse role constructor r− (appending I)
is the most prominent one. Another important type of
role axioms is the role inclusion R v S (appendingH).

These extensions can be used in different combina-
tions, for example ALN is an extension of AL with
number restrictions, and SHOIN is the DL that uses
5 of the constructors we have presented.

The semantics of DLs is defined via interpretations.
An interpretation I is a pair I = (∆I , .I), where ∆I

is a non-empty set, called the domain of the inter-
pretation, and .I is the interpretation function, which
maps atomic concepts to subsets of ∆I , atomic roles to
binary relations over ∆I and individuals to elements
of ∆I . The interpretation function extends to complex
concepts as follows:

⊥I = ∅,>I = ∆I ,

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,

(¬C)I = ∆I − CI ,

(∀R.C)I = {x ∈ ∆I ; ∀y ((x, y) ∈ RI → y ∈ CI)},
(∃R.C)I = {x ∈ ∆I ; ∃y ((x, y) ∈ RI ∧ y ∈ CI)},
(≥ nR)I = {x ∈ ∆I ; |{y ∈ ∆I ; (x, y) ∈ RI}| ≥ n},

(≥ nR.C)I = {x ∈ ∆I ;
|{y ∈ ∆I ; (x, y) ∈ RI ∧ y ∈ CI}| ≥ n},

{a}I = {aI},
(r−)I = {(x, y); (y, x) ∈ rI}.

The semantics of terminological axioms is defined in
terms of a satisfaction relation |=, which relates inter-
pretations to the terminological axioms they satisfy.
It is defined as follows: I |= C v D iff CI ⊆ DI ,
I |= R v S iff RI ⊆ SI , I |= C(a) iff aI ∈ CI ,
I |= R(a, b) iff (aI , bI) ∈ RI , I |= Trans(r) iff the
relation rI is transitive. Interpretations satisfying an
axiom are said to be its models.

An interpretation I is a model of an ontology O
(written I |= O) iff I |= α for all α ∈ O. An ontology
is said to be consistent if it has at least one model and
is said to be inconsistent otherwise.

An ontology O entails an axiom α (written O |= α)
iff all models of O satisfy α, especially we will speak
about subsumption between C and D in the case of

O |= C v D, and satisfiability of concept C in the
case O 6|= C v ⊥.

Interpretations I and J are isomorphic (written
I ∼= J) iff there is a bijection µ : ∆I → ∆J such
that for every x, y ∈ ∆I , A ∈ C, r ∈ R, a ∈ I the
following holds: x ∈ AI iff µ(x) ∈ AJ , (x, y) ∈ rI iff
(µ(x), µ(y)) ∈ rJ , x = aI iff µ(x) = aJ . Isomorphic
interpretations are semantically indistinguishable (in
particular, they satisfy the same axioms).

A signature S is a finite subset of C∪R∪I. Two in-
terpretations I and J coincide on a signature S (writ-
ten I|S = J |S) iff ∆I = ∆J and XI = XJ holds for
all X ∈ S.

We say that I has been obtained from J through
a domain expansion with the set ∆ (such I will by
denoted by J∪∆) iff ∆ is a non-empty set disjoint
with ∆J , ∆I = ∆J ∪∆, and XI = XJ holds for all
X ∈ C ∪R ∪ I. Note that J∪∆ and J only differ in
that the domain of J is a proper subset of the domain
of J∪∆ (with ∆ being the set of additional domain
elements).

A DL L is said to have the finite model property
(FMP) iff every consistent L-ontology admits a model
that is finite (i.e., with a finite domain). One of the
most prominent DLs that exhibit the FMP is SHOQ,
while SHIN is an example of a DL that lacks the
FMP. For a DL L with the FMP, L-ontology O and
L-axiom α the following holds: O |= α iff I |= α for
all finite models I |= O.

We say that an interpretation K is a disjoint union
of interpretations I and J (written K = I] J) iff
there exist some interpretations Ĩ and J̃ satisfying
Ĩ ∼= I, J̃ ∼= J and ∆Ĩ ∩ ∆J̃ = ∅ for which the fol-
lowing holds: ∆K = ∆Ĩ ∪∆J̃ , XK = X Ĩ ∪XJ̃ for all
X ∈ C ∪R and aK = aĨ for all a ∈ I. Intuitively, the
interpretation K for which K = I] J holds is com-
posed of two unrelated parts one being isomorphic
to I and the other to J . Disjoint union of a set of
interpretations is defined analogously.

A DL L is said to have the disjoint union model
property (DUMP) iff the set of models of arbitrary
L-ontology is closed under disjoint unions.

A prominent example of a DL that enjoys the
DUMP is SHIQ. DLs that support nominals do not
have this property.

In the subsequent sections, will use C(α) to denote
the set of all atomic concepts that occur in the axiom α
(the sets R(α) and I(α) are defined analogously). We
will use Sig(α) as a shorthand for C(α)∪R(α)∪I(α).
C(O) will stand for

⋃
α∈O C(α) (the sets R(O), I(O)

and Sig(O) are defined analogously).

26 Lukáš Homǒla, Július Štuller

4 Related work

In the papers by Grau et al. [3–7], safety of ontology
import is formulated using the notion of conservative
extension, in the context of ontologies first used in [9]
and recently further studied in [10, 11].

Definition 1 (Conservative extension). Let L be
a DL, O1 and O2 two ontologies such that O1 ⊆ O2.

We say that O2 is a deductive conservative ex-
tension of O1 w.r.t. L, if for every L-axiom α with
Sig(α) ⊆ Sig(O1), we have O2 |= α iff O1 |= α.

An ontology O into which an ontology O′ can be safely
imported is said to be safe for O′.
Definition 2 (Safety for an ontology). Let L be
a DL, O and O′ two ontologies.

We say that O is safe for O′ w.r.t. L, if O ∪O′ is
a conservative extension of O′ w.r.t. L.

Ghilardi at al. [12] studied novel DL reasoning services
aimed at supporting developers in customizing their
ontology to be safe for a particular ontology.

As regards the scenario we are concerned with,
Grau et al. [3–7] argues that in practice it is often
convenient, or even necessary, for the developers of an
ontology O to abstract from particular ontologies that
are to be imported into it and focus instead only on O
and on its external terms:

– ontologies to be imported might not be available
during the development of O (as it is in the case
when these ontologies are developed concurrently
with O);

– the developers of O are usually not willing to com-
mit to particular versions of the ontologies they
intend to import (the development of a typical on-
tology is a never-finished process);

– at a later time, the developers might find ontolo-
gies other than those initially considered more
suitable for providing the meaning of the external
terms of O.

Grau et al. proposed the following condition to be used
to guide the development of an ontology O in such
cases.

Definition 3 (Safety for a signature). Let L be
a DL, O an ontology and S a signature.

We say that O is safe for S w.r.t. L, if for every
L-ontology O′ such that Sig(O) ∩ Sig(O′) ⊆ S, O is
safe for O′ w.r.t. L.

Once an ontology O is safe for the signature S (which
is presumably the set of its external terms) w.r.t. L,
one can safely import into O any ontology O′ written
in L and sharing only terms from S with O.

As Grau et al. showed, even the problem of check-
ing whether an ontology consisting of a single ALC ax-
iom is safe for a signature w.r.t. ALCO is undecidable.
It is not yet known whether the safety for a signature
is decidable for weaker DLs, such as EL, or for more
expressive DLs. Grau et al. proposed several safety
classes of ontologies, parametrized by a signature S
and representing sufficient conditions for safety for S,
that are decidable and can be checked syntactically in
polynomial time.

Several extensions to OWL have been proposed
to better support collaborative ontology develop-
ment and ontology reuse, including P-OWL [13],
C-OWL [14], the extension based on E-connec-
tions [15] and the extension based on the so-called
semantic import [16]. All such extension are, however,
still subjects of research and are not included in the
current candidate recommendation for OWL 2 [17], an
ongoing extension to and revision of OWL.

5 Local safety of an ontology

The notion of safety for a signature, along with the
corresponding safety classes, facilitates the construc-
tion of an ontology that is safe for any ontology (in
a given DL) with which it shares only some pre-
arranged set of terms.

In the scenario we are interested in here, however,
an ontology engineer does not always need to have
the ontology O safe for every possible ontology (every
possible set of axioms in a certain DL), but often only
needs to have it safe for a certain, conveniently cho-
sen class of candidate ontologies. This is the case, for
instance, when the scenario applies to collaborative
ontology development and O is considered as a compo-
nent ontology for a larger ontology developed distribu-
tively as a set of ontologies importing one another. The
development of component ontologies in such a case is
typically coordinated to some extent (e.g., some prin-
ciples on which individual component ontologies will
be build are resolved beforehand and made explicit)
and the developers can make assumptions about some
qualities and characteristics of the ontologies they im-
port (as well as about the way these ontologies may
further evolve).

5.1 Local ontologies

Ontologies, like other engineering artifacts, are de-
signed. When we choose how to represent something
in an ontology4, we are making design decisions. The

4 “There is no one correct way to model a domain – there
are always viable alternatives.” [18]

Local safety of an ontology 27

best solution to ontology design depends on a num-
ber of factors, of which the most important include
the intended use of an ontology, and the anticipated
extensions and refinements to it.

Generally accepted and widely cited are the five de-
sign criteria Gruber [19] proposed for ontologies whose
purpose is knowledge sharing and interoperation
among programs. They include the following criterion:

An ontology should offer a conceptual founda-
tion for a range of anticipated tasks, and the
representation should be crafted so that one
can extend and specialize the ontology
monotonically. Especially, one should be able
to define new terms for special uses based on
the existing vocabulary, in a way that does not
require the revision of the existing definitions.

To facilitate the design, deployment and reuse of on-
tologies, Guarino [20] suggested the development of
different kinds of ontologies with different levels of gen-
erality and dependence on a particular domain, task
or point of view, namely top-level ontologies, domain
and task ontologies and application ontologies. Terms
of ontologies on a lower level are, in some sense, held
to be specializations of terms of ontologies on a level
above. Top-level ontologies, which describe concepts
independent of a particular problem or domain (such
as space, time, object, event, action, etc.) are meant
to be unifying for a large group of ontologies on lower
levels.

Swartout et al. [21] proposed a number of desider-
ata aimed primarily at domain, task and application
ontologies. They include the two following:

An ontology should be extensible. [. . .] Exten-
sion should be possible both at a low level, by
adding domain-specific subconcepts, or at high
level by adding intermediate or upper level con-
cepts that cover new areas.

Ontologies should not be “stovepipes.” The de-
risive term “stovepipe system” is used to de-
scribe a system that may be vertically inte-
grated but cannot be integrated horizontally
with other systems.

Here we propose a notion of restricting the mean-
ing of the top concept, which, as we believe, provide
a partial characterization of ontologies violating the
aforementioned criteria.
Definition 4 (Restricting the meaning of the
top concept). We say that the ontology O restricts
the meaning of the top concept, if there are atomic con-
cepts A1, . . . , An, atomic roles r1, . . . , rm, s1, . . . , sk

and individuals a1, . . . , al in Sig(O) such that:
O |= > v A1 t . . . tAn t ∃r1.> t . . . t ∃rm.> t

t∃s−1 .> t . . . t ∃s−k .> t {a1, . . . , al}.

Intuitively, an ontology restricts the meaning of the
top concept if it introduces its vocabulary in such
a way that the vocabulary can only be further spe-
cialized but not otherwise monotonically extended. In
the case of domain, task and application ontologies
at least, such an ontology can be considered badly-
designed:

– it can not be, without previous modification, ex-
tended to cover a broader subject area than it al-
ready does,

– it is unsuitable for importing into any ontology
that touches, even marginally, a subject area dis-
joint with that already covered by it.

As regards top-level ontologies, we studied the Basic
Formal Ontology5 and also the design of several other
top-level ontologies [22], and came to the conclusion
that even in this case the developers prefer not to re-
strict the meaning of the top concept. The only excep-
tion we found is the top-level ontology6 proposed by
John Sowa.

The notion of restricting the meaning of the top
concept is closely related to the notion of localness of
an ontology studied (also under the name safety of an
ontology) by Grau et al. [23–26].

Definition 5 (Localness). An ontology O is local if
the set of its models is closed under domain expansion
(i.e., if I |= O implies I∪∆ |= O for every interpreta-
tion I and every non-empty set ∆ disjoint with ∆I).

In [23], a syntactic characterization of localness for
SHOIQ ontologies is given, which allows one to check
localness of an SHOIQ ontology in polynomial time.
We used this characterization7 to show that SHOIQ
ontologies restricting the meaning of the top concept
are exactly those that are not local.

Proposition 1. A SHOIQ ontology restricts the
meaning of the top concept iff it is not local.

Grau et al. [25] also reported testing over 700 ontolo-
gies available on the Web for localness and finding
more than 99% of them local. However, we could not
trace any further details on their experimental results.

5.2 Local safety

Regarding the development of an ontology in our sce-
nario, the considerations above suggest that it is often
possible to consider only local ontologies as the candi-
dates for importing.
5 http://www.ifomis.org/bfo
6 http://www.jfsowa.com/ontology/toplevel.htm
7 Relevant points of the characterization are reproduced

at the beginning of the Appendix.

28 Lukáš Homǒla, Július Štuller

Definition 6 (Local safety for a signature). Let
L be a DL, S a signature and O an ontology.

We say that O is locally safe for S w.r.t. L, if for
every local L-ontology O′ with Sig(O) ∩ Sig(O′) ⊆ S,
O is safe for O′ w.r.t. L.

The following proposition provides sufficient condition
for local safety w.r.t. SHOIQ.

Proposition 2. Let S be a signature and O an ontol-
ogy such that for every interpretation J there exists
a model I of O such that

– ∆I = ∆J ∪∆ for some ∆, ∆ ∩∆J = ∅,
– XI = XJ for all X ∈ S.

Then O is locally safe for S w.r.t. SHOIQ.

The following example demonstrates that, in compar-
ison with safety condition proposed by Grau et al.,
the condition of local safety is less restrictive and may
allow for a more convenient use of the external terms.

Example 1. Let us consider building an OWL ontol-
ogy intended to provide a reference terminology for the
annotation of films. Let us assume we intend to safely
import into our ontology O some well-designed (and
thus local) ontology that defines the categorization of
films by genre. Suppose that the atomic concept Film
is expected to be the only term our ontology will share
with the imported ontology. Whereas the ontology

O = {Director v ¬Film, Film v ∃hasDirector.Director}
is not safe for {Film} even w.r.t. AL (take the non-
local ontology O′ = {> v Film} as a counterexample),
it is, according to Proposition 2, locally safe for {Film}
w.r.t. SHOIQ.

When we are concerned with local safety w.r.t. SHOQ
(which has the FMP) we can use the following suffi-
cient condition.

Proposition 3. Let S be a signature and O an on-
tology such that for every finite interpretation J there
exists a model I of O such that

– ∆I = ∆J ∪∆ for some ∆, ∆ ∩∆J = ∅,
– XI = XJ for all X ∈ S.

Then O is locally safe for S w.r.t. SHOQ.

The two following propositions give a recipe for de-
ciding local safety of an ontology written in SHIQ
(which has the DUMP) w.r.t. SHOQ in the case when
all external terms are atomic concepts.

Proposition 4. Let S be a signature such that S⊆C,
O a SHIQ ontology and a an individual. Assume that
for every subset S̃ ⊆ S the ontology

O ∪ {A ≡ {a}}A∈S̃ ∪ {A ≡ ⊥}A∈S−S̃

is consistent.
Then O is locally safe for S w.r.t. SHOQ.

Proposition 5. Let S be a signature such that S⊆C,
O a SHIQ ontology and a an individual. Assume that
there exists a subset S̃ ⊆ S such that the ontology

O ∪ {A ≡ {a}}A∈S̃ ∪ {A ≡ ⊥}A∈S−S̃

is inconsistent.
Then O is not locally safe for S w.r.t. ALO (ELO).

Corollary 1. Let S be a signature such that S ⊆ C,
O a SHIQ ontology.

Then O is locally safe for S w.r.t. SHOQ iff O is
locally safe for S w.r.t. ALO (ELO).

Corollary 2. Let L be a DL that is in between ALO
(ELO) and SHOQ.

The problem of deciding whether a SHIQ ontol-
ogy is locally safe for a signature S, S ⊆ C, w.r.t. L
is reducible to the problem of checking consistency of
a finite set of SHOIQ ontologies, and thus decidable.

Corollary 3. Let O be a SHIQ ontology locally safe
for S ⊆ C w.r.t. SHOQ, O′ a local SHOQ ontology
such that Sig(O)∩Sig(O′) ⊆ S. Then O∪O′ is locally
safe for S \ Sig(O′) w.r.t. SHOQ.

6 Conclusion and outlook

This paper contributes to the framework for ontology
development presented by Grau et al. We proposed
the notion of local safety of an ontology and showed
its applicability in the development of real-world on-
tologies. We showed that local safety for a signature
consisting solely of atomic concepts is decidable for an
interesting group of description logics.

For the future work, we would like to study de-
cidability and computational properties of (sufficient
conditions for) local safety for a signature that con-
tains atomic roles as well. The results obtained in the
paper are also directly applicable to the problem of ex-
tracting reusable ontology parts, or ontology modules,
as conceived by Grau et al. in the cited works.

References

1. T.R. Gruber: A translation approach to portable ontol-
ogy specifications. Knowledge Acquisition, 5, 2, 1993,
199–220.

2. P. Patel-Schneider, P. Hayes, and I. Horrocks: OWL
Web Ontology Language: Semantics and Abstract Syn-
tax. W3C recommendation, W3C, 2004. Available at
http://www.w3.org/TR/owl-semantics/.

3. B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler:
Ontology Reuse: Better Safe than Sorry. In Descrip-
tion Logics, Bozen/Bolzano University Press, 2007,
41–52.

Local safety of an ontology 29

4. B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler:
Just the right amount: extracting modules from ontolo-
gies. In Proc. of the 16th Int. World Wide Web Conf.,
2007, 717–727.

5. B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler:
A logical framework for modularity of ontologies. In
Proc. of the 20th Int. Joint Conf. on Artificial Intelli-
gence, 2007.

6. B.C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler:
Modular reuse of ontologies: theory and practice. Jour-
nal of Artificial Intelligence Research, 31, 2008, 273–
318.

7. E. Jimenez-Ruiz, B.C. Grau, T. Schneider, U. Sattler,
and R. Berlanga: Safe and economic re-use of on-
tologies: a logic-based methodology and tool support.
In Proc. of the 5th European Semantic Web Conf.,
Springer LNCS, 2008.

8. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi,
and P.F. Patel-Schneider, editors: The Description
Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

9. G. Antoniou and A. Kehagas: A note on the the refine-
ment of ontologies. Int. Journal of Intelligent Systems,
15, 7, 2000, 623–632.

10. C. Lutz and F. Wolter: Conservative extensions in
the lightweight description logic EL. In Proc. of the
21th Conf. on Automated Deduction, Springer-Verlag,
2007, volume 4603, 84–99.

11. C. Lutz, D. Walther, and F. Wolter: Conservative ex-
tensions in expressive description logics. In M. Veloso,
editor, Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence, AAAI Press, 2007, 453–458.

12. S. Ghilardi, C. Lutz, and F. Wolter: Did I damage
my ontology? A case for conservative extensions in de-
scription logics. In P. Doherty, J. Mylopoulos, and
C. Welty, editors, Proc. of the 10th Int. Conf. on Prin-
ciples of Knowledge Representation and Reasoning,
AAAI Press, 2006, 187–197.

13. J. Bao and V. Honavar: Ontology language extensions
to support localized semantics, modular reasoning, and
collaborative ontology design and ontology reuse. Tech-
nical report, Iowa State University, 2004.

14. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Ser-
afini, and H. Stuckenschmidt: C-OWL: Contextualiz-
ing Ontologies. In Proc. of the Second Int. Semantic
Web Conf., Springer, 2003, 164–179.

15. B.C. Grau, B. Parsia, and E. Sirin: Combining OWL
ontologies using E-Connections. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 4,
1, 2006, 40–59.

16. J.Z. Pan, L. Serafini, and Y. Zhao: Semantic import:
an approach for partial ontology reuse. In P. Haase,
V. Honavar, O. Kutz, Y. Sure, and A. Tamilin, editors,
Proc. of the 1st Int. Workshop on Modular Ontologies,
volume 232, CEUR-WS.org, 2006.

17. M. Boris, B.C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz: OWL 2 Web Ontology Language: Pro-
files. W3C draft, W3C, 2009. Available at http://

www.w3.org/TR/2009/CR-owl2-profiles-20090611/.
18. N.F. Noy and D.L. Mcguinness: Ontology develop-

ment 101: a guide to creating your first ontology.

Technical report, Stanford Knowledge Systems Labo-
ratory, 2001. Available at http://protege.stanford.
edu/publications/ontology development/

ontology101-noy-mcguinness.html.
19. T.R. Gruber: Toward principles for the design of on-

tologies used for knowledge sharing . Int. Journal of
Human-Computer Studies, 43, 5-6, 1995, 907–928.

20. N. Guarino: Formal ontology and information systems.
In N. Guarino, editor, Proc. of the 1st Int. Conf. on
Formal Ontologies in Information Systems, IOS Press,
1998, 3–15.

21. B. Swartout, R. Patil, K. Knight, and T. Russ: Toward
distributed use of large-scale ontologies. In Proc. of
the 10th Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1996.

22. N.F. Noy and C.D. Hafner: The state of the art in
ontology design: A survey and comparative review. AI
Magazine, 18, 1997, 53–74.

23. B.C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur:
Modularity and web ontologies. In P. Doherty, J. My-
lopoulos, and C. A. Welty, editors, Proc. the 20th Int.
Conf. on Principles of Knowledge Representation and
Reasoning, AAAI Press, 2006, 198–209.

24. B.C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur:
Automatic partitioning of OWL ontologies using E-
connections. In Proc. of the 18th Int. Workshop on
Description Logics, 2005.

25. B.C. Grau, I. Horrocks, O. Kutz, and U. Sattler: Will
my ontologies fit together? In Proc. of the 19th Int.
Workshop on Description Logics, 2006.

26. B.C. Grau and O. Kutz: Modular ontology languages
revisited. In Workshop on Semantic Web for Collab-
orative Knowledge Acquisition at the 20th Int. Joint
Conf. on Artificial Intelligence, 2007.

7 Appendix

As shown in [23]:

– for each SHOIQ concept C, one of the following
holds:
• CI∪∆ = CI for all I and ∆, ∆∩∆I = ∅ (such

C is said to be local);
• CI∪∆ = CI ∪∆ for all I and ∆, ∆ ∩∆I = ∅

(C is non-local).
– If R is a SHOIQ role, then RI∪∆ = RI for all I

and ∆, ∆ ∩∆I = ∅.
– A SHOIQ ontology is not local iff it explicitly

contain a GCI D v C such that C is local and D
is non-local.

Lemma 1 (Auxiliary). Let α be a SHOIQ axiom,
I an interpretation and ∆ a set disjoint with ∆I .
Then I 6|= α implies I∪∆ 6|= α.

Proof. Suppose that I 6|= α.
If α is of the form C v D that means CI 6⊆ DI (?). For
C, D local, we have CI∪∆ = CI and DI∪∆ = DI . By

30 Lukáš Homǒla, Július Štuller

(?), we get CI∪∆ 6⊆ DI∪∆ . For C local, D non-local,
we have CI∪∆ = CI and DI∪∆ = DI ∪∆. By (?) and
by the fact that ∆ ∩ CI = ∅ (because ∆ ∩ ∆I = ∅),
we get CI∪∆ 6⊆ DI∪∆ . For C non-local, D local, we
have CI∪∆ = CI ∪ ∆ and DI∪∆ = DI . By (?), we
get CI∪∆ 6⊆ DI∪∆ . For C, D are non-local, we have
CI∪∆ = CI ∪ ∆ and DI∪∆ = DI ∪ ∆. By (?) and
by the fact that ∆ ∩ CI = ∅, ∆ ∩ DI = ∅ (because
∆ ∩ ∆I = ∅), we get CI∪∆ 6⊆ DI∪∆ . For each of the
four possible cases we showed that I∪∆ 6|= C v D.

The remaining types of SHOIQ axioms (C ≡ D,
Trans(r), R v S) can be treated in the same way. ut

Proof (of Proposition 1.). The proposition is obviously
true for inconsistent ontologies.
Assume that a consistent ontology O restricts the
meaning of the top concept. Then, by Definition 4,
O |= > v C for some C of the form A1 t . . . t An t
∃r1.>t. . .t∃rm.>t ∃s−1 .>t. . .t∃s−k .>t{a1, . . . , al}.
Take any model I of O and any x /∈ ∆I . As >I∪{x} =
∆I ∪{x} and CI∪{x} = ∆I , I∪{x} 6|= > v C, and thus
I is not a model of O. This shows O is not local.

Assume a consistent SHOIQ ontology O does not
restrict the meaning of the top concept. Then, by Def-
inition 4, O 6|= > v C for C of the form A1t . . .tAnt
∃r1.>t. . .t∃rm.>t ∃r−1 .>t. . .t∃r−m.>t{a1, . . . , al},
where A1, . . . , An, r1, . . . , rm and a1, . . . , al are
all atomic concepts, atomic roles and individ-
uals in Sig(O). Since O 6|= > v C, there exists
a model I of O such that I 6|= > v C. Pick any such
model I. Since I 6|= > v C, there exists an object
x ∈ ∆I such that x do not participate in the in-
terpretation XI of any atomic concept, atomic role
and individual X in Sig(O). Observe that: for all lo-
cal SHOIQ concepts C1 composed of the symbols
from Sig(O), x /∈ CI1 holds; for all non-local SHOIQ
concepts C2 composed of the symbols from Sig(O),
x ∈ CI2 holds. Therefore, O does not contain a GCI
of the form C2 v C1 (otherwise I were not its model)
and thus is local. ut

Proof (of Proposition 2.). Let O′ be an arbitrary local
SHOIQ ontology with Sig(O) ∩ Sig(O′) ⊆ S. We
need to show that O ∪ O′ is a conservative extension
of O′ w.r.t. SHOIQ.

Assume (for contradiction) that there exists
a SHOIQ axiom α with Sig(α) ⊆ Sig(O′) for which
both O′ 6|= α (?) and O ∪O′ |= α (∗) hold.
By (?), there is a model J of O′ such that J 6|= α. (¦)

The conditions of the proposition imply the exis-
tence of a model I of O such that ∆I = ∆J ∪∆, ∆∩
∆J = ∅ and XI = XJ for all X ∈ S. Pick any inter-
pretation K satisfying: ∆K=∆I , XK=XI for all X∈
Sig(O), XK=XJ for all X ∈Sig(O′). Such an inter-
pretation exists as XI=XJ for X∈Sig(O)∩Sig(O′),

and symbols not occurring in Sig(O)∩Sig(O′) can be
interpreted arbitrarily.

First, because I |= O and K|Sig(O) = I|Sig(O),
K |= O holds. Second, because J |= O′ and O′ is local,
we have J∪∆ |= O′ and consequently, sinceK|Sig(O′) =
J∪∆|Sig(O′), K |= O′. Therefore K |= O ∪O′.

Since J 6|= α, we have, using Lemma 1, that
J∪∆ 6|= α. Furthermore, since K|Sig(O′) = J∪∆|Sig(O′)
and Sig(α) ⊆ Sig(O′), K 6|= α.

We showed there exists a model of O ∪ O′ that is
not a model of α, which yields a contradiction with
the assumption (∗). ut
Proof (of Proposition 3.). Same proof as of Proposi-
tion 2 goes through - we only need to replace the sen-
tence labeled with (¦) with the following: Because (?)
and because SHOQ has the FMP, there exists a finite
model J of O′ such that J 6|= α. ut
Proof (of Proposition 4.). Let J be a finite interpre-
tation.

Let us associate with every x ∈ ∆J (∆J is finite)
an unique ax ∈ I, ax /∈ Sig(O) (i.e., different elements
are associated with different individuals). For every
x ∈ ∆J , let us set Sx = {A ∈ S; x ∈ AJ }.

The conditions of the proposition imply that for
every x ∈ ∆J there exists a model Ix of

O ∪ {A ≡ {ax}}A∈Sx ∪ {A ≡ ⊥}A∈S−Sx .

Pick some interpretation Ĩ such that Ĩ =
⊎

x∈∆J Ix

and some interpretation I isomorphic with Ĩ such that
ax
I = x for all x ∈ ∆J (to get such interpretation I it

is enough to “rename” finitely many elements in ∆Ĩ).
Since Ix |= O for all x ∈ ∆J , O is a SHIQ on-

tology, SHIQ has the DUMP, ∆J is finite, we have
Ĩ |= O and consequently, since I ∼= Ĩ, I |= O (?).

As ax
I = x for all x ∈ ∆J , we have ∆J ⊆ ∆I (∗).

It is easy to see that for A ∈ S and x ∈ ∆J the
following holds: AIx = {ax

Ix} if x ∈ AJ ; AIx = ∅ if
x /∈ AJ . Thus, for A ∈ S we have AĨ =

⋃
x∈AJ {ax

Ĩ}
and, consequently, AI =

⋃
x∈AJ {ax

I} =
⋃

x∈AJ {x},
and thus AI = AJ (¦).

We showed that, for any finite interpretation J ,
there exists an interpretation I satisfying (?, ∗, ¦). Us-
ing Proposition 3 we have that O is locally safe for S
w.r.t. SHOQ. ut
Proof (of Proposition 5.). Consider an ALO (ELO)
ontology O′ = {A ≡ {a}}A∈S̃ ∪ {A ≡ ⊥}A∈S−S̃,
which evidently is local, satisfies Sig(O) ∩ Sig(O′) ⊆
S and is consistent (O′ 6|= > v ⊥). The conditions
of the proposition say that the ontology O ∪ O′ is
inconsistent (O ∪ O′ |= > v ⊥). We showed that
there exists a local ALO (ELO) ontology O′ satisfying
Sig(O) ∩ Sig(O′) ⊆ S for which O is not safe. ut

Statistical machine translation
between related and unrelated languages?

David Kolovratńık, Natalia Klyueva and Ondřej Bojar

Charles University in Prague, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics

Abstract. In this paper we describe an attempt to com-
pare how relatedness of languages can influence the perfor-
mance of statistical machine translation (SMT). We ap-
ply the Moses toolkit on the Czech-English-Russian cor-
pus UMC 0.1 in order to train two translation systems:
Russian-Czech and English-Czech. The quality of the trans-
lation is evaluated on an independent test set of 1000 sen-
tences parallel in all three languages using an automatic
metric (BLEU score) as well as manual judgments. We ex-
amine whether the quality of Russian-Czech is better thanks
to the relatedness of the languages and similar character-
istics of word order and morphological richness. Addition-
ally, we present and discuss the most frequent translation
errors for both language pairs.

1 Introduction

Statistical Machine Translation nowadays has become
one of the easiest and cheapest paradigms of the MT
systems. Researchers can now use various toolkits to
experiment with different language pairs. We experi-
ment with Moses [2], an open-source implementation
of phrase-based statistical translation system.

For closely-related languages, statistical MT meth-
ods are sometimes believed to be unreasonably com-
plicated. For example, in the project Čeśılko [3] – Ma-
chine Translation among Slavic languages – the main
accent was put on the idea that the relatedness of the
languages rather than statistics should be exploited.
Čeśılko was initially a rule-based system, based on the
direct word-for-word translation (for very closely re-
lated Czech and Slovak) and engaging a few syntactic
transfer rules in case less related languages are con-
cerned (Czech and Polish or Czech and Lithuanian).

In our experiments we try to compare if the relat-
edness has a positive effect when using phrase-based
statistical models.

Our main hypothesis was that we should obtain
better results in Russian-to-Czech translation than in
English-to-Czech. We used the Moses toolkit in order
? This work was supported by the Czech Science Foun-
dation under the contract no. 201/09/H057, Grant
Agency of Charles University under the contract
no. 100008/2008, and the grants FP7-ICT-2007-3-
231720 (EuroMatrix Plus), GAAV CR 1ET201120505
and MSM 0021620838.

to carry out the experiments and evaluation. Addition-
ally, we applied factored models on the tagged version
of the corpus and compared the outputs.

The paper is structured as follows. Section 2 and
Section 3 provide a description of the data we used
during the experiment and our tokenization and tag-
ging tools. In Section 4 and Section 5 we briefly sum-
marize the Moses toolkit and present our experiments
with MT between English/Russian and Czech. In Sec-
tion 6 we evaluate our MT output using an automatic
and a few manual evaluation metrics. Finally, the pa-
per is concluded by a discussion and plans of future
work.

2 Data

Phrase-based SMT systems need huge amount of par-
allel data in order to extract dictionaries of phrases
and their translations, so called phrase tables. The
most reliable source of parallel data are books and
their translations into different languages, still it seems
to be very laborious to collect a big corpus based on
books. Web pages can serve as a good and significantly
cheaper source for parallel texts, although usually less
reliable. Moreover, while for the wide-spread languages
we can easily find them, for minority languages paral-
lel texts may not be available on the web in sufficient
quantities.

We carried our experiments using the Czech-
English-Russian (cs-en-ru) corpus UMC 0.1 [1] with
automatic pairwise sentence alignment containing
texts from Project Syndicate1. Although we could
have used additional data to train the translation
model for Czech and English, we need English-Czech
and Russian-Czech corpus to be comparable. Table 1
provides statistics of the data we used in our experi-
ments.

We had to collect the held-out and test set sen-
tences ourselves for two reasons: first, we needed the
sentences to be tri-parallel, that is parallel across
the three languages, and second to be sure they do
not overlap with the training data set. We also used
Project Syndicate but extracted the test sets only from

1 http://www.project-syndicate.org/

32 David Kolovratńık et al.

Cz: prostě|prostě|Dg-------1A---- jsem|být|VB-S---1P-AA--- brala|brát|VpQW---XR-AA---
Ru: включая|включая|Sp-a президента|президент|Ncmsay мбеки|мбеки|Vmip3s-a-p
En: the|the|DT visionaries|visionary|NNS would|would|MD have|have|VH gotten|get|VVN nowhere|nowhere|RB

Fig. 1. Example of a factored corpus. The sentences are not parallel.

Fig. 2. Simple phrase-based translation: Training sentences are automatically word-aligned and used to extract all
phrases constistent with the word alignment (not all consistent phrases have been marked in the picture). The extracted
dictionary of phrases is used in translation: the input sentence is segmented into known phrases, each phrase is translated
and the output is constructed by concatenating translated phrases. Usually only little phrase-reordering is performed.

Languages Sentences
Language Model cs 92,233
Translation Model ru → cs 79,888
Translation Model en → cs 76,588
Held-out cs, en, ru 750
Test set cs, en, ru 1,000

Table 1. Summary of corpus sizes.

newly published articles. The held-out and test set sen-
tences have been added to the corpus UMC2.

3 Data preprocessing

We used the tools developed under the UMC project,
namely the trainable tokenizer for Czech, English and
Russian languages. It was applied on the test and de-
velopment set of data to make them consistent with
training sets.

In order to train a factored model we tagged and
lemmatized the UMC corpus with the help of TreeTag-
ger [5] for English and Russian and Hajič’s morpholog-
ical tagger for Czech [8]. Figure 1 provides examples of
the tagged and lemmatized parts of text in the format
as suitable for the factored training.

4 Simple Moses

Moses3 is a phrase based SMT system that is
very much language independent since it implements
2 http://ufal.mff.cuni.cz/umc/
3 http://www.statmt.org/moses/

a purely data driven method. In contrast to other
methods of MT, phrase-based systems can perform
translation directly between surface forms (thus of-
ten the name “direct translation”). The most impor-
tant property of phrase-based systems is the abil-
ity to translate contiguous sequences of words (called
“phrases”) rather than merely single words. See Fig-
ure 2 for an illustration.

The Moses toolkit is a complex system which uti-
lizes several other components. Let us mention at least
GIZA++4 involved in finding word alignment, the
SRI Language Modeling Toolkit5 and the built-in im-
plementation of model optimization (Minimum Error
Rate Training, MERT) on a given held-out set of sen-
tences.

To establish a baseline, we trained translation
models for direct translation from Russian to Czech
(ru→cs simple) and English to Czech (en→cs simple),
optimizing them on the 750 held-out sentences.

5 Moses factored

All knowledge used by Moses comes from the cor-
pus. Moreover, direct phrase-based translation mod-
els have no generalizing capacity. Thus their perfor-
mance strongly depends on whether particular words
and word sequences were seen in the training sentences
data. Phrase-based translation thus often faces a prob-
lem known as data sparseness, and the problem is more
4 http://www.fjoch.com/GIZA++.html
5 http://www.speech.sri.com/projects/srilm/

Czech-Russian MT 33

Russian Czech
si

m
pl

e
form 1 form

fa
ct

or
ed

1

(a) form 1 form, lemma, tag

(b) lemma 2 lemma
tag 3 tag }4 form

fa
ct

or
ed

2

(a) form 1 form lemma, tag2

(b) lemma 3 lemma
tag 4 tag }5 form

Fig. 3. Ilustration of all explored translation settings:
(a) and (b) parts represent alternative decoding paths of
a given factored setup.

pronounced for morphologically rich languages where
all word forms have to be seen.

Factored translation [6] is an interesting extension
of phrase-based models that aims i.a. to mitigate this
issue. It allows us to replace an input word with a vec-
tor of features as exemplified in Figure 1 and config-
ure the model to back-off to a more coarse-grained
representation of input words if there are not enough
training data. The features on the source side can also
participate in translation. Features on the target side
may be obtained by translation from the source side
or by a generation step. The generation works with
features already available on the target side and fills
in the remaining ones.

The most common example of employing factored
translation looks as follows. A surface word form is
enriched with its base form (lemma) and morpholog-
ical information (a tag for short), forming a three-
compound features vector. Base forms and tags are
translated independently without regard to surface
forms. Then, on the basis of translated base form and
tag the surface form is generated. The setup can use
three language models ensuring coherence of the out-
put sequence: one for base forms, one for tags and one
for surface forms.

To summarize, there are two translation models
(for base forms and for tags), one generation table
to get surface form and three language models. This
was the approach we first planned to exploit. Unfor-
tunately, the setup has a subtle drawback: it does not
work with input forms at all, so it applies the in-
dependent translation of base form and tag even in
cases where there is enough data for direct transla-
tion. Moses allows to specify multiple decoding paths
(decoding means finding the most probable transla-
tion of a given sentence according to the model), so it
is possible to let compete the factored path with the
direct transfer, exploiting mutual advantages of both

approaches. That is the approach we used in our fac-
tored experiments.

Although in the direct translation path used as the
back-off of the factored translation we are not inter-
ested in the target-side lemma and tag, we still have
to supply them for the language models. We use two
distinct setups for constructing the additional output
factors for the direct translation: 1) translating the
source form to all three target factors at once, and
2) translating the source form to target source form
and using a generation step for “instant tagging” of
the output to construct the target lemma and tag. We
denote the combination of the main factored transla-
tion with one of the two back-off models factored1 and
factored2, resp. Both are ilustrated in Figure 3.

We are aware that there is relatively little possibil-
ity for an improvement with factorization in our lan-
guage pairs and overall setting. For instance, let us
point out that generation step for target-side factors
is integrated into Moses unlike the preprocessing of in-
put factors where external tools are used. Naturally,
the generation capabilities of Moses are rather limited:
it learns only from sentences supplied in training. Be-
cause we train the generation step only on the target
side of the parallel sentences, we cannot expect to gain
much coverage by translating lemmas and tags inde-
pendently because the data will hardly ever provide
the required form that should be generated from the
target lemma and tag. A better approach would be to
either use a larger monolingual corpus for training the
generation step, or use an external morphological gen-
erator as e.g. [9]. With the current simple setting, we
can expect improvement rather to come from the addi-
tional lemma- and tag-based language models that will
be able to judge hypothesis coherence more robustly.

6 Evaluation

We tried to evaluate the output of our systems by
several metrics: BLEU, flagging of errors and a sim-
ple hypothesis ranking (i.e. asking “which is the best
output”).

6.1 BLEU

BLEU score [4] is an established automatic metric
used to evaluate MT systems. Thus, despite all known
issues we also used it not only for completeness but
also as an integral part of model optimization (see
MERT in Section 4). Anyway, let us mention two ma-
jor issues of the BLEU score.

BLEU, when applied to languages with free word
order, cannot be reliable indeed. BLEU is based
on counting occurrences of n-grams from reference
translation in generated output. In many cases the

34 David Kolovratńık et al.

translator of reference texts will use a word order
different from the source sentence, whereas the
machine usually preserves the original word order
whenever it is an acceptable variant. However, many
n-grams do not match when words are swapped. Here
are some examples of the problem from our test data:
(reference translation) syrský postoj by dosah ı́ránské
strategie regionálńı destabilizace nemusel rozšiřovat,
ale sṕı̌s omezovat.
(ru→cs translation) postoj sýrie m̊uže omezit, nikoliv
rozš́ıřit, sféru vlivu ı́ránské strategie regionálńı desta-
bilizace.

Such shifts done by a translator lead to a lower
(automatic) score while not necessarily impacting the
comprehensibility of the output.

There is a similar problem with inflection. Word
forms different from the reference translation are not
approved by the BLEU score, so minor translation
variations or errors can cause unfair loss in BLEU
score. However, a partial remedy may be achieved by
scoring lemmatized text:
(reference translation) složitost hrozeb , jimž čeĺı
izrael
(ru→cs translation) složitost hrozeb izraeli
(en→cs translation) složitost́ı hrozby pro izrael

Table 2 summarizes BLEU scores obtained by our
various translation setups. For English all scores are
very close. In contrast, Russian is more sensitive to
a method – factored translation performs slightly bet-
ter than simple. Unfortunately, we were unable to com-
pute factored2 for Russian due to troubles with model
optimization. A discussion of closeness of simple and
factored results is to be found in the last paragraph of
Section 5.

BLEU score on forms
pair simple factored1 factored2
en→cs 14.58±0.96 15.84±1.03 15.39±1.05
ru→cs 11.91±0.91 13.11±0.90 —

BLEU score on lemmas
pair simple factored1 factored2
en→cs 24.16±1.10 24.77±1.18 24.99±1.16
ru→cs 15.98±0.97 18.06±0.92 —

Table 2. Achieved BLEU scores in our experiments.

6.2 Flagging of errors

As shown in the previous section, the BLEU metric
does not always reflect translation quality. A more re-
liable, though labour-intensive approach is to manu-
ally judge MT output. In one of such evaluations, in-

spired by [7], human annotators mark errors in MT
output and classify them according to their nature.
We used the following rough error classes: Bad Punc-
tuation, Unknown Word, Missing Word, Word
Order, Incorrect Words, with some classes further
refined into several subtypes. As our annotation ca-
pabilities were limited to one person only, we present
here the evaluation of the simple model (direct trans-
lation) only.

Table 3 documents that in the case of English-to-
Czech translation, the most common errors concerned
morphology, which matches our expectations as Czech
is a inflective language and needs to express many fea-
tures like case and gender, often not marked in Eng-
lish source. On the other hand, lots of words were not
recognized in Russian-to-Czech translations. We have
not been able to evaluate the factored translation ac-
cording to the scheme, but a first few sentences show
higher accuracy in morphological forms when factored
models are used.

Error Class en→cs ru→cs
Disambiguation 9.3 % 8.8 %
Extra word 6.2 % 18.2 %
Word Form 49.0 % 22.0 %
Lexical Variant 5.4 % 5.7 %
Missed Auxilary 0.8 % 1.9 %
Missed Content 6.6 % 20.1 %
Word Order Long 0.8 % 0.6 %
Word Order Short 4.6 % 0.6 %
Punctuation 13.9 % 2.5 %
Unknown 3.5 % 19.5 %
Total 259 (100.0%) 159 (100.0%)

Table 3. Error types in simple moses model.

6.3 Ranking of translations

Finally, we carried out a ranking evaluation which is
very similar to the human judgments in WMT Man-
ual Evaluation6. For each of the translation schemes
described in Section 4 and Section 5 we took 40 sen-
tences and ranked them on the basis of the question
“which translation is the best”. So each MT output of
the 40 test sentences translated to Czech from both
languages and by all examined setups got a score
from 1 (worst) to 5 (best). Table 4 summarizes the
evaluation. For each translation setup, we compute the
mean, median and count of how often the method got
the best and the second best rank.

Almost a half of the sentences that got the high-
est score were factored translations from Russian into

6 http://www.statmt.org/wmt08/judge/

Czech-Russian MT 35

En→Cz simple factored1 factored2
Median 3 3 2
Mean 2.487 3.051 2.718
Best/Second 2/8 9/6 4/6

Ru→Cz simple factored1 factored2
Median 4 4 —
Mean 3.436 3.923 —
Best/Second 10/12 19/9 —

Table 4. Manual ranking of MT output.

Czech, the second score was obtained by those trans-
lated using the simple model from Russian into Czech.
Factored model (factored1) from English to Czech was
the third one. This confirms our expectation that
translating from a related language is easier also for
phrase-based MT.

The evaluation allows us to make further con-
clusions. First, enriching the model with additional
morphological information improves the translation
quality both for related and unrelated languages. For
Russian as the source, the improvement seems to
be less apparent, because Russian itself marks most
of the relevant morphological properties in its word
forms. Second, BLEU score does not necessarily corre-
sponds with manual judgments: while translating from
Russian was better percieved by our human annotator,
it obtained a lower BLEU score than translation from
English7. We are aware that the evaluation should be
repeated with more human annotators and on a larger
set of sentences for a better confidence.

6.4 Observation of frequent errors

As it was shown in the previous section, there are lots
of words unrecognized (not translated). This problem
is not of a linguistic nature, it is caused simply by
insufficient training data.

Here we will name some linguistically interpreted
errors.

– Russian → Czech
• Lost negation.

(ru src) без которого было невозможно
создание
(cs ref) bez něhož nebylo možné sestavit
(ru → cs) bez něhož bylo možné vytvořeńı
Here we can observe that due to the differ-
ence in how negation is expressed in the two
languages, the negative sense is translated as
positive.

7 While BLEU scores are not comparable across language,
they are comparable in our setup: we test BLEU scores
on a single test set in Czech only, it is the source lan-
guage that differs, not the target one.

• Lost reflexive particle.
(ru src) сумел уйти от
(cs ref) se zdařilo vyj́ıt z
(ru → cs) podařilo odej́ıt od
The mistake above—missing reflexive par-
ticle in Czech—is caused by the fact that
some verbs can be reflexive in Czech and
non-reflexive in Russian which is difficult
for a phrase-based MT to learn because the
reflexive particle is often far away from the
verb in training sentences.

– English → Czech
• Word order in possessive constructions.

(en src) mahmoud abbas ’s palestinian author-
ity
(cs ref) palestinskou samosprávou prezidenta
mahmúda abbáse
(en → cs) prezidenta mahmúda abbáse pales-
tinské samosprávy

– Both source languages → cs
• Bad case after a preposition.

(cs ref) podle indických vyšetřovatel̊u
(en src) according to indian investigators
(en → cs) podle indické řešitel̊u
(ru src) согласно индийским экспертам
(ru → cs) podle indickým experti

7 Conclusion

We have succeeded in our goal to compare the per-
formance of phrase-based and factored phrased-based
statistical machine translation when translating be-
tween related and unrelated languages. So far we have
failed in taking advantage of language relatedness ex-
plicitly in the model, but a preliminary manual rank-
ing of system outputs confirms that translation bet-
ween related languages delivers better results. This
observation contradicts to the automatic MT quality
score using the BLEU metric.

We are aware of the remaining data sparseness
issue (there are many times more tags for Russian
than for English), so while the language relatedness
makes the Czech and Russian tagsets similar, many
tags needed in the translation of unseen sentences are
not in our training data. Also we suspect the train-
ing corpus to be better parallel for English-Czech pair
than for Russian-Czech, because Czech is the direct
translation of English original while Russian is the
translation of English, not Czech.

Our second conclusion is that enriching SMT with
morphological features improves the translation qual-
ity especially for the closely-related morphologically
rich Czech and Russian.

36 David Kolovratńık et al.

We hope that our results will serve as a good ba-
sis for a future comparison of SMT with rule-based
approach used in Čeśılko, which intends to include
Russian-Czech translation pair soon. Our experiments
are also a good start for further improvements in MT
quality when translating to Czech. For instance, we
plan to improve the morphological generation step by
using larger target-side monolingual training data.

References

1. N. Klyueva and O. Bojar: UMC 0.1: Czech-Russian-
English multilingual corpus. Proc. of International Con-
ference Corpus Linguistics., Saint-Petersburg, 2008,
188–195.

2. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst: Moses: open source Toolkit for statisti-
cal machine translation. ACL 2007, Proceedings of the
45th Annual Meeting of the Association for Compu-
tational Linguistics Companion Volume Proceedings of
the Demo and Poster Sessions, Prague, Czech Republic,
2007, 177–180.

3. P. Homola and V. Kuboň: A hybrid machine translation
system for typologically related languages. Proceedings
of the 21st International Florida-Artificial-Intelligence-
Research-Society Conference, FLAIRS, 2008, 227–228.

4. K. Papineni, S. Roukos, T. Ward: BLEU: a method for
automatic evaluation of machine translation. IBM Re-
search Report RC22176(W0109-022), 2001.

5. H. Schmid: Probabilistic part-of-speech tagging using de-
cision trees. Proceedings of International Conference on
New Methods in Language Processing, 1994.

6. P. Koehn and H. Hoang: Factored translation models.
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2007, 868–876.

7. D. Vilar, J. Xu, L. Fernando D’Haro, and H. Ney: Er-
ror analysis of statistical machine translation output.
LREC-2006: Fifth International Conference on Lan-
guage Resources and Evaluation. Proceedings, Genoa,
Italy, 22-28 May 2006, 697–702.

8. J. Hajič: Disambiguation of rich inflection. (Com-
putational Morphology of Czech). Nakladatelstv́i
Karolinum, ISBN 80-246-0282-2, Prague, 2004.

9. A. de Gispert, J.B. Mariño and J.M. Crego: Improving
statistical machine translation by classifying and gener-
alizing inflected verb forms. Eurospeech 2005, Lisbon,
Portugal, 2005, 3185–3188.

Benchmarking a B-tree compression method?

Filip Křižka, Michal Krátký, and Radim Bača

Department of Computer Science, Technical University of Ostrava, Czech Republic
{filip.krizka,michal.kratky,radim.baca}@vsb.cz

Abstract. The B-tree and its variants have been widely
applied in many data management fields. When a com-
pression of these data structures is considered, we follow
two objectives. The first objective is a smaller index file,
the second one is a reduction of the query processing time.
In this paper, we apply a compression scheme to fit these
objectives. The utilized compression scheme handles com-
pressed nodes in a secondary storage. If a page must be re-
trieved then this page is decompressed into the tree cache.
Since this compression scheme is transparent from the tree
operation’s point of view, we can apply various compression
algorithms to pages of a tree. Obviously, there are compres-
sion algorithms suitable for various data collections, and
so, this issue is very important. In our paper, we compare
the B-tree and compressed B-tree where the Fast Fibonacci
and invariable coding compression methods are applied.

Key words: B-tree and its variants, B-tree compression,
compression scheme, fast decompression algorithm

1 Introduction

The B-tree represents an efficient structure for the
finding of an ordered set [6]. The B-tree has been often
used as the backbone data structure for the physical
implementation of RDBMS or file systems. Its most
important characteristic is that keys in a node have
very small differences to each others. We utilize this
feature in the B-tree compression. In this case, nodes
are compressed in the secondary storage and they are
decompressed during their reading into the cache. Due
to the fact that the random access in the secondary
storage is a rather expensive operation, we save time
when reading the nodes.

In work [11], authors summarize some methods
for organizing of B-trees. A prefix B-tree, introduced
in [7], provides the head and tail compression. In the
case of the head compression, one chooses a common
prefix for all keys that the page can store, not just the
current keys. Tail compression selects a short index
term for the nodes above the data pages. This index
needs merely to separate the keys of one data node
from those of its sibling and is chosen during a node
split. Tail compression produces variable length index

? Work is partially supported by Grants of GACR
No. 201/09/0990 and IGA, FEECS, Technical Univer-
sity of Ostrava, No. BI 4569951, Czech Republic.

entries, and [7] describes a binary search that copes
with variable length entries.

Work [9] describes a split technique for data. Rows
are assigned tag values in the order in which they are
added to the table. Note that tag values identify rows
in the table, not records in an individual partition or
in an individual index. Each tag value appears only
once in each index. All vertical partitions are stored
in the B-tree with the tag value as the key. The novel
aspect is that the storage of the leading key is reduced
to a minimal value.

Unlike these works, in our work we suppose the
B-tree compression without changes of the B-tree
structure. We mainly utilize the fast decompression al-
gorithm. In the case of the previously depicted papers,
B-tree compression is possible using a modification of
the B-tree structure. In work [7], B-tree is presented by
B∗-index and B∗-file. The keys stored in the B∗-index
are only used to searching and determining in which
subtree of a given branch node a key and its associ-
ated record will be found. The B∗-index itself is a con-
ventional B-tree including prefixes of the keys in the
B∗-file. This prefix B-tree combines some of the advan-
tages of B-trees, digital search trees, and key compres-
sion without sacrificing the basic simplicity of B-trees
and the associated algorithms and without inheriting
some of the disadvantages of digital search trees and
key compression techniques. Work [9] describes an ef-
ficient columnar storage in B-trees. Column-oriented
storage formats have been proposed for query process-
ing in relational data warehouses, specifically for fast
scans over non-indexed columns. This data compres-
sion method reuses traditional on-disk B-tree struc-
tures with only minor changes yet achieves storage
density and scan performance comparable to special-
ized columnar designs. In work [1], B-tree compression
is used for minimizing the amount of space used by
certain types of B-tree indexes. When a B-tree is com-
pressed, duplicate occurrences of the indexed column
values are eliminated. It is compressed by clustering
the same keys and their unindexed attributes.

This paper is organized as follows. In Section 2, we
briefly summarize basic knowledge about the B-tree.
Section 3 shows a compression scheme used [3]. Sec-
tion 4 describes two compression methods. Section 5
shows results of the compression methods. The com-
pressed B-tree is compared with a proper B-tree. In

38 Filip Křižka et al.

Section 6, we summarize the paper content and out-
line possibilities of our future work.

2 B-tree and its variants

The B-tree is a tree structure published by Rudolf
Bayer and Edward M. McCreight in 1972 [6]. The
B-tree keeps data sorted and allows searches, inser-
tions, and deletions in logarithmic amortized time. It is
optimized for systems that read and write large blocks
of data. A B-tree is kept balanced by requiring that all
leaf nodes are at the same depth. This depth will in-
crease slowly as elements are added to the tree, but an
increase in the overall depth is infrequent, and results
in all leaf nodes being one more node further away
from the root.

B-trees have substantial advantages over alterna-
tive implementations when node access times far ex-
ceed access times within nodes. This usually occurs
when most nodes are in secondary storage such as
hard drives. By maximizing the number of child nodes
within each internal node, the height of the tree de-
creases, balancing occurs less often, and efficiency in-
creases. Usually this value is set such that each node
takes up a full disk block or an analogous size in sec-
ondary storage.

A B-tree of order m (the maximum number of chil-
dren for each node) is a tree which satisfies the follow-
ing properties:

– Every node has at most m children.
– Every node (except root and leaves) has at least

m
2 children.

– The root has at least two children if it is not a leaf
node.

– All leave nodes are in the same level.
– All inner nodes with k children contain k–1 links

to children.

Each internal node’s elements act as separation values
which divide its subtrees. For example, if an internal
node has three child nodes (or subtrees) then it must
have two separation values or elements a1 and a2. All
values in the leftmost subtree will be less than a1, all
values in the middle subtree will be between a1 and a2,
and all values in the rightmost subtree will be greater
than a2.

Internal nodes in a B-tree – nodes which are not
leaf nodes – are usually represented as an ordered set
of elements and child pointers. Every internal node
contains a maximum of U children and – other than
the root – a minimum of L children. For all internal
nodes other than the root, the number of elements is
one less than the number of child pointers; the number
of elements is between L−1 and U−1. The number U

must be either 2 ·L or 2 ·L−1; thus each internal node
is at least half full. This relationship between U and L
implies that two half-full nodes can be joined to make
a legal node, and one full node can be split into two
legal nodes (if there is an empty space to push one
element up into the parent). These properties make it
possible to delete and insert new values into a B-tree
and adjust the tree to preserve the B-tree properties.

Leaf nodes have the same restriction on the num-
ber of elements, but have no children, and no child
pointers. The root node still has the upper limit on
the number of children, but has no lower limit. For
example, when there are fewer than L-1 elements in
the entire tree, the root will be the only node in the
tree, and it will have no children at all.

A B-tree of depth n+1 can hold about U times as
many items as a B-tree of depth n, but the cost of
search, insert, and delete operations grows with the
depth of the tree. As with any balanced tree, the cost
increases much more slowly than the number of ele-
ments.

Some balanced trees store values only at the leaf
nodes, and so have different kinds of nodes for leaf
nodes and internal nodes. B-trees keep values in every
node in the tree, and may use the same structure for all
nodes. However, since leaf nodes never have children,
a specialized structure for leaf nodes in B-trees will
improve performance. The best case height of a B-tree
is: logM n. The worst case height of a B-tree is: log M

2
n.

Where M is the maximum number of children a node
can have.

There exists many variants of the B-tree:
B∗-tree [13], B∗∗-tree [15], B+-tree [17]. In the case
of the B+-tree, data is only stored in leaf nodes and
inner nodes include keys. Leaf nodes hold links to the
previous and next nodes. Moreover, many paged data
structures like UB-tree [5, 12], BUB-tree [8], and
R-tree [10] are based on the B-tree.

3 A compression scheme for tree-like
data structures

In this section, we describe a basic scheme which can
be utilized for most paged tree data structures [3].
Pages are stored in a secondary storage and retrieved
when the tree requires a page. This basic strategy is
widely used by many indexing data structures such as
B-trees, R-trees, and many others. They utilize cache
for fast access to pages as well, since access to the
secondary storage can be more than 20 times slower
compared to access to the main memory. We try to de-
crease the amount of disc access cost (DAC) to a sec-
ondary storage while significantly decreasing the size
of a tree file in the secondary storage.

Benchmarking a B-tree compression method 39

Let us consider a common cache schema of per-
sistent data structures in Figure 1(a). When a tree
requires a node, the node is read from the main mem-
ory cache. If the node is not in the cache, the node
page is retrieved from the secondary storage.

An important issue of the compression schema is
that tree pages are only compressed in the secondary
storage. In Figure 1(b), we can observe the basic idea
of the scheme. If a tree data structure wants to retrieve
a page, the compressed page is transfered from the
secondary storage to the tree’s cache and it is decom-
pressed there. Function TreeNode:: Decompress()
performs the decompression. Afterwards, the decom-
pressed page is stored in the cache. Therefore, the
tree’s algorithms only work with decompressed pages.
Obviously, the tree is preserved as a dynamic data
structure and in our experiments we show the page
decompression does not significantly affect query per-
formance because we save time with the lower DAC.

PageNode
Data structure

Data structure's
cache

in main memory Secondary
storage

(a)

Compreseed
pageNode

Data structure
Data structure's

cache
in main memory Secondary

storage

(b)

Fig. 1. (a) Transfer of tree’s pages between the secondary
storage and tree’s cache. (b) Transfer of compressed pages
between the secondary storage and tree’s cache.

3.1 How the compression scheme affects tree
algorithms

When the compression scheme is taken into considera-
tion, the tree insert algorithm only needs to be slightly
modified. When we insert or modify a record in a page,
we have to perform the function TreeNode::Compress
Test() which tests whether the node fits into the page.
If not, the node needs to be split. Also, during the
split, we have to make sure that the final nodes fit
into the page. This means that the maximum capac-
ity of a page can vary depending on the redundancy of
the data. The maximum capacity of each tree’s page
must be determined by a heuristic:

Cc =
Cu

CRA
,

where CRA is the assumed maximum compression ra-
tio, Cu is the capacity of the uncompressed page. For
example, the size of the page is 2,048 B, Cu = 100,
CRA = 1/5, then Cc = 500. The size of the page for
the capacity is 10,240B. This means that all pages in
the tree’s cache have Cc = 500, although their S size in
the secondary storage is less than or equal to 2,048B.
Let us note that

CR =
compressed size

original size
.

The TreeNode::Compress() function is called when
the page must be stored in the secondary storage.

Every page in the tree has its minimal page utiliza-
tion Cc/2. Let Sl denote the byte size of a compressed
page. After deleting one item in the page, the byte size
of the page is denoted by Sc. Without loss of general-
ity, we can assume that Sc ≤ Sl. If items are deleted
from the page, we must check whether capacity is less
than or equal to Cc/2. If so, the page is stretched into
other pages according to the tree deleting algorithm.

Query algorithms are not affected at all because
page decompression is processed only between cache
and secondary storage and the tree can utilize decom-
pressed pages for searching without knowing that they
have been previously compressed.

This basic idea of the compression scheme can be
applied to any paged tree data structure. It is not de-
pendent upon an applied split algorithm, nor on the
key type stored in the tree’s pages. We test this scheme
on B+-tree data structure because this data structure
has remained very popular in recent years and it is
suitable for further page compressing.

4 B-tree compression methods

In this article, we have applied two compression meth-
ods: Fast Fibonacci (FF) and Invariable Coding (IC).
Since keys in a node are close to each another, we use
the well-known difference compression method [14].
Similar algorithms were used in the case of the R-tree
compression [3, 16].

4.1 Fast Fibonacci compression

In this method, we apply the Fibonacci coding [2]
which uses the Fibonacci numbers; 1, 2, 3, 5, 8, 13,
A value is coded as the sum of the Fibonacci numbers
that are represented by the 1-bit in a binary buffer.
Special 1-bit is added as the lowest bit in this binary
buffer after the coding is finished. For example, the

40 Filip Křižka et al.

Algorithm 1: Fast Fibonacci Compression Algo-
rithm

function : CompressionLeafNode(node)
Write item11

for i in 2 .. node.count do2

num ←3

FibonacciCodder(node.key(i)-node.key(i-1))
Write num4

num ← FibonacciCodder(node.nonatrr(i))5

Write num6

end7

Write links8

function : CompressionNode(node)
Write item19

for i in 2 .. node.count do10

num ←11

FibonacciCodder(node.key(i)-node.key(i-1))
Write num12

end13

Write links14

function : Compression(node)
if node.isLeaf is leaf then15

CompressionNode(node)16

end17

else18

CompressionLeafNode(node)19

end20

function : CompressionTest(node)
tmp ← Compression(node)21

if tmp.size > page.size then22

return false23

end24

else25

return true26

end27

value 20 is coded as follows: 0101011 (13 + 5 + 2).
Due to the fact that we need the compression algo-
rithm as fast as possible, we use the Fast Fibonacci
decompression introduced in [4].

Algorithm of the Fast Fibonacci compression is
shown in Algorithm 1. We explain the algorithm in
the following paragraphs.
Compression of inner nodes:

– Keys are compressed by the Fibonacci coding. The
first value, obviously minimal, is stored. We com-
pute the difference of each neighboring value and
the difference is coded by Fibonacci coding. (see
Lines 10-13)

– Child and parent links are not compressed.
(Line 14)

Compression of leaf nodes:

– Keys are compressed in the same way as the keys
in an inner node. (Lines 3-4)

– Unindexed attribute values are compressed by Fi-
bonacci coding. (Lines 5-6)

– Parent, previous, and next nodes links are not
compressed. (Line 8)

4.2 Invariable coding compression

As in the previous method, we work with the difference
of each neighboring value. Since, we use invariable cod-
ing, we must first compute the difference of the last,
maximal value, and the first value. The result of this
computation is the number of bits necessary for a stor-
age of the maximal value and, obviously, each value of

Algorithm 2: Invariable Coding Compression
Method

function : CompressionLeafNode(node)
Write maxBits(node.key(1),node.key(n))1

Write node.key(1)2

for i in 2 .. node.count do3

num ← ICCodder(node.key(i)-node.key(i-1))4

Write num5

end6

Write maxBits(node.nonatrr(1),node.nonatrr(n))7

Write node.nonatrr(min)8

for i in 2 .. node.count do9

num ←10

ICCodder(node.nonatrr(i)-node.nonatrr(min))
Write num11

end12

Write links13

function : CompressionNode(node)
Write maxBits(node.key(1),node.key(n))14

Write node.key(1)15

for i in 2 .. node.count do16

num ← ICCodder(node.key(i)-node.key(i-1))17

Write num18

end19

Write links20

function : Compression(node)
if node.isLeaf is leaf then21

CompressionNode(node)22

end23

else24

CompressionLeafNode(node)25

end26

function : CompressionTest(node)
tmp ← Compression(node)27

if tmp.size > page.size then28

return false29

end30

else31

return true32

end33

Benchmarking a B-tree compression method 41

RND 8 RND 16
B+-tree FF IC B+-tree FF IC

Height 2 2 2 2 2 2

Domain 8b 16b

DAC Read 20,858,473 12,115,647 10,010,790 5,996,536 5,872,078 5,739,912

Creating time [s] 15,288 65,618 44,201 6,360 11,897 10,605

Cache Time [s] 7,357 5,398 1,565 6,020 1,495 1,181

Compress time [s] 0 867 652 0 883 636

Decompress time [s] 0 53,524 35,908 0 9,276 8,567

Inner nodes 35 17 9 33 17 9

Leaf nodes 7,746 3,350 2,431 5,695 2,596 2,114

Avg. node items 222.3 198 271 172.58 153.65 235.8

Avg. leaf node items 129.1 298.5 411.4 176.58 385.21 473

Index size [kB] 15,564 6,736 4,882 11,394 5,228 4,248

Compression ratio 1 0.56 0.69 1 0.54 0.63

Table 1. Building B+-tree index, result for RND 8 and RND 16.

RND 24 RND 32
B+tree FF IC B+tree FF IC

Height 2 2 2 2 2 2

Max item value 24b 32b

DAC Read [all] 5,996,536 5,907,459 5,830,822 5,996,536 5,931,627 5,889,079

Creating time [s] 7,377 12,098 12,435 7,629 13,686 13,154

Cache Time [s] 7,001 1,556 1,690 7,203 2,935 2,267

Compress time [s] 0 882 664 0 885 597

Decompress time [s] 0 9,419 9,828 0 9,595 10,003

Inner nodes 33 17 17 33 26 17

Leaf nodes 5,663 2,717 3,099 5,663 2,800 3,756

Avg node items 172.58 160.76 183.24 172.58 108.65 221.88

Avg leaf node items 176.58 368.05 322.68 176.58 357.14 266.24

Tree size [kB] 11,394 5,470 6,234 11,394 5,654 5,272

Compression ratio 1 0.52 0.45 1 0.50 0.54

Table 2. Building B+-tree index, results for RND 24 and RND 32.

RND 8 RND 16 RND 24 RND 32
B+tree FF IC B+tree FF IC B+tree FF IC B+tree FF IC

Query time [s] 182.4 37.6 33.5 38.2 34.2 31.7 38.1 34.2 35.2 38.2 45.3 37.2

Decompress time [s] 0 6.8 5.7 0 6.7 5.0 0 6.6 6.1 0 6.8 6.8

Cache Time [s] 149.1 3.8 1.8 5.0 2.0 1.3 5.6 2.4 2.5 7.2 12.7 3.0

DAC Read 64,813 28,123 20,516 47,068 21,897 17,610 47,068 22,469 25,700 47,068 23,200 31,296

Table 3. B-tree querying results for RND 8, RND 16, RND 24 and RND 32.

42 Filip Křižka et al.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Compress
ratio

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

0
20
40
60
80

100
120
140
160
180
200

Query
processing

time [s]

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

(a) (b)

0

10000

20000

30000

40000

50000

60000

70000

DAC

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

(c)

Fig. 2. Experiment results: (a) Compression ratio (b) Query processing time (c) DAC.

the node. For example, if the difference of the maximal
and minimal value is 20, all values are stored in 5bits.

Algorithm of the IC compression is shown in Al-
gorithm 1. We explain the algorithm in the following
paragraphs.

Compression of inner nodes:

– Keys are compressed by the above proposed
method. We store the first value and the num-
ber of bits necessary for a storage of the maxi-
mal value. After, all difference values are stored.
(Lines 14-19)

– Child and parent links are not compressed.
(Line 20)

Compression of leaf nodes:

– Keys are compressed in the same way as the keys
in an inner node. (Lines 1-6)

– Unindexed attribute values are similarly com-
pressed as keys, however the maximal value is not
the last value – it must be found by a sequence
scan.

– Parent, previous, and next nodes links are not
compressed. (Line 13)

5 Experimental results

In our experiments1, we test previously described com-
pression methods. These approaches are implemented
in C++. We use four synthetic collections which differ
in values included. Collection RND 8 includes values
in 〈0; 255〉, RND 16 includes values in 〈0; 65, 535〉. In
this way, we create collections RND 24 and RND 32
as well. Each collection contains 1,000,000 items.

For each collection, we test index building and
querying by processing time and DAC. In all tests, the
page size is 2,048B and cache size is 1,024 nodes. The
cache of the OS was turned off.

Results of index building are depicted in Table 1
and 2. We see that the compression ratio decreases for
increasing size of domains. FF compression is more
efficient for lower values; on the other hand, the IC
compression is more efficient for higher values. Obvi-
ously, due to features of the compressed scheme used,
we obtain the high compress time. Consequently, the

1 The experiments were executed on an AMD Opteron 865
1.8Ghz, 2.0 MB L2 cache; 2GB of DDR333; Windows
2003 Server.

Benchmarking a B-tree compression method 43

time of creating of B+-tree with the FF compression
is 1.6 − 4.3× higher then the time of creating for the
B+-tree. In the case of the IC compression, the creat-
ing time is 1.7 − 2.9× higher. The compression ratio
is shown is Figure 4.2(a) as well.

In our experiments, we test 50 random queries and
the results are then averaged. The results are shown
in Table 3. The number of DAC is 2.1 − 3.5× lower
for the FF compression when compared to the B+-
tree and 1.5 − 3.6× for the IC compression. This re-
sult influences the query processing time. The query
processing times is 0.84 − 4.85× more efficient in the
case of the FF compression when compared to the B+-
tree and the time is 1.03− 5.4× more efficient for the
IC compression. Obviously, if the compression ratio is
over a threshold then the B+-tree overcomes the com-
pressed indices. In Figure 4.2(b) and (c), we see the
query processing time and DAC.

6 Conclusion

In this article, we propose two methods for B-tree com-
pression. If the compression ratio is below a threshold
then the query processing performance of the com-
pressed index overcomes the B-tree. However, there
are still some open issues. The first one is the high
creating time. In this case, we must develop a more
efficient method or we must use and test the bulkload-
ing (see [3, 16]). Additionally, we must test our method
for a real data collection. Finally, we should test differ-
ent compression and coding methods (i.e. Elias-delta
code, Elias-gamma code, Golomb code [14]).

References

1. C. Antognini: Troubleshooting Oracle Performance.
Apress, 2008.

2. A. Apostolico and A. Fraenkel: Robust transmission
of unbounded strings using Fibonacci representations.
IEEE Trans. Inform., 33, 2, 1987, 238–245.

3. R. Bača, M. Krátký, and V. Snášel: A compression
scheme for the R-tree data structure. In Submitted in
Information Systems, 2009.

4. R. Bača, V. Snášel, J. Platoš, M. Krátký,
and E. El-Qawasmeh: The fast Fibonacci de-
compression algorithm. In arXiv:0712.0811v2,
http://arxiv.org/abs/0712.0811, 2007.

5. R. Bayer: The universal B-tree for multidimensional
indexing: general concepts. In Proceedings of World-
Wide Computing and Its Applications (WWCA 1997),
Tsukuba, Japan, Lecture Notes in Computer Science,
Springer–Verlag, 1997, 198–209.

6. R. Bayer and E. M. McCreight: Organization and
maintenance of large ordered indices. Acta Informat-
ica, 1972, 173–189.

7. R. Bayer and K. Unterauer: Prefix B-trees. ACM
Trans. on Database Systems, 2, 1, 1977, 11–26.

8. R. Fenk: The BUB-tree. In Proceedings of 28rd VLDB
International Conference on Very Large Data Bases
(VLDB’02), Hongkong, China, Morgan Kaufmann,
2002.

9. G. Goetz: Efficient columnar storage in B-trees. In
Proceedings of SIGMOD Conference, 2007.

10. A. Guttman: R-Trees: a dynamic index structure for
spatial searching. In Proceedings of ACM International
Conference on Management of Data (SIGMOD 1984),
ACM Press, June 1984, 47–57.

11. D. Lomet: The evolution of effective B-tree page orga-
nization and techniques: a personal account. In Pro-
ceedings of SIGMOD Conference, Sep. 2001.

12. V. Markl: Mistral: Processing relational queries
using a multidimensional access technique. Ph.D.
thesis, Technical University München, Germany, 1999,
http://mistral.in.tum.de/results/publications/

Mar99.pdf.
13. Y. Sagiv: Concurrent operations on B*-trees with over-

taking. In Journal of Computer and System Sciences,
1986.

14. D. Salomon: Data Compression The Complete Refer-
ence. Third Edition, Springer–Verlag, New York, 2004.

15. A.A. Toptsis: B**-tree: a data organization method for
high storage utilization. In Computing and Informa-
tion, 1993.

16. J. Walder, M. Krátký, and R. Bača: Benchmarking
coding algorithms for the R-tree compression. In Pro-
ceedings of DATESO 2009, Czech Republic, 2009.

17. N. Wirth: Algorithms and Data Structures. Prentice
Hall, 1984.

Input combination for Monte Carlo Localization

David Obdržálek

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměst́ı 25, 118 00 Praha 1, Czech Republic

david.obdrzalek@mff.cuni.cz

Abstract. One of the basic skills for an autonomous ro-
bot is the ability to determine its own position. There are
numerous high-level systems which provide precise position
information, but the same task may be also solved using less
advanced and less accurate sensors. In our paper, we show
how a good output may be acquired from not so good inputs
if it is combined using modified Monte Carlo Localization
(MCL) system. The combination of more inputs also helps
to acquire plausible results even in situations, where adding
new sensor(s) to an existing system raises doubts about the
position calculation, because the newly added sensor may
provide different position information (or data from which
the position is calculated) than what is provided by the al-
ready used sensors. We will show that using such “incor-
rect” data may be beneficial for determining the position
with a reasonable probability.

1 Introduction

Good localization is for an autonomous robot one of
the keys to success. A robot which does not know its
position, or which gets lost while performing its task,
is not something what could be used in real life well.
For some tasks, localization can be quite simple, but
in general, the better autonomous robot we want, the
better (and usually more complicated) localization it
needs. Some systems use single input for the localiza-
tion task and do not need any complex mechanisms to
accomplish all needed goals. Other systems combine
more inputs (and more input types) to acquire data for
the localization process; it may be because of different
nature of the data which is available to be measured
for the localization as well as because different sensing
methods may help to overcome problems with erro-
neous data coming from individual sensors. However,
combining more inputs may at the same time rise ques-
tions about the preciseness of the localization process:
What went wrong if two or more inputs showed dif-
ferent positions? Is it because of faulty sensor, inex-
act measurement, cumulative errors or improper data
handling?

Recently, the research in the robot localization sta-
rted to bring very good results using probabilistic me-
thods. In this paper, we discuss this problem in gen-
eral, and we present one particular implementation
which uses Monte Carlo Localization (MCL).

The following text is organized as follows: Sec-
tion 2 gives characterization of the task and presents
the specifics of our selected problem. Section 3 gives
brief outline of existing localization techniques. Sec-
tion 4 presents Monte Carlo Localization in general,
Section 5 shows our modification to MCL by differ-
entiating between sensor classes and Section 6 shows
some implementation aspects. Sections 7 and 8 sum-
marize the results and conclude the paper.

2 Motivation and characterization of
the task

The goal of robot localization is to determine the po-
sition of the robot which moves through its working
environment. It may use data about the environment
and data about the robot, both using measured data
as well as data known in advance. To a great extent,
the localization algorithm itself can be application in-
dependent and the usage for specific purposes can vary
just by choosing different inputs.

Inputs for the localization system may come from
different sources: data may be acquired for example
using different sensors mounted on the robot (mea-
suring either internal or external properties), by re-
ceiving signals sent from external sources, or even cre-
ated as virtual data which does not represent any real
measurements (e.g. expected position change based on
commands issued by the control system). Because the
different sensors provide data with different level of ac-
curacy and trustworthiness, data should be also han-
dled with different weights.

The localization algorithm processes the selected
inputs to calculate the robot position. If the algorithm
itself does not depend on a specific type(s) of input
data, then it is possible to create a generic solution
which works with different (and configurable) sets of
sensors.

In this paper we present one possible solution of the
localization problem which has been tested on a real
robot. This robot was used to play in the Eurobot au-
tonomous robot contest in 2009 (see [1]). Although the
system was created for the 2009 edition of the contest,
it was designed so that it could be used without re-
programming for future editions too. Moreover, it was

46 David Obdržálek

designed to be independent on this particular task at
all and it may be reused in other projects with differ-
ent inputs as well.

The Eurobot contest rules change every year, but
they always share the same core of basic characteris-
tics (for more details, see the Eurobot Association web
pages at [1]):

– Known indoor environment with highlighted im-
portant landmarks

– Small working area (2.1 × 3 meters)
– Possibility to place localization beacons at prede-

fined places around the working area
– Target objects placed semi-randomly on the work-

ing area
– Predefined starting position of the robot
– Limited height and circumference of the robot
– Two robots moving in the area at the same time

with the necessity to avoid collisions

This list obviously affects the development of ro-
bot hardware and software. However, our aim was to
create a localization algorithm which is not that much
application dependent and can be used for other ap-
plications in different conditions too.

The exactly needed precision level is application
dependent and varies a lot from one application to an-
other. For the specific conditions it is however impor-
tant to maintain the precision in an acceptable range.
Therefore, our aim was to create a localization algo-
rithm which would be able to reach the required preci-
sion level even using less precise inputs. The precision
should not be predefined nor implied by the algorithm.

3 Localization algorithms

The area of autonomous robot localization is well re-
searched (see e.g. [2]), and several ways can be used
to solve the localization problem. Therefore we do not
try to invent a new algorithm. Instead, we will out-
line some existing localization algorithms and discuss
some of their implementation details, together with
technical problems we have met.

For localization based on various input values one
can choose from many algorithms; the most know are:

Kalman filter [3, 4] generalizes the floating mean. It
can handle noisy data so it is suitable for process-
ing the data from less precise sensors. However,
the model must be described with the expected
value and variability which is often too difficult
constraint.

Markov localization based on grid [5] resolves
one of the problems of Kalman filter, which needs
to know the expected value and the variance of in-
put data. This algorithm splits the area to the grid

of proper size and tries to determine the one the
robot is in. Unfortunately, this requires large oper-
ational memory to store the data and computing
power to handle it.

Monte-Carlo localization [6] can represent multi-
modal distribution and thus localize the robot glo-
bally. It can process inputs from many sensors with
different accuracies. Moreover, it can be easily im-
plemented.

For our given task, it is not possible to use standard
Kalman filter, because its basic requirements are not
met: in our case, the expected value and variance of
the measured values are not known.

The second mentioned localization algorithm, Mar-
kov grid-based localization, would overcome this prob-
lem, but would impose another problem at the same
time – the need to handle lot of data. The position of
a robot is specified as one cell in a grid covering the
whole working area. It is needed to store some data
for each grid cell, and to reach good precision level,
the grid must be fine. Our hardware platform provided
sufficient storage with reasonable power for processing
the navigation task and for controlling the hardware,
but including Markov localization would cause over-
loading of the system and the goal to create a success-
ful autonomous robot could not be reached: neither
the memory volume nor the computational power of
our hardware were strong enough to handle Markov
grid-based localization alone, not talking about com-
bining it with all the other needed tasks.

Therefore, we have decided to implement Monte-
Carlo localization and let it use the remaining resour-
ces in the system as long as it does not affect its func-
tionality. This also directly implied the selection of the
MCL parameters in the tuning phase – “eat as much
as you like as long as supply lasts”. At the same time,
we gained the possibility to use more different sensors
for the localization task.

The Monte-Carlo localization will be further dis-
cussed in Section 4 and our implementation in Sec-
tions 5 and 6.

4 General description of MCL

In this section we will briefly outline Monte Carlo Lo-
calization (MCL), introduced by Dieter Fox in the
late 1990s [6]. This algorithm meets all the require-
ments mentioned in problem statement section earlier
in this paper. It is a well defined and researched algo-
rithm and it is also well established in many applica-
tions (see e.g. [7–10]).

Monte Carlo Localization maintains a list of possi-
ble states of the state space (representing the positions
of the robot). Each state is weighted by its probability

Input combination for MCL 47

of correspondence with the actual state of the robot.
In the most common implementation, the state repre-
sents the coordinates in 2D Cartesian space and the
heading direction of the robot. It may be of course
easily extended to 3D space and/or contain more in-
formation depicting the robot state. All these possible
states compose the so called probability cloud.

The Monte Carlo Localization algorithm consists
of three phases: Prediction, Measurement, and Resam-
pling.

During the Prediction phase, a new value for each
item of the cloud is computed, resulting in a new prob-
ability cloud. To simulate various inaccuracies that
appear in a real hardware, random noise is added to
each position in the prediction phase. This is very use-
ful. For example: If the wheels were slipping and no
random noise was added, the probability cloud would
travel faster than the real hardware.

During the measurement phase, data from real sen-
sors are processed to adjust probability of the positions
in the cloud. The probability of samples with lesser
likelihood (according to sensors) is lowered and vice
versa. For example, when the sensors show the robot
orientation is northwards, weight for samples repre-
senting other orientations is lowered.

The last phase - resampling - manages size and cor-
rectness of the cloud. Samples with probability lower
than a given threshold are removed from the cloud. To
keep the number of positions constant, new positions
are added. These new positions are placed around ex-
isting positions with high probability.

Formally, the goal is to determine robot’s state in
step k, presuming the original state and all the mea-
surements Mk = {mi, i = 1..k} are known. Robot’s
state is given by a vector x = 〈x, y, α〉, where x and y
is the robot position and α is its heading.

During the prediction phase, the probability den-
sity p

(
xk | Mk

)
for step k is enumerated. It is based

only on presumed movement of the robot without any
input from real sensors. Therefore, for any known com-
mand uk−1 given to the robot, we have

p
(
xk | Mk−1

)
=

=
∫

p (xk | xk−1, uk−1) p
(
xk−1 | Mk−1

)
dxk−1

In the measurement phase, we will compute the fi-
nal value of probability density for actual step k. To
do so, data from sensors is used. It implies the proba-
bility of p (mk | xk), where mk is the actual state and
xk is the assumed position. The probability density in
step k is then described by the following equation:

p
(
xk | Mk

)
=

p (mk | xk) p
(
xk|Mk−1

)

p (mk|Mk−1)

During the initialization of MCL, it is needed to
set the probability cloud. If the robot’s position is
known, then for its (known) state x the probability
p

(
x | M0

)
= 1, and for all other states y 6= x the

probability p
(
y | M0

)
= 0.

If the robot’s position is not known, the probability
of all positions is the same and p

(
x | M0

)
must be set

for all x so that
∫

p
(
x | M0

)
dx = 1

One of the most important features of this method
is its ability to process data from more than one sour-
ce. Every sensor participates on computing the prob-
ability for the given state. For example, if we have
a compass sensor and it reads that the robot is head-
ing to the north, we can lower the probability of dif-
ferently oriented samples. If robot’s bumper signalizes
collision, there is a high probability for the robot to be
near a wall or another obstacle. It is therefore possible
to discard the part of the probability cloud which lies
in an open space.

The Monte Carlo Localization can be implemented
easily, yet it provides very good results especially in
cases, where the sensors do not provide exactly cor-
rect data (e.g. the distance measurement is subject to
errors). Our implementation of the MCL algorithm,
which shows its great usability, is described in more
detail in the following section.

5 Sensor classes in modified MCL

We have decided to modify the original MCL algo-
rithm and use sensor input also for the prediction
phase. We allow selected reliable sensors to change the
position of MCL samples in addition to changing the
weights of samples based on the sensor readouts. This
allows to maintain the probability cloud more in shape
with the actual robot movement, yet we keep the core
MCL idea of adding random noise to handle unex-
pected inputs or inputs which are not in accordance
to actual robot movement.

In our implementation, we divide the inputs com-
ing from sensors in two categories, which will be fur-
ther discussed in following paragraphs:

– Advancing inputs
– Checking inputs

Our system contains two interfaces for these two
types of inputs. The device or its abstraction in Hard-
ware Abstraction Layer implements the corresponding
interface based on its type, so the MCL core can use it
as its input. The MCL core calls each device when it
has new data, and the work with the samples is done

48 David Obdržálek

by each device separately. This keeps the main code
easier to read, simpler, and input independent. Also,
the device itself knows the best how to interpret the
raw data it measures.

The level of reliability can be specified for each
input device. Then, the samples are adjusted by the
devices with respect to their configured ‘credibilities’.
For example: two sets of odometry encoders, one pair
on driven wheels and one pair on dedicated wheels,
have different accuracy because the driven wheels may
slip on the surface when too much power is used. Then,
the credibility of driven wheels encoders will be set
lower than the credibility of the sensors mounted on
undriven wheels. In addition, setting the reliability
level helps to deal with different frequencies of data
sampling.

5.1 Advancing inputs

This input type is used for changing the samples which
form the probability cloud. Such input could be for ex-
ample odometry, from which relative movement since
last iteration is calculated. This difference is then used
to change the samples properties. i.e. to move them.
The information provided by these kind of inputs ap-
plied to samples is ‘blurred’ by randomly generated
noise as described earlier in the general MCL descrip-
tion. After moving the samples, boundary conditions
are checked (i.e. to exclude samples which fell out of
the physical working area). As a result the probabil-
ity of samples representing impossible positions is de-
creased.

These advancing inputs are added to the origi-
nal MCL algorithm, which deals only with theoret-
ical movement based on movement commands. It is
not necessary to use it so, but it brings much better
precision for little cost.

Our robot currently uses only one advancing input:
the odometry information from encoders mounted on
dedicated sensor wheels.

5.2 Checking inputs

Checking inputs do not affect the position of the sam-
ples. Instead, they are just adjusting their probabil-
ity (also called sample weights). The reason for this
is that inputs of this type provide absolute position
information and not relative difference from the last
measurement. This also does not need to be one exact
point, but an area or position probability distribution,
which fits perfectly to the Monte Carlo Localization
algorithm.

All checking inputs may be processed separately;
we regulate them only by setting their reliability levels.

Our robot uses these checking inputs:

– Compass - checks the direction of samples
– Beacons - check the distance from stationary bea-

cons
– Bumpers - check collisions with playing field bor-

ders and other objects
– IR distance sensors - check distance to borders and

obstacles

6 Implementation aspects

Our implementation of MCL is based on previous work
on a robot which participated in Eurobot 2008 con-
test (see [11]). That first “pilot” MCL implementa-
tion in 2008 was not complete; it was rather proof-
of-concept than a reliable software unit, and we also
knew the computational power will be different if 2009
so performance was not considered at all. However,
the results seemed very promising, so it has not been
dropped but has been further developed and extended
to use it in 2009 for real. In the following paragraphs,
we emphasize several implementation aspects we con-
sider as important for the successful result.

6.1 Position estimation

It is expected that the MCL outputs the estimation
of robot position. Because of its nature, the result-
ing position (“most probable position”) can be com-
puted from the samples at any time. This estimation
is very simple, just computing the weighted average of
all samples. In addition we can determine the overall
reliability of this estimation. Therefore, we have made
the interface to the MCL asynchronous to the inputs,
and the MCL core can be called at any time whenever
needed. This approach obviously dramatically saves
the computational power in comparison to incremen-
tal localization methods which might need periodical
updates or re-calculations.

6.2 Localization without initial knowledge

Monte Carlo Localization can also determine the robot
position from scratch. At the beginning of localization
(when the robot is lost) samples are spread uniformly
all over the playing field as described in Section 4.
The sensors providing absolute positioning informa-
tion lower the weight of misplaced samples and new
samples are placed in regions with higher probability
(see Figure 2). This is repeated until sufficiently reli-
able position estimation of the robot is reached.

At the same time, it is possible to reach a result
even without absolute sensors – as the robot moves,
the sensors which provide relative information (ad-
vancing inputs) will move the samples as usually and

Input combination for MCL 49

Intersection

B1

B2

B3

2

1

3

dt1

dt2

dt3

Fig. 1. Beaconing system; B1, B2, B3 are the beacons, and the robot (marked by grey circle) measured distances dt1,
dt2, dt3 from individual beacons.

Fig. 2. MCL after processing one beacon input: The circular belt marks the input from the bottom left beacon. The
“pins” represent oriented MCL samples; sample probability is proportional to their darkness.

50 David Obdržálek

the boundary checks gradually cut the impossible con-
figurations until the required precision is reached
(e.g. only one and small cloud remains).

6.3 Adding / removing sensors

When new sensors are added to a system, the infor-
mation they provide may affect the position the robot
“thinks” it is in. It may be because the new sensor
gives better data (in which case we certainly appre-
ciate the change). On contrary, the new sensor could
provide data with lesser quality then the already exist-
ing sensors. This is not a big problem in MCL, because
such low quality data may change the samples prop-
erties (position) or weight, but because of the nature
how MCL works, such change may be perceived as
adding the random noise which is part of MCL any-
way. So, it may even help the algorithm to work well.
It could be said in general – the more different inputs,
the better.

If we remove a sensor from the robot or if it stops
providing data and there are other sensors available, it
does not imply the MCL results will be worse. It means
there are fewer inputs which adjust the samples or
their weights but the remaining sensors will adapt the
probability cloud in accordance to their inputs and so
sufficient level of result preciseness can be maintained.
Therefore, the system is less vulnerable than a system
which relies during the localization on one sensor or
sensor set.

6.4 Beacons

In the following paragraphs, we present our design of
a sensor set which provides relatively good information
about the robot position and in cooperation with other
sensors it helps to create a robust localization system
– the beacon system.

The main idea of this beacon system is to mount
several beacons around the working area of the ro-
bot and let the robot measure the distance to these
beacons. Then, the robot will be able to estimate its
position because the beacons position is known. This
sensor set provides absolute position information, but
its correctness may be attacked by the environment
features, as for example the signal may get reflected
by close obstacles like walls or the robot could not be
able to measure the distance to one beacon because
the signal may get lost (or get blocked by an obsta-
cle).

The principle In our system, we measure the time
the signal travels from the transmitter at the beacon
to the receiver mounted on the robot (TOF – Time
of Flight). Of course this works only if the speed is

constant. This condition is met as we are using ultra-
sonic waves in a small environment with more or less
constant conditions and the robot speed is negligible.

Since the speed of the sound waves is known, we
can measure the time difference, from which the dis-
tance may be easily calculated. It is possible to use two
beacons for good position calculation (provided the
measurements are precise and we know at which half-
plane the robot is). If there 3 or more beacons located
around the working area, the trilateration will theoret-
ically give a single solution. Practically, the measure-
ments may not be precise and so the calculation may
not lead to any intersection of the circles. In our sys-
tem, this is not a problem, because the measurements
are not used for trilateration but handled separately
to adapt the probability cloud used in MCL.

To correctly measure the traveling time, we syn-
chronize the transmitter-receiver system by using in-
frared light (see below).

Many other systems based on the TOF principle
have been developed; for examples see e.g. [12, 13].

Hardware The transmitting system consists of three
stationary interconnected beacons located at specified
places around the working area of the robot. When
the system receives signals from the three beacons and
calculates the three distances, it can theoretically de-
termine its position by using trilateration. In praxis,
such simplest form does not fully work. The robot may
move between receiving signals from all the beacons,
some signals may not be received or they may provide
incorrect information because of reflections. Even that,
good estimation may be acquired as was discussed in
Section 6.

The signal is sent one-way only, the receivers do not
communicate with the transmitters. Therefore, there
can be multiple independent identical receivers, which
are able to determine its individual positions. These
receivers may be then used for localizing more objects
and if the information is passed to a single center,
it may be of substantial help (for example to create
opponent avoidance system by placing one receiver on
the opponent and reading it by wireless transfer).

Transmitters at each beacon work in the following
way:

1. Send timing information (infrared)
2. Wait for a defined period of time
3. Send distance measuring information (ultrasonic)
4. Wait for a defined period of time

(this is sequentially repeated for all beacons)

As we want to measure time difference between the
signal being sent and received, we need to have syn-

Input combination for MCL 51

chronized clocks. This is done in step 1 by using in-
frared modulated signals. Besides that, the transmit-
ted information contains additional information about
the beacon which is going to transmit sound waves.

Sound waves are transmitted as ultrasonic waves,
and are always transmitted only from one beacon at
a time. The transmitted signal contains also the iden-
tification of the source beacon.

Receiver waits for the infrared timing information.
When it is received, the receiver resynchronizes its in-
ternal timer and generates a message. These messages
are transported to the localization unit. Every mes-
sage contains time stamp, information that synchro-
nization occurred, and the information about beacon
which is going to transmit ultrasonic information in
this time step. Upon reception of the timing infor-
mation, the receiver switches its state to wait for ul-
trasonic signal. When correct ultrasonic information
arrives, the receiver generates similar message as is
the message after IR reception, but containing time
stamp for ultrasonic reception and beacon identifica-
tion transmitted in the ultrasonic data. The differ-
ence in these two timestamps is linearly dependent
to distance with a constant offset (the two signals are
not transmitted exactly at the same time). Since each
beacon identifies itself in both infrared and ultrasonic
transmissions, the probability of mismatch is reduced.

When the infrared information is not received,
a message is generated saying the synchronization did
not occur and the timestamp is generated from previ-
ously synchronized internal clock. When the ultrasonic
information is not received, localization unit is notified
that nothing was received.

The situation after three successfully received ul-
trasonic signals with synchronized clock can be seen
in Figure 1.

6.5 Beacons and MCL

As described earlier, our beacon system consists of
three transmitting and one receiving beacons. The in-
formation is passed from the beacon system to the
main computing unit via messages containing beacon
id (i.e. transmitter identification) and time difference
between the infrared and ultrasonic transmissions.

There are two reasons why each message contains
the time difference (delta) instead of the calculated
distance: computational power of the microcontroller
and the degree of robustness. The main computing
unit is more powerful than the receiving beacon, so
we let the beacon do less work and we even bene-
fit from this decision. We considered deltas to be the
perfect raw data for our purpose - distance measure-
ment. The computation is done in the main computing

unit which controls all the other devices and is highly
configurable. It means that all the parameters of the
equation for distance calculation can be changed easily
without the need of changing the beacons hardware or
device firmware. It even allows us to calculate or adjust
the parameters on the flight if distance information is
provided based on external measurement.

The configuration of the main computing unit con-
tains not only the important constants for the equa-
tion, but also the positions of the transmitting bea-
cons. As we know the distance and the beacon id, we
can increase the weights of the MCL samples in the
circular belt formed by these two values and a range
constant. MCL samples far from the belt are penalized
(see Figure 2).

This approach is much better and more robust
than just waiting for intersections and then computing
the robot position using simple trilateration. These in-
tersections may not happen very often because of the
time gap between individual beacon transmissions (es-
pecially when the robot is moving fast). At the same
time, it is good to implement different weighting for
the samples on a belt, near an intersection of two belts
and near the intersection of all three belts.

6.6 Camera

The idea of using camera for absolute robot position-
ing seemed very hard at the first time. Later, when
we had the modular MCL implementation finished,
we realized there is a great opportunity to use the
information we get from the camera while looking for
the playing elements positioned at predefined places of
the playing area. Now, we can compare the playing el-
ement positions (acquired from the camera) with their
fixed positions (defined by the Eurobot contest rules)
and adjust the weight of the MCL samples to merge
the two positions. For more details, see [14].

6.7 Gyroscope

In the early stages of robot design, we proposed to use
a compass as one of the input sensors. However, using
a compass in a small indoor competition is not a very
good idea, because its precision can be degraded by in-
fluence of many factors (e.g. huge metallic cupboard,
electromagnetism, steel concrete walls or metal struc-
ture building). Using a gyroscope instead of a compass
would be much more efficient for our purposes, be-
cause gyroscope works completely independently and
the influence of the environment is minimal. The only
problem is the placement of the gyroscope itself, be-
cause it should be placed in the rotational axis of the
robot.

52 David Obdržálek

7 The results and performance

Apparently, processing of a large number of MCL sam-
ples may have impact on performance of the whole
localization system. In general, the more samples are
taken into computation, the more precise the localiza-
tion is, but the slower the computation is.

In our project, we have achieved acceptable speed
using 400 samples. The acquired precision lies within
a margin of single millimeters which is sufficient for
the current task; should higher precision be needed,
it could be easily reached by increasing the samples
count and fine-tuning the weighting functions. Also,
this number of samples and the resulting precision are
independent on the working area size.

On contrary, the Markov grid-based localization
requires to handle a grid with the size of the robot
working area and the number of cells proportional to
required precision. In the case of Eurobot contest, to
reach the same precision we would need to handle a
grid of 2100 x 3000 samples which is magnitudes higher
than the 400 samples needed when using MCL.

The depicted modification of using sensors for the
prediction phase instead of using just the information
of expected robot movement has increased the preci-
sion too, as it takes into account not only where the
robot was supposed to move, but where it actually
moved. To be able to use sensors for this modification,
it is needed to assure their good credibility. For our
real robot, we have used odometry sensors mounted
on dedicated wheels, which are not subject to skids
and slides of the powered wheels. It has proven this is
sufficient to reach a good level of precision.

8 Conclusion and future work

In our paper, we have described the advantages of the
Monte Carlo Localization compared to other methods
of position estimation and how we benefit of it in our
implementation. Based on available sensor types, we
have decided to adapt the MCL algorithm to use one
sensor class to change the samples instead of using all
sensors to change the sample weights only.

As a practical result, we have developed a mod-
ular system for robot localization which allows easy
extension by different kinds of modules. Our imple-
mentation allows us to add more facilities with almost
no or just minimal work effort and with no changes to
the core localization itself at all, while increasing the
precision of the resulting position. The created system
was successfully used for Eurobot 2009 contest edition,
and its design allows using it for other purposes too.

Because the system has been created for 2009 edi-
tion of Eurobot contest, we want to continue gather-
ing testing data throughout the whole year of 2009 in

the contest and all connected events when the working
conditions for the robot remain unchanged. After fin-
ishing the year, we want to evaluate the performance
of this MCL implementation to be able to judge its us-
age in other environments and with other hardware.

References

1. Eurobot Association: Eurobot autonomous robot con-
test: http://www.eurobot.org, 2009.

2. S. Thrun: Robotic mapping: a survey. In: Exploring
artificial intelligence in the new millennium. Morgan
Kaufmann Publishers Inc., 2003, 1–35.

3. R. Negenborn: Robot localisation and kalman filters:
On finding your position in a noisy world. Master’s
thesis, Utrecht University, 2003.

4. G. Welch, G. Bishop: An introduction to the Kalman
filter. Technical Report TR 95-041, University of
North Carolina at Chapel Hill, 2004.

5. W. Burgard, A. Derr, D. Fox, A.B. Cremers: Integrat-
ing global position estimation and position tracking for
mobile robots: The dynamic Markov localization ap-
proach. In: Proc. of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).,
1998.

6. F. Dellaert, D. Fox, W. Burgard, S. Thrun: Monte
Carlo localization for mobile robots. In: Proc. of the
IEEE International Conference on Robotics & Au-
tomation (ICRA99), 1998.

7. E. Menegatti, M. Zoccarato, E. Pagello, H. Ishiguro:
Image-based Monte-Carlo localisation with omnidirec-
tional images. Robotics and Autonomous Systems 48,
2004, 17–30.

8. D. Hähnel, W. Burgard: Mapping and localization with
rfid technology. In: Proc. of the IEEE International
Conference on Robotics & Automation (ICRA05),
2004, 1015–1020.

9. O. Wulf, M. Khalaf-Allah, B. Wagner: Using 3D data
for Monte Carlo localization in complex indoor envi-
ronments. In: 2nd Bi-Annual European Conference on
Mobile Robots (ECMR05), 2005, 170–175.

10. S. Lenser, M. Veloso: Sensor resetting localization for
poorly modelled mobile robots. In: Proc. of the IEEE
International Conference on Robotics & Automation
(ICRA00), 2000.

11. A. Mikulik, D. Obdrzalek, T. Petrusek, S. Basovnik,
M. Dekar, P. Jusko, R. Pechal, R. Pitak: Logion –
a robot which collects rocks. In: Proceedings of the
EUROBOT Conference 2008, 276–287.

12. S.Y. Yi: Global ultrasonic system with selective acti-
vation for autonomous navigation of an indoor mobile
robot. Robotica 26, 3, 2008, 277–283.

13. L. Dazhai, F.H. Fu, W. Wei: Ultrasonic based au-
tonomous docking on plane for mobile robot. In: IEEE
International Conference on Automation and Logistics
(ICAL 2008), 2008, 1396–1401.

14. S. Basovnik, L. Mach, A. Mikulik, D. Obdrzalek: De-
tecting scene elements using maximally stable colour
regions. In: Proceedings of the EUROBOT Conference
2009.

Improved rate upper bound of collision
resistant compression functions

Richard Ostertág?

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Mlynská dolina, 842 48 Bratislava, Slovak Republic

ostertag@dcs.fmph.uniba.sk
http://www.dcs.fmph.uniba.sk

Abstract. Based on Stanek’s results [1] we know that in
model with integer rate PGV like compression functions no
high speed collision resistant compression functions exist.
Thus we try to study more general multiple block ciphers
based model of compression functions with rational rate,
like 6/5. We show a new upper bound of the rate of collision
resistant compression functions in this model.

1 Motivation and goals

The cryptographic hash functions are a basic building
block of many other cryptographic constructions (such
as digital signature schemes, message authentication
code, . . .). For more complete overview see e.g. [2, 3].

Majority of modern hash functions is based on
Merkle-Damgård paradigm [4, 5]. Many compression
functions are explicitly based on block cipher. Even
some of “dedicated” hash functions (which were not
constructed in this way) have this structure. For ex-
ample, it is possible to extract 160 bits block cipher
with 512 bits key (called SHACAL-1) from compres-
sion function implemented in SHA-1 hash function [6].

The idea of hash function construction by iterating
block cipher is at least 30 years old [7]. Nevertheless no
systematic analysis of this idea was done until 1994.
In this year Preneel, Govaerts and Vandewalle done
the first systematic study of 64 hash functions based
on block cipher [8]. Thereafter Black, Rogaway and
Shrimpton [9] analyzed these constructions in black-
box model and showed that 20 of them are collision
resistant up to birthday-attack bound.

At least from the usability point of view, speed
is important property of hash function. So it is only
natural to attempt to speedups it. One of possible
speedups of iterated hash functions based on block ci-
phers is increasing the number of input message blocks
processed by one use of block cipher. Another possibil-
ity of speedup is a restriction of keys used in all block
ciphers to a small fixed set of keys. Then it is possible
to pre-schedule subkeys for each round of used block
ciphers, whereby saving a big amount of work.

? Supported by VEGA grant No. 1/0266/09.

Traditional constructions [8] of hash functions re-
quire one block cipher transformation per input mes-
sage block (so called rate-1 hash functions) and they
require rekeying for every input message block. Black,
Cochran and Shrimpton [10] showed in year 2005 that
it is not possible to construct a provably secure rate-1
iterated hash function based on block cipher, which
uses only small fixed set of keys.

For these reasons our goal is to maximize rate of
iterated hash function based on block cipher. In other
words, we attempt to maximize the number of input
message blocks processed by a single block cipher in-
vocation.

2 Notation

We now briefly introduce basic definitions and nota-
tions, following closely [10, 9].

Let Vm be set of all m-ary binary vectors, i.e. Vm =
{0, 1}m. Let V ∗

m = (Vm)∗ be set of all binary strings
that we get by concatenation of zero or more elements
from Vm. Let k and n be positive integers. A block
cipher is a function E : Vk × Vn → Vn, where for
each key K ∈ Vk, the function EK(·) = E(K, ·) is
a permutation on Vn. Let Bloc(k, n) be the set of all
block ciphers E : Vk × Vn → Vn. Let denote E−1 the
inverse of block cipher E.

A block cipher based compression function is
a function f : Bloc(k, n)×Va×Vb → Vc, where a, b and
c are positive integers such that a+b ≥ c. We will write
the first argument (the block cipher) as superscript of
the compression function, i.e. fE(·, ·) = f(E, ·, ·). An
iterated hash function based on compression function
f : Bloc(k, n) × Va × Vb → Va is the hash function
H : Bloc(k, n)×V ∗

b → Va defined by HE(m1 . . . ml) =
hl, where hi = fE(hi−1,mi) and h0 is fixed element
from Va (so called initialization vector). Let HE(ε) =
h0 for empty string ε. We often omit superscript E
of functions f and H when it is apparent from the
context which block cipher is used.

If the computation of fE(h, m) uses t queries on E,
then compression function f (and its iterated hash
function H) is rate-r, where r = (b/n)/t. Often b is

54 Richard Ostertág

divisible by n. The rate r represents average number
of input message blocks processed by a single enci-
phering transformation E. For example, if b/n = 3
and t = 2 then we get rate- 32 compression function.

2.1 Black-box model

Black-box model (see e.g. [9]) is also known as ideal-
cipher model. In this model, an adversary A is given
access to oracles E and E−1, where E is a block ci-
pher. We write the oracles as superscripts, i.e. AE,E−1

.
Where used oracles are clear from the context, the su-
perscript of A will be omitted.

Adversary A tries to find collisions in the com-
pression function. Other cryptographic properties of
compression functions are also important, but we fo-
cus exclusively on collision resistance, as on the most
“problematic” property of compression functions. We
will see that our results are negative, so it is not nec-
essary to analyze other properties.

In the black-box model the adversary’s collision
finding effort is measured by the number of queries
made to oracles E and E−1. Computational power of
the adversary is not limited in any way — i.e. we as-
sume information-theoretic adversary.

Attacks in this model treat the block cipher as
a black-box. The only modeled structural property of
the block cipher is its invertibility. This model can-
not guarantee security of compression functions based
on weak block ciphers with inappropriate properties
(such as weak keys). On the other hand, black-box
model is stronger than model in which block cipher
is assumed to be random function, because adversary
can compute E−1.

We say that inputs (h,m) and (h′,m′) of com-
pression function f collide, if they are distinct and
fE(h,m) = fE(h′,m′). We say that (h,m) collides
with empty string, if fE(h,m) = h0, where h0 is ini-
tialization vector.

We write random draw of element x from finite
set S as x

$←− S. We will use notation (x, y) ← AE,E−1

for computation of two colliding inputs x and y by
adversary A (represented by probabilistic algorithm)
with knowledge of oracles E and E−1.

Definition 1 (Coll. res. of comp. function [9]).
Let f be block cipher based compression function, f :
Bloc(k, n)×Va×Vb → Vc. Fix a constant h0 ∈ Vc and
an adversary A. Then the advantage of adversary A
(denoted by Advcomp

f (A)) in finding collisions in com-
pression function f is the following probability:

Pr
[
E

$←− Bloc(k, n);
(
(h, m), (h′,m′)

) ← AE,E−1
:

(
(h,m) 6= (h′,m′) ∧ fE(h,m) = fE(h′,m′)

)

∨ fE(h,m) = h0

]
.

For any q ≥ 0 we write:

Advcomp
f (q) = max

A
{Advcomp

f (A)}

where the maximum is taken over all adversaries that
ask oracles (E or E−1) at most q queries.

Definition 2 (Collision resistance of hash func-
tion [9]). Let H be hash function based on block ci-
pher. Let A be an adversary. Then the advantage of the
adversary A in finding collisions in hash function H
is the following probability:

Advcoll
H (A) = Pr

[
E

$←− Bloc(k, n); (M, M ′)←AE,E−1
:

M 6= M ′ ∧HE(M) = HE(M ′)
]

.

For any q ≥ 0 we write:

Advcoll
H (q) = max

A
{Advcoll

H (A)}

where the maximum is taken over all adversaries that
ask oracles (E or E−1) at most q queries.

The Merkle-Damgård construction of iterated hash
functions is based on the following theorem. It states
that iterated hash function is collision resistant if un-
derlying compression function is collision resistant.

Theorem 1 (Merkle-Damgård [4, 5]).
Let f : Bloc(k, n) × Vn × Vn → Vn be a compression
function and let H be an iterated hash function of f .
Then Advcoll

H (q) ≤ Advcomp
f (q) for any q ≥ 1.

Birth-day attack is generic way of attacking colli-
sion resistance of any compression or hash function.
The advantage of finding collision by applying birth-
day attack is Θ(q2/2n), where q is number of evalua-
tion of the function and n is output length.

If q depends on n, then we assume that q(n) =
o(2n/2), because greater q(n) does not make sense, as
we can still use generic birth-day attack with lower
q(n) = 2n/2 with unacceptably high probability (≈1/2)
of finding collision.

Compression function f (or hash function H) is
usually called collision resistant up to birthday attack
bound or simply collision resistant if Advcomp

f (q) =
O(q2/2n) (or Advcoll

H (q) = O(q2/2n)). Since birth-day
attack is always possible, we can rewrite these equa-
tions into equivalent form Advcomp

f (q) = Θ(q2/2n) (or
Advcoll

H (q) = Θ(q2/2n)).

3 Known results

In [11] we have proposed a model of rate-r compression
functions that cover all compression functions that

Improved rate upper bound of collision . . . 55

process r input message blocks of length n per block
cipher invocation with a key of length k. In that paper
we have showed that 1 + k/n is the upper bound of
rate of any collision resistant compression function in
such a model.

For typical constructions, when k = n, we get
that if any high-rate collision resistant function in our
model exists, then it is rate-2 compression function.

Consequently we have analyzed in [11] all rate-2
generalizations of compression functions from [8] (all
of them are covered by our model). We have proved
that none of them is collision resistant in the black-
box model. Staneková and Stanek showed in [12] that
either hash functions constructed from them are not
collision resistant.

But these functions does not cover whole set of
rate-2 compression functions from our model. Hence
the question, if there exist any rate-2 collision resistant
compression function still remains open.

This question is answered by Stanek in [1], where
he improves our upper bound by utilizing the possi-
bility of asking q queries during the attack (before the
adversary ask only one query).

Theorem 2 (Stanek [1]). Let E ∈ Bloc(k, n). Let
fX : Va × Vrn → Vn, fK : Va × Vrn → Vk and fC :
Va × Vrn × Vn → Va be arbitrary functions. Let f :
Va × Vrn → Va be compression function defined by
f(h,m) = fC

(
h, m,EfK(h,m)(fX(h,m))

)
. Let q ≥ 1

denote maximum number of queries on E and E−1.
Let r > 1 + k−log2 q

n . Then Advcomp
f (q) = 1.

By substituting q = n, a = n and k = n into theo-
rem 2 we get upper bound for rate r in the following
form r > 2− log2 n

n . If we take into account that in our
model rate r is always an integer, then we get following
corollary of previous theorem.

Corollary 1 (Stanek [1]). Let E ∈ Bloc(n, n). Let
fX : Vn × Vrn → Vn, fK : Vn × Vrn → Vn and fC :
Vn×Vrn×Vn → Vn be arbitrary functions. Let function
f : Vn×Vrn → Vn be a compression function defined by
f(h,m) = fC

(
h,m, EfK(h,m)(fX(h,m))

)
. Let r > 1.

Then f is not collision resistant in black-box model.

Now our result about nonexistence of rate-2 col-
lision resistant PGV-like compression functions
from [11] follows from corollary 1. But the attack based
on theorem 2 has exponential time complexity (and
asks n oracle queries, even if it is not necessary).
Therefore our attacks from [11] constructed specifi-
cally for rate-2 PGV-like compression and hash func-
tions are still justified as they use only polynomial
time and ask at most two queries.

Until now we have not modeled any compression
function which uses more block ciphers per one com-
pression function computation. For example:

f(h,m) = fC
(
h,m,E1

(
fK
1 (h,m), fX

1 (h,m)
)
,

E2

(
fK
2 (h,m), fX

2 (h,m)
))

.

If m is created from four input message blocks,
then this will be rate-2 compression function but is
not covered by model from [11]. Also using of mul-
tiple block ciphers allows compression functions with
rational rate. For example, if m is created from three
input message blocks, then we get rate- 32 compression
function. Therefore we have concentrated on creation
of new more general model.

4 The generalized model of
compression function

A compression function f based on t block ciphers1
is function defined by f : Bloc(k, n)t × Va × Vb →
Vc, where a, b and c are positive integers such that
a + b ≥ c. When we will need to emphasize number of
used block ciphers t, then we will write t as superscript
of compression function, i.e. f t. Iterated hash function
based on compression function f : Bloc(k, n)t × Va ×
Vb → Va is function H : Bloc(k, n)t × V ∗

b → Va de-
fined by H((E1, . . . , Et),m1 . . . ml) = hl, where hi =
f((E1, . . . , Et), hi−1,mi) and h0 is fixed element from
Va. We define H((E1, . . . , Et), ε) to be equal to h0. If
block ciphers used in functions f and H are clear from
the context, then we will omit them as arguments of
these functions.

Now we will start to define the general model of
compression function f t : Bloc(k, n)t × Va × Vb → Va

based on t block ciphers. Model is based on following
assumptions:

– Computation of compression function f t asks ex-
actly one query on each oracle Ei for the purpose
of evaluation of f t(h,m).
This assumption is without loss of the generality.
We do not assume that in practice all E1, . . . , Et

are distinct, but the model allows it. If for com-
putation of function f t we need to evaluate Ei,
e.g. two times, then we can set Et+1 = Ei and
use function f t+1 defined analogically as f t but
with the only exception, that in place of second
evaluation of Ei evaluation of Et+1 will be used.

1 As we will clarify in following paragraph, it is important
that t queries on oracles are made during each evaluation
of compression function f . It does not matter, if the
same block cipher is invoked t times, or if t different
block ciphers are invoked exactly once. Hence some of
t block ciphers can be equal.

56 Richard Ostertág

Analogically, it does not make sense to specify
block cipher Ei if it is not used during any cal-
culation of compression function f .
This assumption about f t guarantees that every
computation of f t always asks exactly t queries
on oracles.

– Computation of compression function f t asks or-
acles Ei in order of their indexes2. Thus we can
assume that evaluation of block cipher Ei had to
occur before evaluation of Ei+1.

– The length of input message block mi of compres-
sion function does not have to be divisible by block
cipher E plain text block length n.

In following text we will often work with sequences,
therefore we now clarify some necessary notation.

Definition 3. Empty sequence will be denoted by ().
We will write (a1, a2, . . . , an) for a sequence with n el-
ements a1, a2, . . ., an. Sequences will be denoted by
upper case letters with a overscore, for example Y .
For addition of element an+1 at the end of a sequence
(a1, a2, . . . , an) we will use operation “ ·” in the follow-
ing way: (a1, a2, . . . , an)·an+1 = (a1, a2, . . . , an, an+1).

Let for all i ∈ {1, 2, . . . , t} fX
i : Va×Vb×V i−1

n → Vn

and fK
i : Va× Vb× V i−1

n → Vk be arbitrary functions.
Let fC : Va×Vb×V t

n → Va be arbitrary function. Com-
putation of compression function f t : Bloc(k, n)t ×
Va × Vb → Va in generalized model is defined by the
following algorithm 1.

Algorithm 1 The gen. model of compression function
1: function f((E1, . . . , Et); h; m)
2: Y 0 = ()
3: for i = 1 to t do
4: Xi ← fX

i (h, m, Y i−1)
5: Ki ← fK

i (h, m, Y i−1)
6: Yi ← Ei(Ki, Xi)
7: Y i ← Y i−1 · Yi

8: end for
9: return fC(h, m, Y t)
10: end function

Remark 1. Function fX
i , respective function fK

i pre-
pares the plain text, respective the key for the block
cipher Ei. Both inputs h and m are arguments of these
functions together with all already computed cipher
texts Y1, Y2, . . . , Yi−1. At the end of the algorithm,

2 Requirement of fixed evaluation order of block ciphers
is not so restrictive as it can seem. We can simulate
compression function with variable evaluation order of
t block ciphers by compression function with fixed eval-
uation order of t2 block ciphers. See e.g. discussion at
the end of section 2 in [13].

function fC processes both inputs h and m with all in-
termediate results Y1, Y2, . . . , Yt into final result. The
algorithm uses t functions fX

i and t functions fK
i .

But function fC is just one. Introduction of analogous
“postprocessing” for every block cipher (i.e. for each
round) is needless. Calculation of local postprocessing
at the end of i-th round can be incorporated into func-
tions fX

j and fK
j of following rounds (i.e. for all j > i)

and into function fC .

The compression function f t (and its iterated hash
function H) have rate r = (b/n)/t.

This generalized model of compression functions
covers all compression functions, which takes messages
of length a and b and process them using exactly
t block ciphers E1, E2, . . . , Et from Bloc(k, n) in this
specified order, into message of length a. All rate-1
schemes from [8] and their rate-2 generalizations fall
into this model.

5 Upper bound of rate of collision
resistant compression functions

Before proof of the upper bound we first define some
auxiliary notions and prove some lemmas.

Definition 4. Let i ∈ {0, 1, . . . , t} and (h,m) ∈ Va ×
Vb. If i = 0 then Y i,(h,m) = (). If i > 0 then we define
Y i,(h,m) recursively as follows:

Y i−1,(h,m) · Ei

(
fK

i

(
h,m, Y i−1,(h,m)

)
,

fX
i

(
h,m, Y i−1,(h,m)

))
.

Sequence Y i,(h,m) represents individual Yi calculated
during individual rounds of f t(h,m) evaluation. It can
easily be seen that Y i−1,(h,m) is prefix of Y i,(h,m) and
that Y t,(h,m) is equal to Y t, which is created during
evaluation of compression function f t(h, m).

Definition 5. Let i ∈ {1, 2, . . . , t}, X ∈ Vn, K ∈ Vk

and let 2n+k > α > 0 be an integer. Let S ⊆ Va, where
|S| = s > 0. Then D0

α = S × Vb and Di
α is union

of α largest sets Di
X,K taken through all X and K

(let denote them Di
Xi

1,Ki
1
, . . . , Di

Xi
α,Ki

α
), where Di

X,K

is defined as follows:

Di
X,K =

{
(h,m) ∈ Di−1

α

∣∣∣fX
i

(
h,m, Y i−1,(h,m)

)
= X∧

∧ fK
i

(
h, m, Y i−1,(h,m)

)
= K

}
.

Set Di
X,K is subset of Di−1

α . It consists of those ele-
ments, which in next (i-th) round will lead to the same
query Ei(X, K) on oracle Ei. That means that to com-
pute next round for all elements from Di

X,K one oracle

Improved rate upper bound of collision . . . 57

query is sufficient. Construction of sets Di
X,K have of

course exponential complexity, but does not require
any oracle queries. Since we use black-box model, ad-
versary have computationally unlimited power and is
limited only by number of oracle queries.

Set D1
α is the largest set of tuples (h,m) ∈ S × Vb,

for which we can made first round of compression
function f t with spending exactly α queries on ora-
cle E1. By definition D1

α is union of α largest sets
D1

X1
1 ,K1

1
, . . . , D1

X1
α,K1

α
. For the calculation of the first

round for elements from every set D1
X1

j ,K1
j
we need

one query E1(X1
j ,K1

j) on oracle E1. Since all tuples
(X1

j , K1
j) are distinct, we need exactly α queries for

selected α sets.
We do not know how to estimate cardinality of

set, which is the largest set of tuples (h, m) ∈ S × Vb,
for which we can do first two rounds of compression
function f with at most 2α queries on oracles E1 and
E2. However we know how to estimate cardinality of
set D2

α, which is such largest set of tuples (h,m) ∈ D1
α.

Therefore we have constructed set Di
α as subset of

Di−1
α . Then we are able to lower bound cardinality of

set Di
α in following way.

Lemma 1. Let 1 ≤ α ≤ 2n+k and let 0 ≤ i ≤ t be
integers. Then |Di

α| ≥ αi2b−i(n+k)s.

Proof. (Using mathematical induction over i.)
Ind. basis: |D0

α| = |S × Vb| = s2b ≥ α02b−0(n+k)s.
Ind. hypothesis: Let |Di

α| ≥ αi2b−i(n+k)s.
Ind. step: Then |Di+1

α | ≥ αi+12b−(i+1)(n+k)s.
Set |Di+1

α | is by definition 5 union of α < 2n+k

largest sets Di+1
X,K . Nonempty sets Di+1

X,K are all dis-
tinct and their union is equal to Di

α. In other words,
elements of the set Di

α are divided into 2n+k shelves.
Then using pigeonhole principle we can estimate car-
dinality of α largest of them in the following way:

|Di+1
α | ≥ α

|Di
α|

2n+k
≥

≥ α
αi2b−i(n+k)s

2n+k
= αi+12b−(i+1)(n+k)s .

ut

Lemma 2. At most tα queries on oracles E1, . . . , Et

are sufficient for computation of set Dt
α among with

values of compression function f t(h, m) for all tuples
(h, m) from the set Dt

α.

Proof. We construct matrix M , which has on i-th row
tuples (Xi

1,K
i
1) . . . (Xi

α,Ki
α) used during the construc-

tion of set Di
α by taking the union of α largest sets

Di
Xi

1,Ki
1
, . . . , Di

Xi
α,Ki

α
. M has t rows and α columns, so

matrix M have totally tα elements.

M =




(X1
1 ,K1

1) . . . (X1
j ,K1

j) . . . (X1
α, K1

α)
...

...
...

(Xi
1,K

i
1) . . . (Xi

j ,K
i
j) . . . (Xi

α, Ki
α)

...
...

...
(Xt

1,K
t
1) . . . (Xt

j ,K
t
j) . . . (Xt

α, Kt
α)




The only place where queries are made during the com-
putation of sets Di

α is the computation of Y i,(h,m).
During the construction of set D0

α no queries on ora-
cles are necessary as it is S×Vb by definition. Similarly
during the construction of set D1

α no queries on oracles
are necessary as Y 0,(h,m) is by definition empty.

During the construction of Di
α for i ∈ {2, 3, . . . , t}

all queries will be on oracles E1, . . . , Ei−1. Queries on
oracle E1 will be only from the first row of matrix M ,
queries on oracle E2 will be only from the second row,
and so on, ending with queries on oracle Ei−1, which
are only from (i− 1)-th row of matrix M . Last row of
matrix M (together with all others) is used during the
computation of values f t(h,m) = fC(h,m, Y t,(h,m))
for all (h,m) ∈ Dt

α.
During the computation of Di

α a new i-th row is
created in the matrix M . Tuples (Xi−1

j ,Ki−1
j) from

(i−1)-th row are for the first time evaluated by oracle
Ei−1. Queries on oracle El for l < i − 1 will be only
from already evaluated row l of matrix M . That fol-
lows from the fact that Di

α ⊆ Di−1
α . Therefore we will

need at most tα queries on oracles E1, . . . , Et during
the computation of Dt

α together with values of com-
pression function f t(h,m) for all (h,m) ∈ Dt

α if we
remember already asked queries together with corre-
sponding answer. ut
Theorem 3. Let f : Bloc(k, n)t × Va × Vb → Va be
arbitrary rate-r compression function defined by algo-
rithm 1, while r = b/n

t . Let q ≥ 1 be maximum allowed
number of queries on oracles Ei and E−1

i . Let q be an
integer of the form q = tα, where α ≥ 1 is also an in-
teger3. Let r > 1 + k

n − log2 α
n . Then Advcomp

f (q) = 1.

Proof. By asking at most q queries we are according to
lemma 2 able to compute values of f t(h,m) ∈ Va for all
(h,m) ∈ Dt

α. Let S = Va, thus s = |S| = 2a. Accord-
ing to lemma 1 we know that |Dt

α| ≥ αt2b−t(n+k)s =
αt2a+b−t(n+k). We can guarantee that between com-
puted values there are at least two identical values if:

αt2a+b−t(n+k) > 2a

t log2 α + a + b− t(n + k) > a

b > t(n + k)− t log2 α .

3 This requirement is natural. For computation of f t we
need t oracle queries. Hence if we set q = tα, then as if
we allow α complete computations of f t.

58 Richard Ostertág

Now we rewrite this inequality into required form by
using following equality r = b/n

t :

b > t(n + k)− t log2 α

b/n

t
>

n + k

n
− log2 α

n

r > 1 +
k

n
− log2 α

n
.

This means that with probability 1 we can find (and
so the adversary) collision in the compression func-
tion f , while asking at most q queries on oracles. Hence
Advcomp

f (q) = 1 holds. ut
Computation of the particular Di

α has exponential
complexity. Also finding the collision between values
f t(h,m) for all (h,m) ∈ Dt

α has exponential complex-
ity. But computationally unlimited adversary of black-
box model can do all this unless he does not ask more
than q queries on oracles.

Theorem 3 gives upper bound depending on num-
ber of oracle queries. The following corollary adapts
the previous theorem in such a way, that instead of
number of queries q, the number of output bits a of
compression function is used in the inequality for r.

Corollary 2. Let f t : Bloc(k, n)t × Va × Vb → Va be
arbitrary rate-r compression function defined by algo-
rithm 1, where r = b/n

t . Let 0 ≤ ε < 1
2 be arbitrary

constant. Let r > 1 + k
n − ε a

n . Then f t is not collision
resistant.

Proof. Let 0 ≤ λ < 1 be arbitrary constant. Then we
set q = t2λ a

2 , i.e. α = 2λ a
2 . Then by substituting into

theorem 3 we get that Advcomp
f (q) = 1 (that means

according to size of q that f t is not collision resistant)
if:

r > 1 +
k

n
− log2 α

n

r > 1 +
k

n
− log2 2λ a

2

n

r > 1 +
k

n
− (λ/2)

a

n
.

Now we make a substitution ε = λ/2 and required
inequality follows:

r > 1 +
k

n
− ε

a

n
, where 0 ≤ ε <

1
2

.

ut
As we have already mentioned, constructions of

compression function based on block cipher, often have
the same size of the key and the plain-text input of
block cipher, i.e. k = n. Similarly, the output of com-
pression function have usually the same size, i.e. a = n.
For this typical situation we can simplify corollary 2.

Corollary 3. Let f t : Bloc(n, n)t × Vn × Vb → Vn be
arbitrary rate-r compression function defined by algo-
rithm 1, where r = b/n

t . Let r > 3/2. Then compres-
sion function f t is not collision resistant.

Proof. After substituting n for a and k into corollary 2
we get that compression function f t is not collision
resistant if r > 1 + n

n − εn
n = 2 − ε for an arbitrary

constant 0 ≤ ε < 1
2 .

That implies that compression function f t is not
collision resistant if r > 2− 1

2 = 3/2. ut

In generalized model rate r of compression func-
tion can be rational number and not only integer as
in [11]. Therefore based on our results we cannot con-
clude that no high rate compression function exists
in the generalized model. Still it is possible that e.g.
rate- 65 collision resistant compression function exists.

6 Conclusion

In our effort to find high speed collision resistant com-
pression function we have introduced and studied new
generalized model of compression function since in all
previous models it was proved that no such functions
exists. This model introduces rational rates, so we can
study more precisely the rate upper bound of collision
resistant compression functions. Based on previous re-
sults, it seems to be less than or equal to 2. We have
improved this bound to be less than or equal to 3

2 .

References

1. M. Stanek: Analysis of fast blockcipher-based hash
functions. In: Computational Science and Its Applica-
tions – ICCSA 2006, Springer, 2006, 426–435.

2. D.R. Stinson: Cryptography: Theory and Practice,
Third Edition. Chapman & Hall/CRC, Boston, MA,
USA, 2005.

3. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone:
Handbook of Applied Cryptography. CRC-Press, Boca
Raton, FL, USA, 1996.

4. R.C. Merkle: One way hash functions and DES.
Volume 435 of Lecture Notes in Computer Science,
Springer Berlin, Heidelberg, 1990, 428–446.

5. I.B. Damgård: A design principle for hash functions.
Volume 435 of Lecture Notes in Computer Science,
Springer Berlin, Heidelberg, 1990, 416–427.

6. H. Handschuh, L.R. Knudsen, M.J. Robshaw: Analysis
of SHA-1 in encryption mode. Volume 2020 of Lecture
Notes in Computer Science, Springer Berlin, Heidel-
berg, 2001, 70–83.

7. M.O. Rabin: Digitalized signatures. In Millo R.D.,
Dobkin D., Jones A., Lipton R., eds.: Foundations
of Secure Computations, New York, Academic Press,
1978, 155–166.

Improved rate upper bound of collision . . . 59

8. B. Preneel, R. Govaerts, J. Vandewalle: Hash functions
based on block ciphers: A synthetic approach. Volume
773 of Lecture Notes in Computer Science, Springer
Berlin, Heidelberg, 1994, 368–378.

9. J. Black, P. Rogaway, T. Shrimpton: Black-box analy-
sis of the block-cipher-based hash-function construc-
tions from PGV. Volume 2442 of Lecture Notes in
Computer Science, Springer Berlin, Heidelberg, 2002,
103–118.

10. J. Black, M. Cochran, T. Shrimpton: On the impos-
sibility of highly-efficient blockcipher-based hash func-
tions. Volume 3494 of Lecture Notes in Computer Sci-
ence, Springer Berlin, Heidelberg, 2005, 526–541.

11. R. Ostertág, M. Stanek: On high-rate cryptographic
compression functions. Computing and Informatics
26, 2007, 77–87.

12. L. Staneková, M. Stanek: Generalized PGV hash func-
tions are not collision resistant. In: ITAT: Information
Technologies – Applications and Theory, Seòa: PONT,
2006, 139–143.

13. P. Rogaway, J. Steinberger: Security/efficiency trade-
offs for permutation-based hashing. Volume 4965 of
Lecture Notes in Computer Science, Springer Berlin,
Heidelberg, 2008, 220–236.

Encoding monadic computations in C# using iterators

Tomas Petricek

Charles University in Prague, Faculty of Mathematics and Physics
tomas@tomasp.net

Abstract. Many programming problems can be eas-
ily solved if we express them as computations with some
non-standard aspect. This is a very important problem, be-
cause today we’re struggling for example to efficiently pro-
gram multi-core processors and to write asynchronous code.
Unfortunately main-stream languages such as Java or C#
don’t support any direct way for encoding unrestricted non-
standard computations. In languages like Haskell and F#,
this can be done using monads with syntactic extensions
they provide and it has been successfully applied to a wide
range of real-world problems. In this paper, we present
a general way for encoding monadic computations in the
C# 2.0 language with a convenient syntax using an exist-
ing language feature called iterators. This gives us a way to
use well-known non-standard computations enabling easy
asynchronous programming or for example the use of soft-
ware transactional memory in plain C#. Moreover, it also
opens monads in general to a wider audience which can
help in the search for other useful and previously unknown
kinds of computations.

1 Introduction

In functional programming languages such as Haskell
and F#, monadic computations are used to solve wide
range of problems. In Haskell [5], they are frequently
used to deal with state or I/O, which is otherwise diffi-
cult in a purely functional language. F# uses monadic
computations to add non-standard aspects such as
asynchronous evaluation, laziness or implicit error
handling to an existing piece of code written in F#. In
this article, we’ll prefer the F# point of view, meaning
that we want to be able to adjust C# code to execute
differently, using additional aspects provided by the
monadic computation.

The primary motivation for this work is that
monadic computations are very powerful technique for
dealing with many modern computing challenges
caused by the rise of multi-core processors and dis-
tributed web based applications. The standard F# li-
brary uses monadic computations to implement asyn-
chronous workflows [16] which make it easy to write
communication with the web and other I/O operations
in the natural sequential style, but without blocking
threads while waiting. In Haskell, monadic compu-
tations are used for example to implement software
transactional memory, which is a concurrent program-

ming mechanism based on shared memory, which
avoids the need for explicit locking [3].

The motivation for this article is that we want to
be able to use the techniques just described in a main-
stream and widely used C# language. The main con-
tributions of this paper are following:

• As far as we’re aware, we show for the first time
that monadic computations can be encoded in C#
in a syntactically convenient way without placing
any restrictions on the C# statements that can
be used inside the computation. This can be done
purely as a library without changing the language
using widely adopted C# 2.0 features (Section 3).

• We use the presented technique to implement a li-
brary that makes it easier to write scalable multi-
threaded applications that perform long running
I/O operations. We demonstrate it using several
case study examples (Section 4).

• Finally, we describe a method for systematical en-
coding of arbitrary monadic computation in C#
(Section 5). This technique can be used for imple-
menting other useful computations such as soft-
ware transactional memory and others.

There are several related projects, mostly con-
cerned with asynchronous programming (Section 6),
but our aim is wider and focuses on monadic computa-
tions in general. However, asynchronous computations
can nicely demonstrate the problem.

1.1 Asynchronous computations in C# today

Since we’re using asynchronous computations as the
primary real-world motivation for this paper, we
should first clarify what problem we want to solve is.
Let’s start by looking at naive synchronous code that
downloads the first kilobyte of web site content:

1: var req = HttpWebRequest.Create(url);

2: var rsp = req.GetResponse();

3: var strm = rsp.GetResponseStream();

4: var read = strm.Read(buffer, 0, 1024);

On lines 2 and 4 we’re performing I/O operations
that can take a long time, but that aren’t CPU
bounded. When running the operation, the executing
thread will be blocked, but it cannot perform any other

62 Tomas Petricek

work in the meantime. If we wanted to run hundreds
of downloads in parallel, we could create hundreds
of threads, but that introduces significant overheads
(such as allocation of kernel objects and thread stack)
and also increases context switching. The right way to
solve the problem on the .NET platform is to use the
Asynchronous Programming Model (APM):

1: var req = HttpWebRequest.Create(url);

2: req.BeginGetResponse(a1 => {

3: var rsp = req.EndGetResponse(a1);

4: var strm = rsp.GetResponseStream();

5: strm.BeginRead(buffer, 0, 1024, a2 => {

6: int read = strm.EndRead(a2);

7: // ...

8: }, null);

9: }, null);

In this context “asynchronous” means that the pro-
gram invokes start of the operation, registers a call-
back, transfers the control to the system and releases
the current thread, so that it can perform other work.
In the snippet above, we’re starting two operations
on lines 2 and 5 and we’re using the C# 3.0 lambda
function notation “=>” to specify the callback func-
tion that will be eventually invoked.

The code above is far less readable than the first
synchronous version, but that’s not the only prob-
lem. To download the whole page, we’d need to call
the BeginRead method in a loop until we fetched the
whole page, but that’s ridiculously difficult, because
we can’t use any higher level constructs such as the
while loop when writing code using nested callbacks.
For every simple problem, the programmer has to ex-
plicitly write a state machine using mutable state.

It is worth pointing out that using asynchronous
model does not in principle increase the CPU par-
allelism in the application, but it still significantly
improves the performance and makes the application
more scalable because it considerably reduces the
number of (expensive) threads the application creates.

2 Background

To write non-blocking asynchronous code, we can use
continuation passing style where the next piece of code
to execute after an operation completes is given as
a function as the last argument to the operation. In
the snippet above we’ve written the code in this style
explicitly, but as we’ve seen this isn’t a satisfying so-
lution.

2.1 F# asynchronous workflows

In F#, we can use asynchronous workflows, which
is one particularly useful implementation of monadic

computations that is already defined in F# libraries.
This feature hasn’t been described in the literature
before, so we quickly review it here.

When we wrap code inside an async block, the
compiler automatically uses continuation passing style
for specially marked operations. Moreover, we can use
all standard language constructs inside the block in-
cluding for example the while loop:

1: let downloadUrl(url:string) = async {

2: let req = HttpWebRequest.Create(url)

3: let! rsp = req.AsyncGetResponse()

4: let strm = rsp.GetResponseStream()

5: let buffer = Array.zeroCreate(8192)

6: let state = ref 1

7: while !state > 0 do

8: let! read = strm.AsyncRead(buffer,0, 8192)

9: Console.WriteLine("got {0}b", read);

10: state := read }

This function downloads the entire content of
a web page in a loop. Although it doesn’t use the data
in any way and only reports the progress, it nicely
demonstrates the principle. Its body is an async block,
which specifies that the function doesn’t actually run
the code, but instead returns a value representing com-
putation that can be executed later.

In the places where the original C# code executed
asynchronous operations, we’re now using the let!
Keyword (lines 3 and 8), which represents monadic
value binding. This means that instead of simply as-
signing value to a symbol, the computation invokes
Bind operation that is provided by the async value
(called computation builder) giving it the rest of the
code wrapped inside a function as an argument. The
Bind member specifies non-standard behavior of the
operation. In this case the behavior is that the opera-
tion is executed asynchronously.

The computation builder (in this case async) also
defines the meaning of other primitive constructs such
as the while loop or returning the result from a func-
tion. These primitive operations are exposed as stan-
dard methods with well-defined type signatures:

Bind : Async<’a> * (’a -> Async<’b>) ->

Async<’b>

Return : ’a -> Async<’a>

While : (unti -> bool) * Async<unit> ->

Async<unit>

The first two functions are standard operations
that define the abstract monadic type as first
described in [18]. These operations are also called bind
and unit. The Bind member takes an existing compu-
tation and a function that specifies how to produce
subsequent computation when the first one completes
and composes these into a single one. The Return

Encoding monadic computations in C# 63

member builds a computation that returns the given
value. The additional While member takes a predicate
and a computation and returns result that executes
the computation repeatedly while the predicate holds.

When compiling code that uses computation ex-
pressions, the F# compiler syntactically transforms
the code into code composed from the calls to these
primitive operations. The translated version of the
previous example can be found in the online supple-
mentary material for the article [12].

2.2 C# Iterators

One of the non-standard computations that is very of-
ten used in practice is a computation that generates
a sequence of values instead of yielding just a single
result. This aspect is directly implemented by C# it-
erators [2], but without any aim to be more generally
useful. In this article, we show that it can be used in
a more general fashion. However, we start by briefly
introducing iterators. The following example uses it-
erators to generate a sequence of all integers:

1: IEnumerator<int> GetNumbers() {

2: int num = 0;

3: while (true) {

4: Console.WriteLine("generating {0}", num);

5: yield return num++;

6: }

7: }

The code looks just like ordinary method
with the exception that it uses the yield return
keyword to generate elements a sequence. The while
loop may look like an infinite loop, but due to the
way iterators work, the code is actually perfectly valid
and useful. The compiler translates the code into a
state machine that generates the elements of the se-
quence lazily one by one. The returned object of type
IEnumerator<int> can be used in the following way:

1: var en = GetNumbers();

2: en.MoveNext();

3: Console.WriteLine("got {0}", en.Current);

4: en.MoveNext();

5: Console.WriteLine("got {0}", en.Current);

The call to the GetNumbers method (line 1) re-
turns an object that represents the state machine gen-
erated by the compiler. The variables used inside the
method are transformed into a local state of that ob-
ject. Each call to the MoveNext method (lines 2 and 4)
runs one step of the state machine until it reaches the
next yield return statement (line 5 in the earlier snip-
pet) updating the state of the state machine. This also
executes all side-effects of the iterator such as printing

to the console, so the program above shows the “gen-
erating” message directly followed by “got” for num-
bers 0 and 1. There are two key aspects of iterators
that are important for this paper:

• The iterator body can contain usual control struc-
tures such as loops or exception handlers and the
compiler automatically turns them into a state
machine.

• The state machine can be executed only to a cer-
tain point (explicitly specified by the user using
yield return), then paused and later resumed
again by invoking the MoveNext method again.

In many ways this resembles the continuation pass-
ing style from functional languages, which is essen-
tial for monadic computations and F# asynchronous
workflows.

3 Monadic computations in C#

Now that we’ve introduced asynchronous workflows
in F# (as an example of monadic computations) and
C# iterators, we can ask ourselves the question
whether iterators could be used for encoding other
non-standard computations then code that generates
a sequence.

The key idea of this article is that it is indeed pos-
sible to do that and that we can write standard C# li-
brary to support any monadic computation. In this
section, we’ll briefly introduce how the library looks
using the simplest possible example and in section 5
we’ll in detail explain how the encoding works.

3.1 Using option computations

As the first example, we’ll use computations that pro-
duce value of type Option<’a> 1, which can either
contain no value or a value of type ’a. The type can
be declared using F#/ML notation like this:

type Option<’a> = Some of ’a | None

Code that is composed from simple computations
that return this type can return None value at any
point, which bypasses the entire rest of the computa-
tion. In practice this is useful for example when per-
forming series of data lookup that may not contain the
value we’re looking for. The usual way for writing the
code would check whether the returned value is None

1 In Haskell, this type is called Maybe and the correspond-
ing computation is known as Maybe monad.

64 Tomas Petricek

after performing every single step of the computation,
which significantly complicates the code 2.

To show how the code looks when we apply our
encoding of the option computation using iterators,
we’ll use method of the following signature:

ParseInt : string -> Option<int>

The method returns Some(n) when the parameter
is a valid number and otherwise it returns None. Now
we can write code that reads a string, tries to parse it
and returns 10 times the number if it succeeds. The re-
sult of the computation will again be the option type.

1: IEnumerator<IOption> ReadInt() {

2: Console.Write("Enter a number: ");

3: var optNum = ParseInt(Console.ReadLine());

4: var m = optNum.AsStep();

5: yield return m;

6: Console.WriteLine("Got a valid number!");

7: var res = m.Value * 10;

8: yield return OptionResult.Create(res);

9: }

The code reads a string from the console and calls
the ParseInt method to get optNum value, which has
a type Option<int> (line 3). Next, we need to per-
form non-standard value binding to access the value
and to continue running the rest of the computation
only when the value is present. Otherwise the method
can return None as the overall result straight ahead.

To perform the value binding, we use the AsStep
method that generates a helper object (line 4) and
then return this object using yield return (line 5).
This creates a “hole” in the code, because the rest of
the code may or may not be executed, depending on
whether the MoveNext method of the returned state
machine is called again or not. When optNum contains
a value, the rest of the code will be called and we can
access the value using the Value property (line 7)3.

Finally, the method calculates the result (line 7)
and returns it. To return from a non-standard compu-
tation written using our encoding, we create another
helper object, this time using OptionResult.Create
method. These helper objects are processed when ex-
ecuting the method.

To summarize, there are two helper objects. Both
of them implement the IOption interface, which
means that they can both be generated using yield re-
turn. The methods that create these two objects have
the following signatures:
2 We could as well use exceptions, but it is generally ac-

cepted that using exceptions for control flow is a wrong
practice. In this case, the missing value is an expected
option, so we’re not handling exceptional condition.

3 The F# code corresponding to these two lines is: let!
value = optNum

AsStep : Option<’a> -> OptionStep<’a>

OptionResult.Create : ’a -> OptionResult<’a>

The first method creates an object that corre-
sponds to the monadic bind operation. It takes the op-
tion value and composes it with the computation that
follows the yield return call. The second method
builds a helper that represents monadic unit opera-
tion. That means that the computation should end
returning the specified value as the result.

3.2 Executing option calculation

When we write code in the style described in the previ-
ous section, methods like ReadInt only return a state
machine that generates a sequence of helper objects
representing bind and unit. This alone wouldn’t be at
all useful, because we want to execute the computa-
tion and get a value of the monadic type (in this case
Option<’a>) as the result. How to do this in terms of
standard monadic operations is described in section 5,
but from the end user perspective, this simply means
invoking the Apply method:

Option<int> v = ReadInt().Apply<int>();

Console.WriteLine(v);

This is a simple piece of standard C# code that
runs the state machine returned by the ReadInt
method. Apply<’a> is an extension method 4 defined
for the IEnumerator<IOption> type. Its type signa-
ture is:

Apply : IEnumerable<IOption> -> Option<’a>

The type parameter (in the case above int) speci-
fies what the expected return type of the computation
is, because this unfortunately cannot be safely tracked
in the type system. Running the code with different
inputs gives the following console output:

Enter a number: 42 Enter a number: $%?!

Got a valid number! None

Some(420)

Strictly speaking, Apply doesn’t necessarily have
to execute the code, because its behavior depends on
the monadic type. The Option<’a> type represents
a value, so the computation that produces it isn’t de-
layed. On the other hand the Async<’a> type, which
represents asynchronous computations is delayed
meaning that the Apply method will only build a com-
putation from the C# compiler generated state ma-
chine.
4 Extension methods are new feature in C# 3.0. They

are standard static methods that can be accessed using
dot-notation as if they were instance methods [1].

Encoding monadic computations in C# 65

The encoding of non-standard computations
wouldn’t be practically useful if it didn’t allow us to
compose code from primitive functions and as we’ll see
in the next section, this is indeed possible.

3.3 Composing option computations

When encoding monadic operations, we’re working
with two different types. The methods we write using
the iterator syntax return IEnumerator<IOption>,
but the actual monadic type is Option<’a>.
When writing code that is divided into multi-
ple methods, we need to invoke method return-
ing IEnumerator<IOption> from another method
written using iterators. The following example uses
the ReadInt method from the previous page to read
two integer values (already multiplied by 10) and add
them.

1: IEnumerator<IOption> TryCalculate() {

2: var n = ReadInt().Apply<int>().AsStep();

3: yield return n;

4: var m = ReadInt().Apply<int>().AsStep();

5: yield return m;

6: var res = m.Value + n.Value;

7: yield return OptionResult.Create(res);

8: }

When the method needs to read an integer, it calls
the ReadInt to build a C# state machine. To make
the result useable, it converts it into a value of type
Option<int> (using the Apply method) and finally
uses the AsStep method to get a helper object that
can be used to bind the value using yield return.

We could of course provide a method composed
from Apply and AsStep to make the syntax more con-
venient, but this paper is focused on explaining the
principles, so we write this composition explicitly.

The previous example also nicely demonstrates the
non-standard behavior of the computation. When it
calls the RadInt method for the second time (line 4)
it does that after using non-standard value binding
(using yield return on line 3). This means that the
user will be asked for the second number only if the
first input was a valid number. Otherwise the result of
the overall computation will immediately be None.

Calculating with options nicely demonstrates the
principles of writing non- standard computations. We
can use non-standard bindings to mark places where
the code can abandon the rest of the code if it already
knows the overall result. Even though this is already
useful, we can make even stronger point to support
the idea by looking at asynchronous computations.

4 Case study: asynchronous C#

As discussed in the introduction, writing non-blocking
code in C# is painful even when we use latest C#
features such as lambda expression. In fact, we haven’t
even implemented a simple loop, because that would
make the code too lengthy. We’ve seen that monadic
computations provide an excellent solution 5 and we’ve
seen that these can be encoded in C# using iterators.

As next, we’ll explore one larger example that fol-
lows the same encoding of monadic computations as
the one in the previous section, but uses a different
monad to write asynchronous code that doesn’t block
the tread when performing long-running I/O. The fol-
lowing method reads the entire content of a stream
in a buffered way (using 1kb buffer) performing each
read asynchronously.

1: IEnumerator<IAsync> ReadToEndAsync(Stream s)

{

2: var ms = new MemoryStream();

3: byte[] bf = new byte[1024];

4: int read = -1;

5: while (read != 0) {

6: var op = s.ReadAsync(bf, 0, 1024).

AsStep();

8: yield return op;

9: ms.Write(bf, 0, op.Value);

10: read = op.Value;

11: }

12: ms.Seek(0, SeekOrigin.Begin);

13: string s = new StreamReader(ms).

ReadToEnd();

14: yield return AsyncResult.Create(s);

15: }

The code uses standard while loop which would be
previous impossible. Inside the body of the loop, the
method creates an asynchronous operation that reads
1kb of data from the stream into the specified buffer
(line 6) and runs the operation by yielding it as a value
from the iterator (line 7). The operation is then exe-
cuted by the system and when it completes the iterator
is resumed. It stores the bytes to a temporary storage
and continues looping until the input stream is fully
processed. Finally, the method reads the data using
StreamReader to get a string value and returns this
value using AsyncResult.Create method (line 14).

The encoding of asynchronous computations is es-
sentially the same as the encoding of computations
with option values. The only difference is that the
method now generates a sequence of IAsync values.
Also, the AsStep method now returns an object of type
AsyncStep<’a> and similarly, the helper object used
5 To justify this, we can say that asynchronous workflows

are one of the important features that contributed to
the recent success of the F# language.

66 Tomas Petricek

for returning the result is now AsyncResult<’a>.
Thanks to the systematic encoding described in sec-
tion 5, it is very easy to use another non-standard
computation once the user understands one example.

The method implemented in the previous listing
is very useful and surprisingly, it isn’t available in
the standard .NET libraries. We’ll use it to asynchro-
nously download the entire web page. However, we
first need to asynchronously get the HTTP response,
so we’ll write the code as another asynchro-
nous method using iterator syntax. In section 3.3,
we’ve seen how to compose option computations and
since the principle is the same, it isn’t surprising that
composing asynchonous computations is also straight-
forward:

1: var stream = resp.Value.GetResponseStream();

2: var html = ReadToEndAsync(stream).

3: Execute<string>().AsStep();

4: yield return html;

5: Console.WriteLine(html.Value);

The listing assumes that we already have a re-
sponse object (resp). So far we haven’t seen how to ac-
tually start the download, because asynchronous com-
putations are delayed, meaning that we’re just con-
structing a function that can be executed later. This
makes it possible to compose large number of compu-
tations and spawn them in parallel. The runtime then
uses only a few threads, which makes it very efficient
and scalable. You can find full example that shows
how to start the download in the online supplemen-
tary material for the article [12]

Implementing the functionality we presented
in this section asynchronously using the usual style
would be far more complicated. For example, to imple-
ment the ReadToEndAsync method we need two times
more lines of very dense C# code. However, the code
also becomes hard to read because it cannot use many
high-level language features (e.g. while loop), so it
would in addition also require a decent amount of com-
ments6.

5 Encoding arbitrary monads

As we’ve seen in the previous two sections, writing
monadic computations in C# using iterators requires
several helper objects and methods. In this section,
we’ll look how these helpers can be defined.

Unfortunately, C# doesn’t support higher-kinded
polymorphism, which is used when defining monads in
Haskell and is available in some object-oriented lan-
guage such as Scala [10]. This means that we can’t

6 The source code implementing the same functionality in
the usual style can be found in [12]

write code that is generic over the monadic type
(e.g. Option<’a> and Async<’a>). As a result, we
need to define a new set of helper objects for each type
of computation. To make this task easier, we provide
two base classes that encapsulate functionality that
can be reused. The code that we need to write is the
same for every computation, so writing it is a straight-
forward task that could be even performed by a very
simple code-generator tool.

In this section, we’ll look at the code that needs
to be written to support calculations working with
option values that we were using in section 3. The
code uses only two computation-specific operations.
Indeed, these are the two operations bind and unit
that are used to define monadic computations in func-
tional programming (“O” is a shortcut for “Option”):

Bind : O<’a> -> (’a -> O<’b>) -> O<’b>

Return : ’a -> O<’a>

The bind operation uses the function provided as
the second parameter to calculate the result when the
first parameter contains a value. The unit operation
wraps an ordinary value into an option value. The
implementation of these operations is described else-
where, so we won’t discuss it in detail. You can for ex-
ample refer to [11]. We’ll just assume that we already
have OptionM type with the two operations exposed
as static methods.

5.1 Defining iterator helpers

As a first thing, we’ll implement helper objects that
are returned from the iterator. We’ve seen that we
need two helper objects - one that corresponds to bind
and one that corresponds to unit. These two objects
share common interface (called IOption in case of op-
tion computations) so that we can generate a single
sequence containing both of them. Let’s start by look-
ing at the interface type:

interface IOption {

Option<R> BindStep<R>(Func<Option<R>> k);

}

The BindStep method is invoked by the extension
that executes the non-standard computation (we’ll dis-
cuss it later in section 5.2). The parameter k specifies
a continuation, that is, a function that can be exe-
cuted to run the rest of the iterator. The continuation
doesn’t take any parameters and returns an option
value generated by the rest of the computation. The
implementation of the helper objects that implement
the interface looks like this:

Encoding monadic computations in C# 67

class OptionStep<T> : MonadStep<T>, IOption {

internal Option<T> Input { get; set; }

public Option<R> BindStep<R>(Func<Option<R>> k)

{

return OptionM.Bind(Input,

MakeContinuation(k));

}

}

class OptionResult<T> : MonadReturn<T>, IOption

{

internal OptionResult(T value) : base(value)

{ }

public Option<R> BindStep<R> (Func<Option<R>>

k) {

return OptionM.Return(GetResult<R>());

}

}

The OptionStep<’a> type has a property named
Input that’s used to store the option value from which
the step was constructed using the AsStep method.
When the BindStep method is executed the object
uses the monadic bind operation and gives it the input
as the first argument. The second argument is more in-
teresting. It should be a function that takes the actual
value extracted from the input option value as an ar-
gument and returns a new option value. The extracted
value can be used to calculate the result, but there is
no way to pass a value as an argument back to the it-
erator in the middle of its evaluation, which is why the
function given as the parameter to BindStep method
doesn’t take any parameters.

As we’ve seen in the examples, the
OptionStep<’a> helper exposes this value as the
Value property. This property is inherited from the
MonadStep<’a> type. The MakeContinuation which
we use to build a parameter for monadic bind oper-
ation is also inherited and it simply stores the input
obtained from bind into Value, so that it can be used
in the iterator and then runs the parameter-less con-
tinuation k.

The OptionResult<’a> type is a bit simpler. It
has a constructor that creates the object with some
value as the result. Inside the BindStep method, it
uses the monadic unit operation and gives it that value
as the parameter. This cannot be done in a statically
type-checked way, so we use the inherited GetResult
method that performs dynamic type conversion. Fi-
nally, the OptionResult.Create and AsStep meth-
ods are just simple wrappers that construct these two
objects in the syntactically most pleasant way.

5.2 Implementing iterator evaluation

Once we have an iterator written using the helpers
described in the previous section, we need some way
for executing it using the non-standard behavior of

the monadic computation. The purpose of the itera-
tor isn’t to create a sequence of values, so we need to
execute it in some special way. The following example
shows an extension method Apply that turns the iter-
ator into a monadic value. In case of options the type
of the value is Option<’a> but note that the code
will be exactly the same for all computation types.

static class OptionExtensions {

public static Option<R> Apply<R>

(this IEnumerator<IOption> en) {

if (!en.MoveNext())

throw new InvalidOperationException

("Enumerator ended without a result!");

return en.Current.BindStep<R>(() =>

en.Apply<R>());

}

}

The method starts by invoking the MoveNext
method of the generated iterator to move the itera-
tor to the next occurrence of the yield return state-
ment. If the return value is false, the iterator ended
without returning any result, which is invalid, so the
method throws an exception.

If the iterator performs the step, we can access the
next generated helper object using the en.Current
property. The code simply invokes BindStep of the
helper and gives it a function that recursively calls the
Apply method on the same iterator as the argument.
Note that when the helper is OptionResult<’a>, the
continuation isn’t used, so the recursion terminates.

It is worth noting that for monadic computations
with zero operation we can also write a variant of
the Apply method that doesn’t require the iterator
to complete by returning a result. In that case, we’d
modify the method to return a value constructed by
the monadic zero operation instead of throwing an ex-
ception in the case when the iterator ends.

Finally, there are also some problems with using
possibly deeply nested recursive calls in a language
that doesn’t guarantee the use of tail-recursion. We
can overcome this problem by using some technique for
tail-call elimination. Schinz [15] gives a good overview
in the context of the Scala language. Perhaps the eas-
iest option to implement is to use a trampoline [17].

5.3 Translation semantics

To formalize the translation in a more detail, we’ve
also developed a translation semantics for the library.
We first define an abstract language extension for C#
that adds monadic compuations as a language feature
to C# in a way similar to F#. Then we show that any
code written in the extended C# can be translated
to the standard C# 2.0 by using the iterator encoding

68 Tomas Petricek

presented in this article. The grammar of the language
extension as well as the semantic rules are available in
the online supplementary material [12].

6 Related work and conclusions

There is actually one more way for writing
some monadic computations in C# using the recently
added query syntax. The syntax is very limited, but
may be suitable for some computations. We’ll briefly
review this option and then discuss other relevant re-
lated work and conclusions of this paper.

6.1 LINQ queries

As many people already noted [8], the LINQ query
syntax available in C# 3.0 is also based on the idea
of monad and can be used more broadly than just
for encoding computations that work with lists. The
following example shows how we could write the com-
putation with option values using LINQ syntax:

1: Option<int> opt =

2: from n in ReadInt()

3: from m in ReadInt()

4: let res = m + n

5: select res;

The implementation of library that allows this kind
of syntax is relatively easy and is described for exam-
ple in [11]. This syntax is very restricted. In it allows
non-standard value bindings corresponding to the bind
operation using the from keyword (lines 2 and 3), stan-
dard value bindings using the let construct (line 4) and
returning of the result using select keyword (line 5).
However, there are no high-level imperative constructs
such as loops which were essential for the asynchro-
nous example in section 4. With some care, it is pos-
sible to define several mutually recursive queries, but
that still makes it hard to write complex computations
such as the one in section 4.

On the other hand, query syntax is suitable for
some monadic computations where we’re using only
a limited language. Parser combinators as described
for example in [6] can be defined using the query syn-
tax [4]. In general, C# queries are a bit closer to writ-
ing monads using the Haskell’s list comprehension no-
tation, while using iterators as described in this article
is closer to the Haskell’s do-notation.

6.2 Related work

The principle of using a main-stream language for en-
coding constructs from the research world has been
used with many interesting features including for ex-
ample Joins [14]. FC++ [8] is a library that brings

many functional features to C++, including monads,
which means it should be possible to use it for re-
implementing some examples from this paper.

There are also several libraries that use C# itera-
tors for encoding asynchronous computations. CCR [7]
is a more sophisticated library that combines join pat-
terns with concurrent and asynchronous program-
ming, which makes it more powerful than our encod-
ing. On the other hand it is somewhat harder to use for
simple scenarios such as those presented in this paper.

Richter’s library [13] is also focused primarily on
asynchronous execution. It uses yield return primitive
slightly differently - to specify the number of opera-
tions that should be completed before continuing the
execution of the iterator. The user can then pop the
results from a stack.

7 Conclusions

In this paper, we have presented a way for encoding
monadic computations in the C# language using iter-
ators. We’ve demonstrated the encoding with two ex-
amples - computations that work with option values
and computations that allow writing of non-blocking
asynchronous code.

The asynchronous library we presented is useful
in practice and would alone be an interesting result.
However, we described a general mechanism that can
be useful for other computations as well. We believe
that using it to implement for example a prototype
of software transactional memory support for C# can
bring many other interesting results.

References

1. G.M. Bierman, E. Meijer, M. Torgersen: Lost in trans-
lation: formalizing proposed extensions to C#. In Pro-
ceedings of OOPSLA 2007.

2. ECMA International.: C# Language Specification.
3. T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy:

Composable memory transactions. In Proceedings of
PPoPP 2005.

4. L. Hoban: Monadic parser combinators us-
ing C# 3.0. Retrieved May 2009, from
http://blogs.msdn.com/lukeh/archive/2007/08/19/

monadic-parser-combinators-using-c-3-0.aspx

5. P. Hudak, P. Wadler, A. Brian, B.J. Fairbairn, J. Fasel,
K. Hammond et al.: Report on the programming lan-
guage Haskell: A non-strict, purely functional lan-
guage. ACM SIGPLAN Notices.

6. G. Hutton, E. Meijer: Monadic parser combinators.
Technical Report. Department of Computer Science,
University of Nottingham.

7. G. Chrysanthakopoulos, S. Singh: An asynchronous
messaging library for C#. In proceedings of SCOOL
Workshop, OOPSLA, 2005.

Encoding monadic computations in C# 69

8. B. McNamara, Y. Smaragdakis: Syntax sugar for
FC++: lambda, infix, monads, and more. In Proceed-
ings of DPCOOL 2003.

9. E. Meijer: There is no impedance mismatch (Language
integrated query in Visual Basic 9). In Dynamic Lan-
guages Symposium, Companion to OOPSLA 2006.

10. A. Moors, F. Piessens, M. Odersky: Generics of
a higher kind. In Proceedings of OOPSLA 2008.

11. T. Petricek, J. Skeet: Functional Programming for the
Real World. Manning, 2009.

12. T. Petricek: Encoding monadic computations us-
ing iterators in C# 2.0 (Supplementary mate-
rial). Available at http://tomasp.net/academic/

monads-iterators.aspx

13. J. Richter: Power threading library. Retrieved
May 2009, from http://www.wintellect.com/

PowerThreading.aspx

14. C.V. Russo: The Joins concurrency library. In Pro-
ceedings of PADL 2007.

15. M. Schinz, M. Odersky: Tail call elimination on the
Java Virtual Machine. In Proceedings of BABEL 2001
Workshop on Multi-Language Infrastructure and In-
teroperability.

16. D. Syme, A. Granicz, A. Cisternino: Expert F#,
Apress, 2007.

17. D. Tarditi, A. Acharya, P. Lee: No assembly required:
Compiling standard ML to C. School of Computer Sci-
ence, Carnegie Mellon University.

18. P. Wadler: Comprehending monads. In Proceedings of
ACM Symposium on Lisp and Functional Program-
ming, 1990.

On existence of robust combiners for cryptographic hash functions?

Michal Rjaško

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava
rjasko@dcs.fmph.uniba.sk

Abstract. A (k, l)-robust combiner for collision resistant
hash functions is a construction, which takes l hash func-
tions and combines them so that if at least k of the compo-
nents are collision resistant, then so is the resulting com-
bination. A black-box (k, l)-robust combiner is robust com-
biner, which takes its components as black-boxes. A trivial
black-box combiner is concatenation of any (l−k+1) of the
hash functions. Boneh and Boyen [1] followed by Pietrzak
[3] proved, that for collision resistance we cannot do much
better that concatenation, i.e. there does not exist black box
(k, l)-robust combiner for collision resistance, whose output
is significantly shorter that the output of the trivial com-
biner. In this paper we analyze whether robust combiners
for other hash function properties (e.g. preimage resistance
and second preimage resistance) exist.
Key words: Cryptographic hash function, robust com-
biner, preimage resistance, second preimage resistance

1 Introduction

Cryptographic hash functions play important role in
the current cryptography. In the last few years, many
attacks on popular hash functions believed to be se-
cure (e.g. SHA1, MD5) have been proposed. Within
these attacks arises a question, whether we are able
to construct a secure hash function. A hash function
is a function H : {0, 1}∗ → {0, 1}v, which maps mes-
sages (strings of 0 and 1) of arbitrary length to strings
of fixed length – called images. Practically useful hash
functions must guarantee several security properties:
they should be collision resistant, what means that it
is hard to find two different messages which map to
the same image. Other important properties of hash
functions are preimage resistance (for given image, it is
hard to find its preimage, i.e. a message which maps to
that image) and second-preimage resistance (for given
message, it is hard to find another message, which
maps to the same image). For formal definitions of the
properties mentioned above or other notions of hash
function security we refer to the works [4], [5].

Natural way how to construct secure hash func-
tion is to combine several known (regarded to be se-
cure) hash functions in such a way, that if one of
the combined functions appears to be insecure, the
? This paper was supported by VEGA grant number

1/0266/09 and by Comenius University grant number
UK/365/2009.

combination remains secure. For collision resistance
we can achieve this by concatenation. Let H1,H2 :
{0, 1}∗ → {0, 1}v be some hash functions. We can con-
struct a hash function H, where

H(M) = H1(M)||H2(M).

Note, that if (M,M ′) is a pair of colliding messages
for H, then this pair collides also for H1 and H2.
Therefore if at least one of the H1 and H2 is collision
resistant, then H is collision resistant too. However
this approach has one important disadvantage – the
output length of H is twice as large as the output of
underlying hash functions H1 and H2, what can lead
to problems with practical implementation, mainly on
devices with small amount of memory as smart-cards.

Thus the question is, whether one can construct
a secure combiner with output shorter than the con-
catenation. Boneh and Boyen in [1] proved the first
negative result in this direction, in particular that
there does not exist secure combiner for collision resis-
tant hash functions with output shorter than concate-
nation, with an assumption, that the combiner queries
each hash function exactly once. This result was gen-
eralized by Pietrzak [3], where the author proved that
the secure combiners for collision resistance with sig-
nificantly shorter output than concatenation do not
exist. The later work consider a (k, l)-robust combin-
ers for collision resistant, which are secure if at least k
of the l components are secure.

In this paper we follow the work of Pietrzak [3] and
prove the similar results for other important proper-
ties of hash functions – second preimage resistance and
preimage resistance. We define a (k, l) combiner for
preimage resistance and second preimage resistance
and for these definitions we prove the impossibility
results similar to one from [3].

Organization In the section 2 we start by some
useful notation and continue with the formal defini-
tions of (k, l) combiners for collision resistance, preim-
age resistance and second-preimage resistance. In the
section 3 we prove the negative results, namely in the
Theorem 1 we prove that secure combiner for preim-
age resistance with output significantly shorter than
concatenation does not exists and in the Theorem 2
we prove the similar result for second-preimage resis-
tance.

72 Michal Rjaško

2 Preliminaries

In this section we formally define a combiner of l hash
functions for three notions of hash function security
– collision resistance, preimage resistance and second
preimage resistance. The definition of the combiner
for collision resistance is from [1], the other definitions
(i.e. for preimage and second-preimage resistance) are
slight modification of the former one.

We start with some basic notation. We write M
$←S

for the experiment of choosing random element from
the distribution S. If S is a finite set, then M is chosen
uniformly from S. Concatenation of finite strings M1

and M2 we denote by M1||M2 or simply M1M2.
An oracle turing machine T with oracle access to

turing machines T1, . . . , Tl is a turing machine, which
accepts inputs via input tape, performs some compu-
tation and replies via output tape. During the com-
putation it can write on some additional “oracle” in-
put tapes t1, . . . , tl and recieves responses via oracle
output tapes t′1, . . . , t

′
l – connections to the turing ma-

chines T1, . . . , Tl. Whenever T writes some input on
tape ti, the turing machine Ti is run on that input and
T recieves the output on tape t′i. We call such a opera-
tion a query to oracle Ti. All queries are performed in
unit time (i.e. computation of Ti is not counted into
the running time of T). By TT1,...,Tl we denote that
the oracle turing machine T has oracle access to the
turing machines T1, . . . , Tl.

Let λ be some parameter. In this section, and later,
by Hi we denote a function mapping from {0, 1}∗ to
{0, 1}v, where i = 1 . . . l and v = p(λ) for some polyno-
mial p. In general, a combiner of l hash functions Hi,
i = 1, . . . , l for some notion of hash function security
is a pair (C, P), where

– C : {0, 1}m → {0, 1}n does the “combination”
(m = pm(λ) and n = pn(λ) for some polynomi-
als pm, pn), i.e. it is an oracle turing machine with
oracle access to H1, . . . , Hl. It behaves as a stan-
dard hash function (i.e. it takes some message on
input and outputs a hash of the message – string
of fixed length), but during the computation it can
query any of its oracles.

– P provides a proof of the security for C. It is an al-
gorithm, which transforms the “ability” of break-
ing the C (with respect to the particular security
property) to the ability of breaking the candidates.

We note that both C and P should be efficient –
they run in a time that is polynomial in the security
parameter λ (and thus it is polynomial also in m, n
or v). The oracle turing machine C is the same for
combiners of all security notions. On the other hand,
P needs to be modified when going from one security
notion to another.

The security of combiner (with respect to some se-
curity notion) is determined by the number how many
of the candidate hash functions need to be secure in
order to guarantee that the resulting combiner is se-
cure. By (k, l)-combiner (C, P) we denote the com-
biner (C, P), which is secure, if at least k of the l
candidate hash functions are secure.

We expect from all candidate hash functions Hi to
have the same output length v. We assume this just
for simplicity, our results can be easily extended for
variable output length of these candidate hash func-
tions.

In this paper we deal only with black box combin-
ers, what means that the combination algorithm (C)
has only black box (i.e. oracle) access to the candi-
date hash functions. It does not know the structure of
underlying primitives H1, . . . ,Hl.

We start by formal definition of the combiner for
collision resistance from [3].

2.1 Combiner for collision resistance

A collision resistant (k, l)-combiner for l hash func-
tions H1, . . . , Hl is a pair (C, P) of oracle turing ma-
chines C and P , where

– C : {0, 1}m → {0, 1}n has oracle access to hash
functions H1, . . . , Hi and performs the “combina-
tion” of hash functions. On input it takes a mes-
sage of fixed length m and outputs an image of
fixed length n. The output of C on an input M
and with oracle access to H1, . . . ,Hl is denoted as
CH1,...,Hl(M).

– P is an oracle machine, which provides a “proof”
of security for C. It takes as input a pair of mes-
sages (M, M ′) and outputs two vectors

W = (w1, . . . , wl) and W′ = (w′1, . . . , w
′
l).

The role of the algorithm P is to transform the
collision in C to collisions in at least l − k + 1 of the
underlying hash functions H1, . . . , Hl. If such a P ex-
ists, which transforms collisions in C to collisions in Hi

for all compatible H1, . . . ,Hl, then we consider C as
a collision resistant (k, l) combiner. Now, we formally
define what was discussed above.

We say that P k succeeds on H1, . . . , Hl, M and
M ′ if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : (wj , w
′
j) is a collision for Hj

(i.e. Hj(wj) = Hj(w′j))

Let
AdvColl[k]

P [(H1, . . . , Hl), M, M ′]

denote the probability that P k-succeeds.

Combiners for cryptographic hash functions 73

We say that (C, P) is ε-secure (k, l)-Coll-combiner,
if for all H1, . . . , Hl and all collisions (M, M ′) in C we
have:

AdvColl[k]
P [(H1, . . . , Hl),M,M ′] ≥ 1− ε

We consider (C, P) to be secure (k, l)-Coll-combiner,
if ε is negligible in the security parameter λ.

For example, a secure (1, 2)-combiner for collision
resistance can look like follows:

– CH1,H2(M) = H1(M)||H2(M)
– PH1,H2(M,M ′) = (M,M), (M, M ′)

The turing machine C just passes its input to the can-
didates and returns the concatenation of their output.
Note that collision in C implies collision in both H1

and H2. In more detail, if (M, M ′) is a collision for
such a C, then (M, M ′) is also a collision in both H1

and H2. Thus P has easy work – it copies its input to
the output. It is easy to see, that for all H1, H2 and
all collisions (M, M ′) in C is

AdvColl[1]
P [(H1,H2),M, M ′] = 1.

Therefore (C, P) is 0-secure (1, 2)-Coll-combiner.

2.2 Combiner for preimage resistance

The combiner for preimage resistance is similar to one
for collision resistance. Only difference is in the al-
gorithm P , which provides “a proof of the security“.
Algorithm P is given on its input challenge images
y1, . . . , yl of H1, . . . ,Hl, for which it has to find preim-
ages. It plays a game, in which it chooses an image of C
for which it gets a preimage.

A preimage resistant combiner for l hash functions
H1, . . . , Hl is a pair (C, P) of oracle turing machines C
and P , where

– C : {0, 1}m → {0, 1}n is the same as in the colli-
sion resistant combiner.

– P is an oracle turing machine, which provides
a “proof” of security for C. It plays the following
game. Let f : {0, 1}n → {0, 1}m ∪ {⊥} be a func-
tion, such that for all Y ∈ {0, 1}n is f(Y) = M ,
for which CH1,...,Hl(M) = Y . If such a M does not
exists, then f(Y) = ⊥.

Pre-Combf game:
1. Messages w1, . . . , wl ∈ {0, 1}m are chosen at

random, then images y1 = H1(w1), . . . , yl =
Hl(wl) are computed and given to P on its
input.

2. P with oracle access to H1, . . . ,Hl outputs
some image Y ∈ {0, 1}n.

3. A message M = f(Y), is given to P (note
that CH1,...,Hl(M) = Y), if f(Y) = ⊥, then
the game ends and P fails.

4. P continues (still can query H1, . . . , Hl) and
outputs a vector W = (w′1, . . . , w

′
l).

We note, that the function f , which parametrizes
the Pre-Comb game can be understood as a deter-
ministic “device”, which finds preimages in C (it need
not to be efficient). An algorithm P from a secure
preimage resistant combiner should win the Pre-Comb
game for all possible functions f (or at least for non-
negligible part of such functions, however in this paper
we consider combiners to be secure if they win for all
possible fs).

We say that P k succeeds on H1, . . . ,Hl, y1, . . . , yl

and f if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : w′j is preimage of yj on Hj

(i.e. Hj(w′j) = yj)

Let

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f]

denote the probability that P k-succeeds.
Finally, (C, P) is ε-secure (k, l)-Pre-combiner, if for

all H1, . . . ,Hl, all images y1, . . . , yl and all possible f
we have:

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f] ≥ 1− ε

We say (C, P) is secure (k, l)-Coll-combiner, if ε is neg-
ligible in the security parameter λ.

For example consider the following (1, 2)-combiner
for preimage resistance:

– CH1,H2 (M1||M2) = H1(M1) || H2(M2) – C gets
a message on its input, divides it into two parts
of roughly equal length and passes these two parts
to H1 and H2.

– P – given images y1, y2 on input, P computes the
image Y = y1||y2 and returns it in the second step
of the Pre-Comb game. In turn P receives a mes-
sage M , where CH1,H2(M) = Y . Finally P divides
the message M into two parts w1 and w2 (exactly
as C divides its input) and returns (w1, w2).

Since CH1,H2(w1||w2) = H1(w1)||H2(w2), we can see
that H1(w1) = y1 and H2(w2) = y2. Thus (C, P) is
0-secure (1, 2)-Pre-combiner.

74 Michal Rjaško

2.3 Combiner for second-preimage resistance

Here we define a combiner for second-preimage re-
sistance. Again, only difference from combiners for
preimage or collision resistance is in the algorithm P .

A second-preimage resistant combiner for l hash
functions H1, . . . , Hl is a pair (C,P) of oracle turing
machines C and P , where

– C : {0, 1}m → {0, 1}n is the same as in the case of
preimage resistant or collision resistant combiner.

– P is an oracle turing machine, which provides
a “proof” of security for C. It plays the following
game. Let f : {0, 1}m → {0, 1}m ∪ {⊥} be a func-
tion, such that for all M ∈ {0, 1}m is f(M) = M ′,
for M ′ 6= M and CH1,...,Hl(M) = CH1,...,Hl(M ′).
If such a M ′ does not exist, then f(M) = ⊥.

Sec-Combf game:
1. Message w ∈ {0, 1}m is chosen at random and

given to P on its input.
2. P with oracle access to H1, . . . ,Hl outputs

some message M ∈ {0, 1}m.
3. P is given a message M ′ = f(M) (M ′ 6= M

and CH1,...,Hl(M) = CH1,...,Hl(M ′)).
4. P continues (still can query H1, . . . , Hl) and

outputs a vector (w′1, . . . , w
′
l).

We say that P k succeeds on H1, . . . , Hl, w and f
if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : w′j is second-preimage of w on Hj

(i.e. Hj(w′j) = Hj(w) and w′j 6= wj)

Now, let

AdvSec[k]
P [(H1, . . . , Hl), w, f]

denote the probability that P k-succeeds.
Finally, (C,P) is ε-secure (k, l)-Sec-combiner, if for

all H1, . . . , Hl, all messages w and all possible f we
have:

AdvSec[k]
P [(H1, . . . , Hl), w, f] ≥ 1− ε

And we say (C, P) is secure (k, l)-Coll-combiner, if ε is
negligible in the security parameter λ.

Consider the following example of secure (1, 2)
combiner for second-preimage resistance:

– CH1,H2(M) = H1(M)||H2(M)
– P – on input w in the second step of the Sec-Comb

game P returns a message M = w. In turn P
receives a message M ′ 6= M , where CH1,H2(M ′) =
CH1,H2(M). Finally P returns a vector (M ′,M ′).

It is easy to see,

CH1,H2(M ′) = H1(M ′)||H2(M ′)
= H1(M)||H2(M)
= CH1,H2(M),

thus H1(M ′) = H1(M), H2(M ′) = H2(M).

3 Impossibility proofs

Boneh and Boyen [1] followed by Pietrzak [3] showed,
that there does not exist a collision resistant (k, l)
combiner with short output. In this section we prove
the similar results for preimage resistance and second-
preimage resistance.

The impossibility result for preimage resis-
tant combiners is given in the Theorem 1, and in the
Theorem 2 is given the impossibility result for second-
preimage resistance.

We start by notation used in the rest of this paper.
Let (C,P) be some combiner and let:

– Wi(M) be the set of oracle queries to Hi made
while evaluating CH1,...,Hl on the message M

– Vi(M) = {Hi(M); M ∈ Wi(M)} be the set of
corresponding answers.

– wi,j(M) be the j-th query to Hi made while eval-
uating CH1,...,Hl(M) and vi,j(M) be the corre-
sponding answer.

To simplify the presentation we will assume that
P can output only messages that it has queried during
the game. Note that we can assume this without loss
of generality.

Theorem 1. Let (C, P) be a (k, l)-combiner for pre-
image resistance, where C can make at most qC oracle
queries. Suppose, that

n < (v − lg(qC))(l − k + 1)− l

Then there exist y1, . . . , yl, H1, . . . ,Hl and f , such that

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f] is negl. in λ

Proof. Let H1, . . . ,Hl : {0, 1}∗ → {0, 1}v be all uni-
formly random hash functions. Let qP be the total
number of queries that P makes in the Pre-Comb game
and let y1, . . . , yl be the challenge images that P gets
in the first step of the game. From the fact, that P runs
in a polynomial time we have that qP = p(λ) for some
polynomial p. Therefore the probability that P queries
any Hi with some message w, such that Hi(w) = yi,
is negligible in λ. To see this only a simple idea is
needed. All of the His are random thus the probabil-
ity that P gets output yi for some i = 1, . . . , l in one

Combiners for cryptographic hash functions 75

query is l/2v. The probability that P queries yi for
some i in qP queries is therefore

qP
l

2v
= p(λ)

l

2p′(λ)
,

what is negligible in λ.
Thus P ’s only chance to win is in the message M

it gets as a preimage for the image Y chosen in the
second step of the Pre-Comb game. We show, that if
n < (v− lg(qC))(l− k +1)− l, then there exist images
y1, . . . , yl, and a function f such that for all images Y
which P can output in the second step, evaluating of
C(f(Y)) does not present a preimage for at least k of
the y1, . . . , yl. This means, that for such H1, . . . , Hl,
y1, . . . , yl and f is

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f]

negligible in λ, what we want to prove.
Let H1, . . . , Hl be as defined above (independent

random hash functions) and let Y ∈ {0, 1}n be some
image of CH1,...,Hl . Consider the following random ex-
periment. First, images y1, . . . , yl ∈ {0, 1}v are chosen
at random and then a message M ∈ {0, 1}m is ran-
domly chosen. Now consider the following events:

E1 ⇐⇒ CH1,...,Hl(M) = Y

E2 ⇐⇒ ∃J ⊆ {1, . . . , l}, |J | > l − k :
∀j ∈ J : yj ∈ Vj(M)

Note that if Pr[E1] > Pr[E2]. then Pr[E1∧¬E2] > 0,
what means, that there exist images y1, . . . , yl∈{0, 1}v

such that for each Y ∈ {0, 1}n there exists a message
M ∈ {0, 1}m for which CH1,...,Hl(M) = Y and the
evaluation of CH1,...,Hl(M) does not present preim-
ages for y1, . . . , yl. In other words, it means that there
exist images y1, . . . , yl and a function f1 for which the
theorem holds.

We know that for particular Y and randomly cho-
sen M is

Pr[CH1,...,Hl(M) = Y] ≥ 2−n.

Thus
Pr[E1] ≥ 2−n.

To find Pr[E2], let qi be the number of queries to Hi

made by C (note that
∑l

i=1 qi = qC). The Pr[E2] can
be upper bounded by the probability that the best or-
acle algorithm AH1,...,Hl , which is allowed to query Hi

at most qi times finds a preimage for at least l− k + 1
of yi (A can evaluate CH1,...,Hl and then A’s success
probability is equal to Pr[E2]). Since Hi are all inde-
pendent random functions, the best A can do is to

1 for each Y we set f(Y) to the corresponding message M

query each Hi with qi distinct inputs. Now we follow
the same steps as Pietrzak [3] did in the proof of the
similar theorem for collision resistant combiner.

Pr[E2] ≤ Pr[AH1,...,Hl finds l − k + 1 preimages]

≤
∑

J⊆{1,...,l}
|J|=l−k+1

Pr[∀i ∈ J : A finds preimage for yi]

≤
∑

J⊆{1,...,l}
|J|=l−k+1

∏

i∈J

qi

2v

<
∑

J⊆{1,...,l}
|J|=l−k+1

ql−k+1
C

2v(l−k+1)

≤
(

l − k + 1
l

)
ql−k+1
C

2v(l−k+1)
<

2lql−k+1
C

2v(l−k+1)

When we put everything together:

lg(Pr[E1]) ≥ lg(2−n) = −n

and

lg(Pr[E2]) < lg
(

2lql−k+1
C

2v(l−k+1)

)

= (−(v − lg(qC))(l − k + 1) + l).

Thus if n < (v− lg(qC))(l−k+1)− l we have Pr[E1] >
Pr[E2], what we wanted to prove.

¤

The condition n < (v−lg(qC))(l−k+1)−l gives the
lower bound how short can be the output of a secure
(k, l)-Pre-combiner. It looks rather unnatural, how-
ever if C is allowed to query each Hi exactly once
and we consider only (1, l)-combiners (what means,
that a combiner is secure if at least one of the candi-
dates is secure) then the condition can be rewritten to
n < (v − 1)l.

We note, that this lower bound need not to be
optimal – maybe there exists a higher lower bound. We
leave such an analysis for future work. Similar analysis
for collision resistant combiners can be found in the
work [2].

Theorem 2. Let (C, P) be a (k, l)-combiner for
2nd-preimage resistance, where C makes at most
qC oracle queries. Suppose, that

n < (v − lg(qC))(l − k + 1)− l + 1

Then there exist w, H1, . . . , Hl and f , for which

AdvSec[k]
P [(H1, . . . , Hl), w, f] is negligible in λ

76 Michal Rjaško

Proof. The proof is very similar to one in the Theo-
rem 1, therefore we provide just a sketch of the proof.
Let H1, . . . ,Hl be all independent random hash func-
tions. We claim, that the probability where P queries
a second-preimage of w for at least one of the Hi is
negligible. This is due the fact, that P runs in a poly-
nomial time and therefore it can make at most polyno-
mial number of queries, what is not enough for winning
against random functions (for more formal discussion
see the similar part in the proof of the Theorem 1).

Therefore we only need to prove that if n < (v −
lg(qC))(l−k +1)− l +1, then there exist a message w
and a function f , where for all messages M that P can
output in the second step of the Sec-Comb game eval-
uation of C(f(M)) does not present a second preimage
of w for at least k of the H1, . . . ,Hl.

Thus let H1, . . . , Hl be as defined above and let
M ∈ {0, 1}m be some message. Consider the random
experiment, where w ∈ {0, 1}m and M ′ ∈ {0, 1}m are
chosen uniformly at random. We define the following
events E1 and E2:

E1 ⇐⇒ M ′ 6= M ∧ CH1,...,Hl(M) = CH1,...,Hl(M ′)
E2 ⇐⇒ ∃J ⊆ {1, . . . , l}, |J | > l − k : (∀j ∈ J)(∃i) :

vj,i(M ′) = Hj(w) ∧ wj,i(M ′) 6= w

In other words, E1 is the event when M ′ is the
second-preimage of M in the sense of CH1,...,Hl and
E2 means that the evaluation of CH1,...,Hl(M ′) does
presents at least l − k + 1 second-preimages for w.
Again, if we prove that Pr[E1] > Pr[E2], then Pr[E1 ∧
¬E2] > 0, what means that for each M the above
w1, . . . , wl and M ′ exist and therefore there exists
a function f (we set f(M) := M ′) for which the the-
orem holds (together with w1, . . . , wl).

Now, since m > n

Pr[E1] = 2−n − 2−m ≥ 2−n−1

Now, let qi be the maximum number of queries
to Hi made by C. We can upper bound Pr[E2] by the
probability that the best oracle algorithm A which can
query each Hi at most qi times finds second-preimage
of w for at least l−k+1 of the His. However H1, . . . ,Hl

are all independent random functions, thus the best A
can do is to query each Hi on qi distinct inputs dif-
ferent from w. If we follow the steps as in the corre-
sponding part of the proof of the Theorem 1 we get

Pr[E2] <
2lql−k+1

C

2v(l−k+1)

When we put everything together:

lg(Pr[E1]) ≥ lg(2−n−1) = −n− 1

and

lg(Pr[E2]) < lg
(

2lql−k+1
C

2v(l−k+1)

)

= −(v − lg(qC))(l − k + 1) + l.

Thus if n < (v − lg(qC))(l − k + 1) − l + 1 we have
Pr[E1] > Pr[E2], what we wanted to prove.

¤

4 Conclusion

We proved that combiners for preimage resistance and
second-preimage resistance with output (significantly)
shorter than concatenation do not exist. Our results
are similar to ones for collision resistance from [1]
and [3]. In particular, we showed that one can not cre-
ate a secure (k, l)-combiner (for some mentioned secu-
rity notion) of l arbitrary hash functions, with output
shorter than concatenation of l − k + 1 candidates.

These results are, however, too strict in a point,
that we want from a combiner to work for all l-tuples
of (compatible) hash functions and that the al-
gorithm P providing the proof of combiner’s security
must succeed with non-negligible probability on all
possible inputs. Such a condition is not very practi-
cally relevant – one can think of creating a combiner,
which combines only hash functions from some subset
of all hash functions (e.g. set of functions computable
in polynomial time). Another way how to weaken the
restrictions on combiners is to allow the algorithm P
to fail on negligible part of inputs. We leave the analy-
sis of such “weaker” combiners for a future work.

References

1. D. Boneh and X. Boyen: On the impossibility of ef-
ficiently combining collision resistant hash functions.
LNCS, 4117, 2006.

2. R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vad-
han and H. Wee: Amplifying collision resistance:
a complexity-theoretic treatment. LNCS, 4622, 2007.

3. K. Pietrzak: Non-trivial black-box combiners for
collision-resistant hash-functions don’t exist. LNCS,
4515, 2007.

4. P. Rogaway and T. Shrimpton: Cryptographic hash-
function basics: definitions, implications, and separa-
tions for preimage resistance, second-preimage resis-
tance, and collision resistance. In Fast Software Encryp-
tion, LNCS, Springer, 3017, 2004, 371–388.

5. M. Rjaško: Properties of cryptographic hash functions.
Mikulášska Kryptobeśıdka, 2008.

Localization with a low-cost robot?

Stanislav Slušný, Roman Neruda, and Petra Vidnerová

Institute of Computer Science, Academy of Sciences, Czech Republic
slusny@cs.cas.cz

Abstract. The robot localization problem is a fundamen-
tal and well studied problem in robotics research. Algo-
rithms used to estimate pose on the map are usually based
on Kalman or particle filters. These algorithms are able
to cope with errors, that arise due to inaccuracy of robot
sensors and effectors. The performance of the localization
algorithm depends heavily on their quality.
This work shows performance of localization algo-
rithm based on particle filter with small miniature low-cost
E-puck robot. Information from VGA camera and eight in-
frared sensors are used to correct estimation of the robot’s
pose.

1 Introduction

The robot localization problem is a fundamental and
well studied problem in robotics research. Several al-
gorithms are used to estimate pose on the known map
and cope with errors, that arise due to inaccuracy
of robot sensors and effectors. Their performance de-
pends heavily on quality of robot’s equipment: the
more precise (and usually more expensive) sensors, the
better results of localization procedure.

This work deals with localization algorithm based
on particle filter with small miniature low-cost E-puck
robot. Information from cheap VGA camera and eight
infrared sensors are used to correct estimation of the
robot’s pose. To achieve better results, several land-
marks are put into the environment. We assume, that
robot knows the map of the environment in advance
(distribution of obstacles and walls in the environment
and position of the landmarks). We do not consider the
more difficult simultaneous localization and mapping
(SLAM) problem in this work (the case, when robot
does not know it’s own position in advance and does
not have the map of the environment available).

E-puck is a widely used robot for scientific and edu-
cational purposes - it is open-source and low-cost. De-
spite its cheapness and limited sensor system, localiza-
tion can be successfully implemented, as will be shown
in this article. We are not aware of any published re-
sults of localization algorithms with E-puck robot. The
survey of localization methods can be found in [1].
? This work was supported by GA ČR grant 201/08/1744,

Institutional Research Plan AV0Z10300504 and by the
Ministry of Education of Czech Republic under the
project Center of Applied Cybernetics No. 1M684077004
(1M0567).

Fig. 1. Miniature e-puck robot has eight infrared sensors
and two motors.

2 Introducing E-puck robot

E-puck ([2, 3], Figure 1) is a mobile robot with a di-
ameter of 70 mm and a weight of 50 g. The robot
is supported by two lateral wheels that can rotate in
both directions and two rigid pivots in the front and
in the back. The sensory system employs eight “active
infrared light” sensors distributed around the body,
six on one side and two on other side. In “passive
mode”, they measure the amount of infrared light in
the environment, which is roughly proportional to the
amount of visible light. In “active mode” these sensors
emit a ray of infrared light and measure the amount
of reflected light. The closer they are to a surface (the
e-puck sensors can detect a white paper at a max-
imum distance of approximately 8 cm), the higher
is the amount of infrared light measured. Unfortu-
nately, because of their imprecision and characteristics
(see Figure 2), they can be used as bumpers only. As
can be seen, they provide high resolution only within
few millimeters. They are very sensitive to the obsta-
cle surface, as well. Besides infrared sensors, robot is
equipped with low-cost VGA camera. The camera and
image processing will be described in the following sec-
tion.

Two stepper motors support the movement of the
robot. A stepper motor is an electromechanical de-
vice which converts electrical pulses into discrete me-
chanical movements. It can divide a full rotation into
a 1000 steps, the maximum speed corresponds to
about a rotation every second.

78 Stanislav Slušný et al.

Fig. 2. Multiple measurements of front sensor. E-puck was
placed in front of the wall at a given distance and average
IR sensor value from 10 measurements was drown into the
graph.

Fig. 3. Differential drive robot schema.

3 Dead reckoning

Dead reckoning ([4], derived originally from deduced
reckoning) is the process of estimating robot’s current
position based upon a previously determined position.
For shorter trajectories, position can be estimated us-
ing shaft encoders and precise stepper motors.

E-puck is equipped with a differential drive (Fig-
ure 3) - a simplest method to control robot. For a dif-
ferential drive robot the position of the robot can be
estimated by looking at the difference in the encoder
values ∆sR and ∆sL. By estimating the position of the
robot, we mean the computation of tuple x, y, Θ as
a function of previous position (xOLD, yOLD, ΘOLD)
and encoder values (∆sR and ∆sL).




x
y
θ


 =




xOLD

yOLD

θOLD


 +




∆x
∆y
∆θ


 (1)

∆θ =
∆sR −∆sL

L
(2)

∆s =
∆sR + ∆sL

2
(3)

Parameters Value

Maximum translational velocity 12.8 cm / sec
Maximum rotational velocity 4.86 rad / sec
Stepper motor maximum speed +- 1000 steps / sec
Distance between tires 5.3 cm

Table 1. Velocity parameters of E-puck mobile robot.

Fig. 4. Illustration of error accumulation. Robot was or-
dered to make 10 squares of size 30 cm. Odometry errors
are caused mostly by rotation movement.

∆x = ∆s.cos(θ +
∆θ

2
) (4)

∆y = ∆s.sin(θ +
∆θ

2
) (5)

The major drawback of this procedure is error ac-
cumulation. At each step (each time you take an en-
coder measurement), the position update will involve
some error. This error accumulates over time
and therefore renders accurate tracking over large
distances impossible (see Figure 4). Tiny differences
in wheel diameter will result in important errors af-
ter a few meters, if they are not properly taken into
account.

4 Image processing

The robot has a low-cost VGA camera with resolution
of 480x640 pixels. Unfortunately, the Bluetooth con-
nection supports only a transmission of 2028 colored
pixel. For this reason a resolution of 52x39 pixels max-
imizes the Bluetooth connection and keeps a 4:3 ratio.
This is the resolution we have used in our experiments
(see Figure 4). Another drawback of the camera is that
it is very sensitive to the light conditions.

Despite these limitations, camera can be used to
detect objects or landmarks. However, the information
about distance to the landmark extracted from the

Localization with a low-cost robot 79

Fig. 5. The physical parameters of the real camera (pic-
ture taken from [2]). Camera settings used in experiments
corresponds to parameters a = 6 cm, b = 4.5 cm, c = 5.5
cm, α = 0.47 rad, β = 0.7 rad.

camera is not reliable (due to the noise), and we do
not use it in following section.

Landmarks are objects of rectangular shape of size
5x5 cm and three different colors - red, green and blue.
We implemented image processing subsystem, that de-
tects relative position of the landmark from the robot.
Following steps are included:

– Gaussian filter is used to reduce camera noise ([5])
– Color segmentation into the red, blue and green

color. ([6])
– Blob detection is used to detect position and size

of the objects on the image. ([7])
– Object detection is used to remove objects from

image, that have non-rectangular shape.

Output from the image processing is the relative
position and color of the detected landmarks (for ex-
ample - I see red landmark by angle 15 degrees).

5 Particle filter localization

As shown previously (Figure 4), pose estimation based
on dead reckoning is possible for short distances only.
For longer trajectories, more clever methods are
needed. These methods are based either on Kalman
filter [8] (or some of its variants) or particle
filter (PF) [9].

The PF possesses three basic steps - state predic-
tion, observation integration and resampling. It works
with quantity p(xt) - the probability, that robots is
located at the position xt in time t. In the case of PF,
the probability distribution is represented by the set
of particles. Such a representation is approximate, but
can represent much broader space of distributions
that, for example, Gaussians, as it is nonparametric.

Each particle x
[m]
t is a hypothesis, where the robot

can be at time t. We have used M particles in our

Fig. 6. First step in PF algorithm - to each position hy-
pothesis xt−1 is applied odometry model based on move-
ment ut−1 and new hypothesis xt is sampled from distrib-
ution p(xt|xt−1, ut−1).

Fig. 7. Second step in PF algorithm - each particle is as-
signed a importance factor, corresponding to the proba-
bility of observation zt. If image processing detects two
landmarks on the actual camera image, particles 0 and 1
will be assigned small weight.

experiment. The input of the algorithm is the set of
particles Xt, most recent control command ut and the
most recent sensor measurements zt.

1. State prediction based on odometry.
The first step is the computation of temporary
particle set X from Xt. It is created by apply-
ing odometry model p(xt|ut, xt−1) to each parti-
cle x

[m]
t from Xt.

2. Correction step - Observation integration
The next step is the computation of importance
factor w

[m]
t . It is the probability of the mea-

surement zt under particle x
[m]
t , given by w

[m]
t =

p(zt|x[m]
t).

Two types of measurements were considered:
– Measurement coming from distance sensors

Distance sensor (one averaged value for front,
left, right and back direction) were used as
bumpers only. In case of any contradiction be-
tween real state and hypothesis, importance
factor was decreased correspondingly.

– Measurement obtained from image processing

80 Stanislav Slušný et al.

Fig. 8. Placement of red, green and blue landmarks in rec-
tangular arena of size 1x0.75m.

Output from image processing was compared
with expected position of the landmarks. In
case of any contradiction (colors and relative
angle of landmarks were checked), importance
factor was decreased. The bigger mismatch,
the smaller importance factor was assigned to
the hypothesis.

3. Re-sampling
The last step incorporates so-called importance
sampling. The algorithm draws with replacement
M particles from temporary set X and creates new
particle set Xt+1. The probability of drawing each
particles is given by its importance weight. This
principle is called survival of the fittest in AI ([10]).

6 Experiments

Experiments were carried out in an arena of
size 1x0.75 meters. Three landmarks (red, blue and
green, one of each color) were placed into the arena,
as shown on the figure 8. Robot was controlled by com-
mands sent from computer, values from sensors were
sent back to computer by using Bluetooth. Execution
of each command took 64 milliseconds.

The experiment started by putting robot into the
arena and randomly distributing 2000 particles. After
several steps, the PF algorithm relocated the particles
into real location of the robot. The robot was able
to localize itself. The convergence of the algorithm de-
pends on the fact, if robot is moving near the wall or in
the middle of the arena. The impact of infrared sensors
was obvious. Algorithms were verified in the simula-
tor([11]) and in reality, as well. The video demonstra-
tion can be found at ([12]).

The localization algorithm was able to cope with
even bigger areas, up to the size of three meters. How-
ever, we had to add more landmarks to simplify the lo-
calization process. Localization algorithm showed sat-
isfiable performance, relocating hypothesis near real
robot pose.

7 Conclusions

Localization and pose estimation is an opening gate
towards more sophisticated robotics experiments. As
we have shown, the localization process can be car-
ried out even with low-cost robot. Experiments were
executed both in simulation and real environment.

A lot of work remains to be done. The experiments
in this work considered static environment only. Ad-
dition of another robot will make the problem much
more difficult.

As we have mentioned already, there are certain
areas in the environment, where convergence of the
localization algorithm is very fast - in corners or near
walls. Sensor fusion is the process of combining sen-
sory data from disparate sources such that the result-
ing information is in some sense better than would be
possible when these sources were used individually. We
are dealing with sensor fusion of infrared sensors and
input from camera.

As a future work, we would like to implement path
planning, that takes into account performance of the
localization algorithm. Suggested path (generated by
path planning algorithm) should be safe (the chance
to get lost should be small) and short. Multi-criterial
path planning will be based on dynamic program-
ming ([13]). The idea is to learn areas with high loss
probability from experience.

References

1. S. Thrun, W. Burgard, and D. Fox: Probabilistic Ro-
botics. Cambridge, MA: MIT Press, 2005.

2. http://en.wikibooks.org/wiki/Cyberbotics

Robot Curriculum/
3. E-puck, online documentation.

http://www.e-puck.org
4. R.C. Arking: Behavior-Based Robotics. The MIT

Press, 1998.
5. L.G. Shapiro, G.C. Stockman: Computer Vision.

Prentence Hall, 150, 2001, p. 137.
6. J. Bruce, T. Balch and M. Veloso: Fast and Inexpensive

Color Image Segmentation for Interactive Robots. In
Proceedings of IROS-2000, 2000, 2061–2066.

7. http://www.v3ga.net/processing/BlobDetection/

index-page-home.html
8. R.E. Kalman: A new approach to linear filtering and

prediction problems. Trans. ASME, Journal of Basic
Engineering 82, 35–45.

9. R.Y. Rubinstein: Simulation and the Monte Carlo
Method.. John Wiley and Sons, Inc.

10. K. Kanazawa, D. Koller, and S.J. Russel: Stochastic
simulation algorithms for dynamic probabilistic net-
works. In Proceedings of the 11th Annual Conference
on Uncertainty in AI, Montreal, Canada.

11. Webots simulator. http://www.cyberbotics.com.
12. Video demonstration. http://www.cs.cas.cz/slusny.
13. R.S. Sutto, and A. Barto: Reinforcement Learning: An

Introduction. The MIT Press, 1998.

	000-uvod-ceur
	001
	007
	023
	031
	037
	045
	053
	061
	071
	077

