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the sea level in a location not directly accessible by publictransport).

Thematically workshop ranges from foundations of informatics, security, through data and semantic web
to software engineering.
These proceedings consists of

– 8 original scientific papers

All papers were refereed by at least two independent referees. There were 41 submissions.

The workshop was organized by Institute of Informatics of University of P.J. Šafárik in Košice; Institute
of Computer Science of Academy of Sciences of the Czech Republic, Prague; Faculty of Mathematics
and Physics, School of Computer Science, Charles University, Prague and Slovak Society for Artificial
Intelligence.

Partial support has to be acknowledged from projects of the Program Information Society of the Thematic
Program II of the National Research Program of the Czech Republic 1ET100300419 “Intelligent models, al-
gorithms, methods and tools for the semantic web realization” and 1ET100300517 “Methods for intelligent
systems and their application in data mining and natural language processing”.

Peter Vojtáš



Program Committee

Peter Vojtáš, (chair),Charles University, Prague, CZ

Gabriela Andrejková,University of P.J. Šafárik, Košice, SK

Mária Bieliková,Slovak University of Technology in Bratislava, SK

Leo Galamboš,Charles University, Prague, CZ

Ladislav Hluchý,Slovak Academy of Sciences, Bratislava, SK

Tomáš Horváth,University of P.J. Šafárik, Košice, SK

Karel Ježek,The University of West Bohemia, Plzeň, CZ
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Extending Datalog to cover XQuery⋆

David Bedńarek

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University Prague

david.bednarek@mff.cuni.cz

Abstract. Datalog is a traditional platform in database research
and, due to its ability to comprehend recursion, it seems to be
a good choice for modeling XQuery. Unfortunately, XQuery func-
tions have arguments carrying sequences; therefore, logic-based
models of XQuery must be second-order languages and, conse-
quently, Datalog is usually extended by node-set variables. In
this paper, we suggest an alternative approach - extending Data-
log by allowing structured variables in a form similar to Dewey
numbers. This extension is then used to model the behavior of
a XQuery program as a whole, using predicates that reflect the
semantics of XQuery functions only in the context of the given
program. This fact distinguishes our approach from traditional
models that strive to comprehend the behavior of a function inde-
pendently of its context. The advantage of this approach is that it
uses the same means to model the structural recursion of docu-
ments and the functional recursion of programs, allowing various
modes of bulk processing, loop reversal and other optimization
techniques.

1 Introduction

Contemporary XQuery processing and optimization tech-
niques are usually focused on querying and, in most cases,
ignore the existence of user-defined functions. In the era
of XSLT 1.0, the implementation techniques had to recog-
nize user-defined functions (templates) well (see for in-
stance [3]); however, this branch of research appears dis-
continued as the community shifted to XQuery. The re-
cent development in the area of query languages for XML
shows that the XQuery language will likely be used as one
of the main application development languages in the XML
world [1]. In particular, intensive use of user-defined func-
tions may be expected.

There were several attempts to apply Datalog or Data-
log-like models to XPath or XQuery. There are also top-
down approaches using structural recursion, i.e. strongly
syntactically limited form of Horn clauses with function
symbols [7]. More general forms, using first-order logic,
were also used in the area of XML constraints [8].

In this paper, we (informally) define the language BT-
Log as an extension of Datalog. In the Section 3, an ab-
straction of an XQuery program as a forest is defined. In the
fourth section, the principles of the transformation to BT-
Log is defined and shown on an example. In the Section 5,

⋆ Project of the program “Information society” of the Thematic
program II of the National research program of the Czech Re-
public, No. 1ET100300419

a detailed representation of the most important XQuery
core operators is given.

2 BTLog

Traditional Datalog program is a set of rules in the form of
Horn clauses without function symbols. We will extend this
definition with one binary function symbolT, correspond-
ing to the creation of a binary treeT(x, y) from subtreesx
andy. We will call this languageBTLog(from binary-tree
logic). Of course, addition of a function symbol raises the
power of the language quite dramatically; therefore, some
properties of Datalog are lost and new problems are raised:

– Termination– using theT-operator, any number of val-
ues may be generated. Therefore, termination is not
generally guaranteed and any BTLog evaluation algo-
rithm shall cope with termination problems.

– Minimal model semantics– without negation, minimal
model semantics works well with BTLog, just as it
works with Datalog without negation.

– Stratification– In Datalog¬, stratification is used to
extend the notion of minimal model. Similar defini-
tion may be used in BTLog, resulting in the language
BTLog¬,strat.

– Non-stratifiable program semantics– stable modelse-
mantics is used for non-stratified BTLog¬ programs.

Definition of the abovementioned terms and detailed
discussion of theoretical properties of such a language may
be found for instance in [5].

3 Abstraction of a XQuery program

Similarly to the normative definition of the XQuery seman-
tics, we use (abstract) grammar rules of thecore gram-
mar [9] as the base for the models. A XQuery program is
formalized as a forest of abstract syntax trees (AST), one
tree for each user-defined function and one for the main ex-
pression. Each node of each AST, i.e. each sub-expression
appearing in the program, has a (program-wide) uniquead-
dressE. These addresses will participate as subscripts in
BTLog predicate names and they will also appear as con-
stants in some rules.
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Fig. 2.Query 1 – Forest model.

declare function toc( $P)
{ for $X in $P return <section> {

$X/title , toc( $X/section) } </section>
};

<toc> {
toc( for $S in doc("D") return $S/book)

} </toc>

Fig. 1.Query 1.

Fig. 2 shows the abstract syntax forest corresponding
to the Query 1 at Fig. 1. Node adresses are shown as letters
left to the nodes.

For each AST nodeE, the setvars[E] contains the
names ofaccessible variables. In particular, whenE is the
root of a function AST,vars[E] contains the names of ar-
guments of the function, including implicit arguments like
the context node.

4 Principles of the transformation

The model is based on the following principles:

– Nodes within a tree are identified bynode identifiers
using Dewey ID labeling scheme. (See, for instance
[6].)

– A tree is encoded using a mapping of Dewey labels to
node properties.

– A tree created during XQuery evaluation is identified
by a tree identifierderived from the context in which
the tree was constructed.

– A node is globally identified by the pair of a tree iden-
tifier and a node identifier.

– A sequence (i.e. any XQuery expression value) is mod-
eled using a mapping ofsequence identifiersto se-
quence items. Since a sequence may mix atomic values

and document nodes, the mapping is divided into two
interweavedlists.

– Eachsequencecontaining document nodes is accom-
panied by atree environmentwhich contains the en-
coding of the document trees to which the nodes of the
sequence belong.

– Evaluating afor-expression corresponds to iteration
through all sequence identifiers in the value of thein-
clause.

– A particular context reached during XQuery evalua-
tion is identified by the pair of acall stack, containing
positions in the program code, and acontrol variable
stack, containing sequence identifiers selected by the
for-expressions along the call stack.

– Node identifiers, tree identifiers, sequence identifiers,
and control variable stacks share the same domain of
binary trees with values on leaves, allowing to con-
struct each kind of identifier from the others. In most
cases, a binary tree is used to encode a (generalized)
string – then, the rightmost path in the tree has the
length of the string and the children of the rightmost
path are the letters of the string.

4.1 Model predicates

Our model assigns a set of predicates to each AST node,
i.e. to each addressE:

– InvocationinvE(i,f) enumerates the contexts in which
the expressionE is evaluated. Argumenti represents
the call stack that brought the execution to the exam-
ined expressionE. f is the stack of sequence identi-
fiers selected by thefor-clauses throughout the de-
scent alongi to E. The two stacks together form the
identification of the dynamic context in which an ex-
pression is evaluated. While the XQuery standard de-
fines dynamic context as the set of variable assign-
ments (with some negligible additions), our notion of
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dynamic context is based on the stack pair that deter-
mines the descent through the code to the examined
expression, combining both the code path stored ini

and thefor-control variables inf . The key to the suf-
ficiency of this model is the observation that the vari-
able assignment is a function of the stack pair.

– Atomic listalstE(i, f, s, v) represents the atomic value
portion of the assignment of the result value of the ex-
pressionE to the contexts enumerate byinvE(i, f).
s is a sequence identifier,v is a value of an atomic
type as defined by the XQuery standard. The predicate
alstE(i, f, s, v) is true if the value of the expression
E in the context(i, f) contains the atomic valuev at
positions.

– Node listnlstE(i, f, s, t, n) represents the node portion
of the result value of the expressionE. The meaning of
i, f , ands is the same as inalstE . t is a tree identifier –
for external documents, it is a literal value, for tempo-
ral trees, it is the expressionT(i1, f1) corresponding
to the environment identification at the moment of tree
creation.n is a node identifier in the form of a Dewey
ID.

– EnvironmentenvE(i, t, n, a) represents the tree envi-
ronment associated to the result value of the expression
E. i determines the call context (note that the envi-
ronment is independent of the control variable stack).
t is a tree identifier,n is a node identifier,a is a tu-
ple of properties assigned to a node by the XML Data
Model, containing node kind, name, typed and string
values, etc. Particular properties are accessed using
predicatesname(a, v), string(a, v), etc.

– valst
E,$x(i, f, s, v), vnlst

E,$x(i, f, s, t, n), and
venv

E,$x(i,t,n,a) represent the assignment of the val-
ues of the variable$x ∈ vars[E] to the contexts sati-
fying invE(i, f). The meaning of the arguments is the
same as inalstE , nlstE , andenvE .

4.2 Example

The following example shows the Query 1 transformed to
a BTLog program. The subscripts in the predicate names
correspond to the adresses shown in Fig. 2; unused and
identity rules were removed. The main expression of the
Query 1 transforms to the following BTLog rules:

inva(1, 1). -- program start

enve(i,D, n, a) :– inve(i, f), doc(”D”, n, a).

-- doc(”D”) tree environment

vnlstf,$S(i,T(s, f), 1, t, n) :– nlsta(i, f, s, t, n).

-- variable$S

nlstf(i, f,T(t, n), t, n) :– vnlstf,$S(i, f, s, t,m),

enve(i, t, n,T(element, book)),

child(m,n).

-- $S/book node

nlstd(i, f,T(s, r), t, n) :– nlstf(i,T(s, f), r, t, n).

-- the result of the for-expression

vnlstg,$P(T(c, i), f, s, t, n) :– nlstd(i, f, s, t, n).

-- argument$P in toc

venvg,$P(T(c, i), t, n, a) :– enve(i, t, n, a).

-- environment of$P in toc

nlstc(i, f, s, t, n) :– nlstg(T(c, i), f, s, t, n).

-- the return value oftoc

envc(i, t, n, a) :– envg(T(c, i), t, n, a).

-- the return value environment

nlstb(i, f, 1,T(i, f), 1) :– inva(i, f).

-- the<toc> node

envb(i,T(i, f), 1,T(element, toc)) :– inva(i, f).

envb(i,T(i, f),T(s, p), a) :– nlstc(i, f, s, t,m),

envc(i, t, n, a), cat(n,m, p).

-- the<toc> node environment

out(i, t, n, a) :– envb(i, t, n, a).

-- the output tree

The following rules correspond to the functiontoc:

invj(i,T(s, f)) :– vnlstg,$P(i, f, s, t, n).

-- the invocation of the return clause

vnlstj,$X(i,T(s, f), 1, t, n) :– vnlstg,$P(i, f, s, t, n).

-- variable$X

nlstl(i, f,T(t, n), t, n) :– vnlstj,$X(i, f, s, t,m),

venvg,$P(i, t, n,T(element, title)),

child(m,n).

-- $X/title expression

nlstn(i, f,T(t, n), t, n) :– vnlstj,$X(i, f, s, t,m),

venvg,$P(i, t, n,T(element, section)),

child(m,n).

-- $X/section expression

vnlstg,$P(T(m, i), f, s, t, n) :– nlstn(i, f, s, t, n).

-- argument$P in toc

venvg,$P(T(m, i), t, n, a) :– venvg,$P(i, t, n, a).

-- environment of$P in toc

nlstm(i, f, s, t, n) :– nlstg(T(m, i), f, s, t, n).

-- the return value oftoc

envm(i, t, n, a) :– envg(T(m, i), t, n, a).

-- the return value environment

nlstk(i, f,T(1, s), t, n) :– nlstl(i, f, s, t, n).

nlstk(i, f,T(2, s), t, n) :– nlstm(i, f, s, t, n).

-- the concatenated value

envk(i, t, n, a) :– venvg,$P(i, t, n, a).

envk(i, t, n, a) :– envm(i, t, n, a).
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-- the environment of the concatenation

nlstj(i, f, 1,T(i, f), 1) :– invj(i, f).

-- the<section> node

envj(i,T(i, f), 1,T(element, toc)) :– invj(i, f).

envj(i,T(i, f),T(s, p), a) :– nlstk(i, f, s, t,m),

envk(i, t, n, a), cat(n,m, p).

-- the<section> node environment

nlsth(i, f,T(s, r), t, n) :– nlstj(i,T(s, f), r, t, n).

-- the result of the for-expression

nlstg(i, f, s, t, n) :– nlsth(i, f, s, t, n).

-- the result of the function

envg(i, t, n, a) :– envj(i, t, n, a).

-- the result environment

Figure 3 show the dependence graph for the predicates
of Query 1. There are three strongly connected components
(shown in bold) – the first one carries the environment of
argument$P (i.e. the input document) down through the
recursion of the functiontoc. The second component
corresponds to the recursive descent of the variable$P
through the document. The third component collects the
constructed nodes back, unwinding the call stack.

5 Representation of Core XQuery
Operators

There are several variants ofcore subsets of XQuery, in-
cluding thecore grammardefined in the W3C standard
[9], the LixQuery framework [4], and others [2]. Since the
XSLT and XQuery are related languages and the transla-
tion from XSLT to XQuery is known (see [2]), the model
may be applied also to XSLT.

Note: Most XQuery operators do not change the as-
signment of variable values; therefore, we will omit the
propagation rules in the subsequent description. We will
also omit the rules foralstE andvalst

E,$x whenever they
are similar tonlstE andvnlst

E,$x.

Function call – E0 = f( E1 )
Assume thatEf is the root of the function and$x is the

name of the formal argument. The rules implement pushing
the call addressE0 onto the call stack and popping it back
upon return.

invEf
(T(E0, i), f) :– invE0

(i, f).

vnlst
Ef ,$x(T(E0, i), f, s, t, n) :– nlstE1

(i, f, s, t, n).

venv
Ef ,$x(T(E0, i), t, n, a) :– envE1

(i, t, n, a).

nlstE0
(i, f, s, t, n) :– nlstEf

(T(E0, i), f, s, t, n).

envE0
(i, t, n, a) :– envEf

(T(E0, i), t, n, a).

For Expression – E0 = for $y in Ein return Eret

The for-expression generates a new dynamic context
for each member of the sequenceEin; in our model, it is
represented by pushing the sequence identifiers onto the
control stackf :

invEret
(i,T(s, f)) :– nlstEin

(i, f, s, t,m).

At the same time, the variable$y is added to the dy-
namic context, defined as follows:

vnlst
Eret,$y(i,T(s, f), one, t, n) :–

nlstEin
(i, f, s, t, n).

venv
Eret,$y(i, t,m, a) :– envEin

(i, t,m, a).

For older variables, the following rules are defined for
each$x ∈ vars[E0] \ {$y}:

vnlst
Eret,$x(i,T(s, f), r, u,m) :– nlstEin

(i, f, s, t, n),

vnlst
E0,$x(i, f, r, u,m).

venv
Eret,$x(i, u,m, a) :– venv

E0,$x(i, u,m, a).

Finally, the value of the for-expression is created by the
concatenation of the return clause values:

nlstE0
(i, f,T(s, r), t, n) :– nlstEret

(i,T(s, f), r, t, n).

envE0
(i, t, n, a) :– envEret

(i, t, n, a).

Let Expression – E0 = let $y := Edef return Eret

The let-expression adds the variable$y to the dynamic
context. Nevertheless, the identification of the context is
not changed and the other variables are also preserved.

invEret
(i, f) :– invE0

(i, f).

vnlst
Eret,$y(i, f, s, t, n) :– nlstEdef

(i, f, s, t, n).

venv
Eret,$y(i, t,m, a) :– envEdef

(i, t,m, a).

Where Clause – E0 = for $y in Ein where
Ewh return Eret

Adding where clause to a for-expression affects the set
of contexts generated for the return clause; similarly, vari-
able models are affected:

invEret
(i,T(s, f)) :– alstEwh

(i, f, s, true).

vnlst
Eret,$y(i,T(s, f), one, t, n) :– nlstEin

(i, f, s, t, n),

alstEwh
(i, f, s, true).

vnlst
Eret,$x(i,T(s, f), r, u,m) :– nlstEin

(i, f, s, t, n),

alstEwh
(i, f, s, true), vnlst

E0,$x(i, f, r, u,m).

Equality Test – E0 = E1 eq E2

eqE0
(i, f) :– alstE1

(i, f, s, v), alstE2
(i, f, r, v).

alstE0
(i, f, 1, true) :– eqE0

(i, f).

alstE0
(i, f, 1, false) :–¬eqE0

(i, f).
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n l s t [ e ]i n v [ a ]e n v [ e ]d o c v n l s t [ f , $ S ]n l s t [ f ]n l s t [ d ] v n l s t [ g , $ P ]
v e n v [ g , $ P ] n l s t [ g ] n l s t [ c ] e n v [ g ]e n v [ c ]e n v [ b ] o u t

i n v [ j ]v n l s t [ j , $ X ]
n l s t [ l ]

n l s t [ n ]
n l s t [ m ]

e n v [ m ]
n l s t [ k ]

e n v [ k ]n l s t [ j ] e n v [ j ]n l s t [ h ]
Fig. 3.Query 1 – Predicate dependence graph.

Node Construction – E0 = <A>{ E1 }</A>

nlstE0
(i, f, one,T(i, f), one) :– invE0

(i, f).

envE0
(i,T(i, f), one, a) :– invE0

(i, f),

elementA(a).

envE0
(i,T(i, f),T(s, p), a) :– nlstE1

(i, f, s, t,m),

envE1
(i, t, n, a), cat(n,m, p).

The auxiliary predicatecat corresponds to the concate-
nation of Dewey identifiersn = m.p and it is defined as
follows:

cat(p, one, p).

cat(T(s, n),T(s,m), p) :– cat(n,m, p).

Navigation – E0 = E1 / axis::*

nlstE0
(i, f,T(t, n), t, n) :– nlstE1

(i, f, s, t,m),

envE1
(i, t, n, a), axis(m,n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

The selection operator is driven by a predicateaxis

corresponding to theaxis used in the navigation operator.
These predicates are defined as follows:

child(one,T(s, one)).

child(T(s,m),T(s, n)) :– child(m,n).

parent(m,n) :– child(n,m).

descendant(one,T(s, n)).

descendant(T(s,m),T(s, n)) :– descendant(m,n).

ancestor(m,n) :– descendant(n,m).

descendantorself(m,n) :– cat(n,m, p).

ancestororself(m,n) :– descendantorself(n,m).

Node-Set Union – E0 = E1 union E2

nlstE0
(i, f,T(t, n), t, n) :– nlstE1

(i, f, s, t, n).

nlstE0
(i, f,T(t, n), t, n) :– nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

envE0
(i, t, n, a) :– envE2

(i, t, n, a).

Note that the sequence identifierss are not referenced
at the head of the rule; instead, the identifierT(t, n) repre-
senting document order is used.

Node-Set Intersection– E0 = E1 intersection E2

nlstE0
(i, f,T(t, n), t, n) :–

nlstE1
(i, f, r, t, n), nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :–

envE1
(i, t, n, a), envE2

(i, t, n, a).

Node-Set Difference– E0 = E1 except E2

nlstE0
(i, f,T(t, n), t, n) :–

nlstE1
(i, f, r, t, n),¬nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :–

envE1
(i, t, n, a).

Concatenation – E0 = E1 , E2

nlstE0
(i, f,T(one, s), t, n) :– nlstE1

(i, f, s, t, n).

nlstE0
(i, f,T(two, s), t, n) :– nlstE2

(i, f, s, t, n).

envE0
(i, t, n, a) :– envE1

(i, t, n, a).

envE0
(i, t, n, a) :– envE2

(i, t, n, a).

Note that whenever the two environmentsenvE1
and

envE2
contain the same tree identifiert, the corresponding
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tree information is merged by theenvE0
rules. Since the

tree identifier exactly determines the context in which the
tree was created, trees having the same identifier must be
identical; therefore, merging the tree environments do not
alter them anyway.

6 Conclusion

We have presented a model of XQuery evaluation based
on Horn clauses under the BTLog¬ syntax. From the syn-
tactic point of view, this model comprehends the follow-
ing XQuery structures: Declare function, function call, for-
clause, let-clause, where-clause, stable-order-by-clause,
quantified expressions, equality operator on atomic val-
ues, Boolean operators including negation,union,
intersection, except operators, concatenation (,)
operator, statically named document references (fn:doc),
forward/reverse axis navigation, name tests,fn:root,
and element constructors.

There are two important omissions from the core
XQuery that are not covered by this model: Positional vari-
ables and aggregate functions. There are also some flaws in
error handling, namely the fact that the model may silently
process some situations that shall be signalled as an error.
These issues will be addressed by our future research.

The universal quantified expression (every), the
equality operator, and the node-set subtraction operator
(except) involve negation in their BTLog rules. Some
XQuery programs are not stratifiable after conversion to
BTLog¬. This is not necessarily a weakness of the ap-
proach – since the XQuery language is Turing-complete,
we shall not expect general stratifiability. This way, the
stratifiability of its BTLog¬ equivalent may be used
as a borderline between “easy” and “difficult” cases. Fortu-
nately, it shows that most of the real-life XQuery programs
fall in the “easy” stratifiable category – for instance, all the
XML Query Use Cases [10] programs are stratifiable.

Since termination in XQuery is not guaranteed, it may
be expected that it is not generally guaranteed also in BT-
Log. Our future research will focus on static analysis meth-
ods trying to discover a termination guarantee in a BTLog
program (of course, due to the Turing-completeness, no
method can decide on the existence of a termination guar-
antee).
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Abstract. We introduce a new compact model of XML Schema
called a schema tree. Given an XSLT transformationxsl and
an XML schemaxsd, we present a method which statically an-
alyzes the schema tree constructed according toxsd and deter-
mines whetherxsl can be processed in a streaming manner on
a set of XML documents defined byxsd. We consider streaming
processing that uses a stack of the size proportional to the depth of
the input document - this processing is highly efficient in practice
since real-world XML documents are shallow. The schema analy-
sis is performed via stepwise application of templates ofxsl on
the schema tree. We present the implementation of a schema tree
and the static XSLT analyzer on .NET platform.

1 Introduction

Many applications need to employ streaming approach
when processing huge data in XML format. Most typi-
cally, the languages XSLT [10] and XQuery [13] are used
to specify XML transformations. Both of them enable the
user to write a high-level specification based on tree ma-
nipulation. Common processors of these languages (e.g.,
Saxon, Xalan, AltovaXML) are tree-based, i.e., read the
whole input document into memory and then perform the
transformation itself.

The XSLT and XQuery tree-based processors are ap-
parently not suitable when transforming XML streams or
huge XML data. In this case, the transformation can be ei-
ther written by hand using an event-base parser (e.g., SAX,
StAX) or using some streaming transformation language
(STX [1], XStream [5]). In both cases, writing the speci-
fication is a non-trivial task since the user must explicitly
handle storing parts of the input document in the memory
buffers for later processing.

In this paper we focus on the problem how to enable the
user to write a tree manipulation specification in the XSLT
language, and at the same time to process it in a streaming
manner automatically. Such automatic streaming processor
is supposed to apply the tree-manipulation functions over
a continuous stream of data while the buffering is treated
automatically. An important issue is to design the processor
in such a way that the size of memory buffers is minimized
for the given transformation and the input document.

We describe the implementation of the Xord frame-
work which represents a prototype XSLT automatic

⋆ This work was supported in part by the National programme
of research (Information society project 1ET100300419).

streaming processor. The Xord framework is based on the
formal framework for streaming XML transformations in-
troduced in [3]. The framework is capable to process auto-
matically a class of top-down XSLT transformations which
captures a significant number of practically needed XML
transformations. The processing is done using a stack of
the size proportional to the depth of the input XML docu-
ment - such processing is highly efficient in practice since
real XML documents are shallow [9].

We focus especially on the schema-based analyzer
which represents a powerful tool used within the Xord
framework to determine the most efficient way of process-
ing the given XSLT transformation. For a given XSLT sty-
lesheetxsl and an XML schemaxsd1, it automatically an-
alyzes the memory usage of the streaming processing of
xsl on a set of documents defined byxsd.

The existing models for XML schemas (DOM, .NET
XmlSchema) appeared inconvenient for the purpose of the
streamability analysis, we therefore introduce the Xord
Schema Model - a new compact model for schema rep-
resentation. The model is abstract, and thus not bounded
to a particular schema language. However, in the prototype
implementation we employ W3C XSD notation [11,12] for
XML schemas.

Related work.Several streaming processors for XSLT and
XQuery have been implemented. However, their efficiency
was demonstrated only by experiments on a small number
of XML transformations and input XML documents. It is
thus not known how much memory is consumed on clearly
characterized transformation classes.

XML Streaming Machine (XSM)[8] processes a subset
of XQuery on XML streams without attributes and recur-
sive structures. It is based on a model called XML stream-
ing transducer. The processor have been tested on XML
documents of various sizes against a simple query. Using
XSM the processing time grows linearly with the document
size, while in the case of standard XQuery processors the
time grows superlinearly. More complex queries have not
been tested.

BEA/XQRL[4] is a streaming processor that imple-
ments full XQuery. The processor was compared with
Xalan-J XSLT processor on the set of 25 transformations
and another test was carried on XMark Benchmarks. BEA

1 We use the termXML schemafor a general schema for XML
documents.
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xslt
sch

xslt
xslt

XfXslt
(TemplateModel)

XfSchema
(SchemaModel)

XfAnalyzer

XfXsdSsxtAnalyzer XfTemplateAnalyzer XfSsxt

XfAlgorithm

Fig. 1.The Xord framework.

processor was fast on small input documents, however, the
processing of large documents was slower since the opti-
mizations specially designed for XML streams are limited
in this engine.

FluXQuery[7] is a streaming XQuery processor based
on a new internal query languageFluX which extends
XQuery with constructs for streaming processing. XQuery
query is converted into FluX and the memory size is opti-
mized by examining the query as well as the input DTD.
FluXQuery supports a subset of XQuery. The engine was
benchmarked against XQuery processors Galax and
AnonX on selected queries of the XMark benchmark. The
results show that FluXQuery consumes less memory and
runtime.

SPM (Streaming Processing Model) [6] is a one-pass
streaming XSLT processor without an additional memory.
Authors present a procedure that tries to converts a given
XSLT stylesheet into SPM. No algorithm for testing the
streamability of XSLT is introduced, and therefore the class
of XSLT transformations captured by SPM is not clearly
characterized.

2 Xord framework

The Xord framework for analyzing and transforming XML
data is implemented on .NET platform. Its application in-
terface is formed by a set of interface classes for traversing
analyzed data structures. The core of the framework con-
sists of these abstract models (see Fig. 1):

1. Template Model for transforming templates imple-
mented by theXfXsltclasses,

2. Schema Modelfor XML schemas implemented by the
XfSchemaclasses,

3. Algorithm Model for streaming algorithms implemen-
ted by theXfSsxtclasses,

4. Analyzer Model for static analyzers implemented
by the XfXsdSsxtAnalyzerand XfTemplateAnalyzer
classes.

Since the models are abstract, the Template Model may be
adopted to model templates of any template-based XML
transformation language and the Schema Model may be

adopted to model any XML schema language based on
structure definition.

Furthermore, the framework is complemented by a set
of auxiliary helper classes. The algorithmic part of the API
supports:

SsxtAlgorithm algorithm derived from the abstract
Algorithm model, and

XsdSsxtAnalyzer algorithm derived from the abstract
Analyzer model, and using the Schema Model and the
Template Model.

The implementation of the above mentioned models are de-
scribed in more detail in following sections.

3 XSLT representation

The Xord framework is currently restricted to process sim-
ple XSLT transformations on XML documents without
data values.

Simple XSLT stylesheets.Simple XSLT stylesheet con-
sists of an initializing template and several transforming
templates. The initializing template sets the current mode
to the initial modem0 and calls processing of the root ele-
ment of the input document. It is of the form:
<xsl:template match="/">

<xsl:apply-templates mode="m0"/>
</xsl:template>

The transforming templates are of the form:
<xsl:template match="name" mode="m">

... template body ...

</xsl:template>

The template body contains output elements (possibly
nested) and apply-templates calls. Output elements are of
the form:
<name> . . .element content . . .</name>

Theapply-templates construct has aselect attribute
that contains selecting expression, and amode attribute.
<xsl:apply-templates select="selexp" mode="m’"/>

A subset of XPath expression is allowed in templates -
they contain child and descendant axis, and select nodes
by name:
XPath := Step | Step/XPath
Step :=child::name | descendant::name

wherenamerefers to an element name.

Xord Template Model. In the Xord framework, XSLT sty-
lesheets are represented by a set of classes, anXord Tem-
plate Model. Its simplified object structure is depicted in
Fig. 2.

Each template from the XSLT contains a sequence of
template calls. A template call consists of the parsed XPath
expression and the template called by theapply-templates
mechanism. The input template file is parsed into these
structures before the analysis. Then the analysis algorithm
directly traverses the DAG, evaluates the expressions etc.
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template
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templates
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Fig. 2.The Xord Template Model.

4 Hierarchical XML schema representation

We represent an XML schema hierarchically as aschema
tree. The representation does not depend on a particular
schema notation (DTD, XSD). The schema tree consists of
two kinds of nodes:

– element nodes: correspond to an element type defined
within schema

– constructor nodes: correspond to constructors used in
the schema (sequence, choice, *, +, ?)

The relationships among element types and constructors
are represented by the structure of the tree.

Some subtrees of schema tree may be identical - this
situation occurs if we derive the schema tree from DTD or
XSD containing shared element types. When designing the
analyzer, the tree representation is more convenient. How-
ever in the implementation of schema-based analyzer each
type is represented as a single node and the whole schema
is represented as a DAG (see Schema Object Model be-
low).

In the schema-based analysis, we consider XML sche-
mas without the choice constructor and recursive defini-
tions. Such schema can be represented as a single regular
expression. This representation is useful in the extraction
part of the analyzer algorithm (see Section 5).

Xord Schema Model.Although there are well established
and widely used XML parsers, we have found no suitable
parser for XSD. To perform schema manipulation,
the .NET Framework provides a set of classes called the
Schema Object Model, or SOM for short. The SOM is for
schemas what DOM is for XML documents: the
SOM classes represent various parts of a schema, for exam-
ple XmlSchemaSimpleType, XmlSchemaElement, there are
many other classes that represent attributes, facets, groups,
complex types, and so on. This model is especially useful

children

node

map

atom

XfSchema

+ map : Dictionary<string,Node>

Node

- id : string

ComplexElement

- children : List<Item>

SimpleElement

Item

-

-

-

node

minOccurs

maxOccurs

: Node

: int

: int

XfRegexp

+ regexp : List<Atom>

Atom

+

+

id

type

: string

:

Fig. 3.The Xord Schema Model.

for creating schemas programmatically, but its application
interface is not very useful for parsing and analyzing exist-
ing schemas.

Since the schema analysis using standard XML schema
DOM model would be very complicated and tangled, we
have designed anXord Schema Modelwhich is targeted to
effective representation and analysis of existing schemas.
A simplified object structure of that model is depicted in
Fig. 3.

The whole schema is represented as an associative ar-
ray of simple or complex type nodes. Each complex node
contains a list of references to its child nodes with their
cardinality. Using this recursive structure that form a DAG
(or a tree with one particular node selected as a root), the
parsed schema could be easily traversed and processed.

5 Schema-based analyzer

The schema-based analyzer applies the given XSLT style-
sheetxsl to the schema treexsd, starting at the root node.
First, let us remind the principles of the XSLT application
to the XML document tree. Lettmp be the current tem-
plate of the XSLT stylesheet (at the beginning of the trans-
formation, it is the template matching the root element in
the initial modem0)

1. The node sequence selected by the XPath expressions
in the rule calls of the current template are found.

2. The templates called by the rule calls are applied to the
selected nodes.

However, in case of the schema tree, a modification of the
first step of this simple algorithm is needed:

1. All possible node sequencesselected by the XPath ex-
pressions in the rule calls of the current template are
found.



10 Jana Dvǒrákov́a, Filip Zavoral

2. The templates called by the rule calls are applied to the
selected nodes.

Since the set of all possible node sequences selected by
XPath expressions in the first step may be infinite, we rep-
resent it in the form of regular expressionregexp. Such
regular expression is basically a fragment of the schema
tree, i.e., a set of its nodes (not necessarily connected)
which is a fragment of the regular expression representing
the whole schema tree.

The regular expressionregexp may contain both ele-
ment nodes and constructor nodes. It is extracted as fol-
lows: First, the node sequence selected by the XPath ex-
pressions are found in the same way as in the XML docu-
ment tree (constructor nodes are skipped). Second, all con-
structors appearing in the branch of the schema tree from
the root to the selected nodes are added to the sequence.
The hierarchy of the nodes is preserved by delimiting the
nodes appearing at the same level of the schema tree by
parentheses.

We say thatregexp represents possiblereading orders
of the element names selected by the expressions intmp,
i.e., the order in which the elements are accessed when
a document defined by the schemaxsd is read sequen-
tially. Now let names be a sequence of element names
in the order they are called intmp - clearly, the sequence
can be constructed statically by examining the last steps of
the XPath expressions intmp. Thenames sequence rep-
resents theprocessing orderof the elements. In case one
of the reading orders does not conform to the processing
order, the order-preservation of thexsl is violated and the
SSXT algorithm is not applicable2. It is thus only neces-
sary to compareregexp to thenames sequence in order to
check applicability ot the stack-based algorithm.

Implementation. The core of the schema-based analyzer
is the AnalyzeNodefunction which takes two arguments
- a template ofxsl and a node of the schema treexsd.
It performs the application of the template to the schema
tree node as described above. Using the Template Model
and the Schema Models allows the analyzer algorithm to
be simple and straightforward - see Fig. 4.

The comparison of theregexp to thenames sequence
is accomplished by theCompare function. Its implemen-
tation is based on inherent properties of its arguments. In-
stead of an expensive checking of swapping for each pair
of names, the predicate is a compound of two simple steps.
First,regexpis checked for existence of two distinct names
within any ’+’ or ’*’ sequence. Second, the last names in
names are stripped to those contained in the schema be-
ing used, adjacent duplicities are reduced to a single name,
and the resulting list is linearly compared to names con-
tained inregexp. Since each name appearingregexp must
be contained innames, any difference cause a fail.

2 See [3] for further details.

bool AnalyzeNode(XfTemplate t,XfSchema.Node n) {

if(t.Empty)

return true;

XfLastNames li = t.GetLastNames();

XfRegexp re = sch.ExtractFragment(n, t);

if(re.Empty())

return true;

if(! sch.Compare(re, li))

return false;

foreach(XfCall call in t.calls) {

List<XfSchema.Node> ln =

new List<XfSchema.Node>();

ln = sch.EvalExp(n, call.select);

foreach(XfSchema.Node ni in ln) {

AnalyzeNode(call.template, ni);

}

}

return true;

}

Fig. 4.The code of theAnalyzeNodefunction.

6 Stack-based streaming algorithm

The stack-based algorithm is based on a formal model
calledsimple streaming XML transducer (SSXT), therefore
we call it theSSXT algorithm. The transducer has a single
input head that reads the input document sequentially, and
a single output head that generates the output document
sequentially. The SSXT is equipped with a stack to store
temporary data.

The SSXT takes an input documentdin and a top-down
XSLT stylesheetxsl as the input. It readsdin sequentially
in one pass and apply the stylesheetxsl stepwise. First,
the template matching the root element ofdin in the initial
modem0 is set to be the currently processed template (cur-
rent template). The processing proceeds in cycles. During
a single cycle, a single template call of the current template
is processed.

Processing cycle.All XPath expression within a template
are evaluating concurrently. The evaluation is realized by
deterministic finite automata (DFA)3. A single DFA is con-
structed for each expression. When the processing of a tem-
plate starts, the sequence of the initial states of DFAs is
pushed on the stack. The input head of SSXT reads the
elements ofdin in document order. When a start-tag is en-
countered, new sequence of DFAs is computed. Three sit-
uations may occur:

a) new sequence contains no final state - the input head
continues in evaluation,

b) new sequence contains a single final state which be-
longs to the DFA evaluating the lastly-matched expres-
sion or an expression locatedafter the lastly-matched
expression - the corresponding template call is
processed,

3 We refer the reader to [2] for a more detailed description of
this evaluating method.
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c) new sequence contains a final state which belongs to
the DFA evaluating expression locatedbefore the
lastly-matched expression, or it contains two or more
final states - error.

In case b), the current cycle configuration(template id,
matched expression id)is pushed on the stack and new
cycle for processing the called template starts. The cycle
configuration is popped after the whole called template has
been processed and the control moves back to the current
template. In case a), the evaluation continues. Here if an
end-tag is encountered, the sequence of the DFA states lo-
cated at the top of the stack is popped. Hence, the
XPath expression of the current template are evaluated on
“branches” ofdin.

Implementation. The implementation of the SSXT algo-
rithm uses both Template Model and Algorithm Model
classes. Since the algorithm is stack-based, the main data
structure used is a polymorphic stackstk of sequences of
DFA states (SIDfaSequence) and cycle configurations
(SICycleConfig), see Fig. 8.

Until the transformation is finished the top of stack is
checked and the stack item is processed, see the function
RunSsxt in Fig. 5. In case of an empty stack and non-
empty remaining input new DFA sequence is pushed on
the stack.

void RunSsxt(XfXml xml)

{

XfTemplate currTemplate = xslt.Start();

XfCall currCall = null;

bool transformed = false;

while(!transformed) {

if(!stk.Empty()) {

switch(stk.Type()) {

case XfStack.ItemType.DfaSequence:

ProcessDfaSequence();

break;

case XfStack.ItemType.CycleConfig:

ProcessCycleConfig();

break;

}

} else {

switch(xml.currType) {

case XmlNodeType.Element:

stk.Push(new SIDfaSequence(currTemplate));

xml.Advance();

break;

case XmlNodeType.EndElement:

currTemplate.Generate(currCall, null);

transformed = true;

break;

}

}

}

}

Fig. 5.The code of the SSXT algorithm.

void ProcessDfaSequence(XfXml xml)

{

SIDfaSequence ds = stk.GetDfaSequence();

switch(xml.currType) {

case XmlNodeType.Element:

SIDfaSequence new ds = ds.Transition(xml.currName);

if(!new ds.HasFinalStates()) {

stk.Push(new ds);

xml.Advance();

}

else {

XfCall myCall = new ds.GetCallWithFinalState();

currTemplate.Generate(currCall, myCall);

XfTemplate calledTemplate =

xslt.SelectTemplate(xml.currName, myCall.mode);

if(calledTemplate.Empty) {

calledTemplate.Generate(null, null);

currCall = myCall;

if(xml.laType == XmlNodeType.Element)

stk.Push(new ds);

xml.Advance();

} else {

stk.Push(new SICycleConfig(currTemplate,

myCall));

currTemplate = calledTemplate;

currCall = null;

}

}

break;

case XmlNodeType.EndElement:

if(xml.laType == XmlNodeType.EndElement)

stk.Pop();

xml.Advance();

break;

default:

stk.Pop();

break;

}

}

Fig. 6. The code of theProcessDfaSequencefunction used in the
SSXT algorithm.

The core of the DFA sequence processing (Fig. 6) is
accomplished when start tags of elements are encountered.
A new DFA sequence is generated on the stack in case the
current DFA sequence contains no final states. Otherwise
the output is generated and a new cycle configuration is
placed on the stack. In case of a template without calls, its
output is generated immediately.

The cycle configuration processing (Fig. 7) depends on
the current XML node type. A start tag pushes a new DFA
sequence while an end tag generates output.

7 Evaluation

The evaluation and measurements of the SSXT algorithm
implementation confirmed our expectation that it requires
a memory proportional to a depth of the input XML doc-
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void ProcessCycleConfig(XfXml xml)

{

SICycleConfig cc = stk.GetCycleConfig();

switch(xml.currType) {

case XmlNodeType.Element:

if(xml.laType == XmlNodeType.Element)

stk.Push(new SIDfaSequence(currTemplate));

xml.Advance();

break;

case XmlNodeType.EndElement:

currTemplate.Generate(currCall, null);

currTemplate = cc.template;

currCall = cc.call;

stk.Pop();

break;

}

}

Fig. 7. The code of theProcessCycleConffunction used in the
SSXT algorithm.
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Fig. 8.The Xord SSXT Model.

ument. Since most documents are relatively shallow, our
memory requirements are independent to the document
size. Even for huge documents like DBLP, the SSXT algo-
rithm required few hundreds KB while the commonly used
XSLT processors like Saxon or Xalan crashed or hanged
after allocating about 1.5 GB of memory.

8 Conclusion and future work

We have presented a prototype implementation of the Xord
framework which represents an automatic streaming
processor for the XSLT language. It incorporates a power-
ful schema-based analyzer which, for a given XSLT trans-
formationxsl and an XML schemaxsd, analyzes memory
requirements of the streaming processing ofxsl on a set
of XML documents defined byxsd. The analyzer employs
a special hierarchical model of XML schema called Xord
Schema Model. We have implemented the Xord framework
on .NET platform for a specific streaming processing using

stack of the size proportional to the depth of the input XML
document.

Our schema-based analyzer is restricted in several as-
pects - first, a subset of XSLT and XML schema defini-
tions is considered, and second, it currently gives us only
true/false answer whether the stack-based processing is ap-
plicable. However, we intend to extend it in the future re-
search - if we examine particular pairs of elements for
which the comparing function returns false and the pos-
sible size of their content, we may compute exact size of
the memory buffers needed for processing such elements.
Then it is only necessary to extend the basic stack-based
streaming algorithm with such buffers and we obtain much
more powerful automatic streaming XSLT processor.
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Abstract. We present an algorithm for asymptotically efficient
multiway blockwise in-place merging. Given an arrayA contain-
ing sorted subsequencesA1, . . . , Ak of respective lengths
n1, . . . , nk, where

∑
k

i=1
ni = n, we assume that extrak · s

elements (so called buffer elements) are positioned at the very end
of array A, and that the lengthsn1, . . . , nk are positive integer
multiples of some parameters (i.e., multiples of a given block of
lengths). The number of input sequencesk is a fixed constant
parameter, not dependent on the lengths of input sequences. Then
our algorithm merges the subsequencesA1, . . . , Ak into a single
sorted sequence, performingΘ(log k·n)+O((n/s)2)+O(s·log s)
element comparisons and3·n + O(s·log s) element moves.1

Then, fors = ⌈n2/3
/(log n)1/3⌉, this gives an algorithm per-

formingΘ(log k·n) + O((n·log n)2/3) comparisons and3·n +
O((n · log n)2/3) moves. That is, our algorithm runs in linear
time, with an asymptotically optimal number of comparisons and
with the number of moves independent on the number of input
sequences. Moreover, our algorithm is “almost in-place”, it re-
quires onlyk extra blocks of sizes = o(n).

1 Introduction

Given an arrayA[1..n] consisting of sorted subsequences
A1, . . . , Ak each containingn1, . . . , nk elements respec-
tively, where

∑k

i=1
ni = n, theclassical multiway in-place

mergingproblem is to rearrange these elements to form
a single sorted sequence ofn elements, assuming that only
one extra storage location (in addition to the arrayA) is
available for storing elements. To store array indices, coun-
ters, etc. onlyO(1) storage locations are available. The ef-
ficiency of a merging algorithm is given by two quantities:
the number of pairwise element comparisons and the num-
ber of element moves carried out in the worst case, both
expressed as a function ofn. In merging, these are the only
operations permitted for elements.

In this paper we study the computational complexity of
the multiwayblockwisein-place merging problem. More
precisely, we assume that the entire arrayA is divided into
blocks of equal sizes, and thatk extra blocks of sizes
are positioned at the very end of arrayA. Moreover, the
lengthsn1, . . . , nk of input sequences are positive integer
multiples ofs, and hence, there is always a block bound-
ary between the last element ofAi and the first element
of Ai+1, for eachi ∈ 1, . . . , k−1. We shall also assume,
that before the merging starts, blocks can be mixed up quite

1 Throughout the paper,log x denotes the binary logarithm ofx.

arbitrarily, so we no longer know the original membership
of blocks in the input sequencesA1, . . . , Ak.

So far, the problem has been resolved for two-way
merging, i.e., fork = 2 [4]. This algorithm uses2n + o(n)
comparisons,3n + o(n) element moves andO(1) extra lo-
cations for storing elements, in the worst case. Thus, by re-
peated application of this algorithm, we could carry outk-
way merging in linear time, for arbitraryk ≥ 2. However,
implemented this way, thek-way merging would perform
3·⌈log k⌉·n+o(n) element moves and2·⌈log k⌉·n+o(n)
element comparisons. We shall show that the number of
movesdoes not depend onk, if the lengthsn1, . . . , nk are
integer multiples of the block sizes. Namely, using the al-
gorithm of Geffert et. al [4] as our starting point, we show
that multiway blockwise in-place merging is possible with
⌈log k⌉·n + O((n/s)2) + O(s·log s) element comparisons
and3·n + O(s·log s) moves. Fors = ⌈n2/3/(log n)1/3⌉,
this gives an algorithm with⌈log k⌉·n + O((n·log n)2/3)
comparisons and3 ·n + O((n · log n)2/3) moves, and the
number of element moves independent on the number of
input sequences. (It is also easy to show that the number of
comparisons cannot be improved.)

2 Comparisons in a simple multiway
merging

To explain how elements are compared, we first solve
a simpler task. Assume that we are given an arrayA, con-
sisting ofk sorted subsequencesA1, A2, . . . , Ak , that are
to be merged into a single sorted sequence. The lengths
of these subsequences aren1, n2, . . . , nk respectively, with
∑k

i=1
ni = n.

Assume also that, together with the given arrayA, we
are also given an extra arrayB of the same sizen, which
will be used as an output zone.

During the computation, the algorithm uses auxil-
iary index variablesi1, . . . , ik and oc, where ij , for
j ∈ {1, . . . , k}, points to the smallest element of the se-
quenceAj not yet processed. This element will be called
the current input element of thej-th sequence, or simply
thej-th input element. The indexoc points to the leftmost
empty position in the arrayB.

Then the straightforward implementation of the merge
routine proceeds as follows. We find the smallest element
not yet processed, by comparing elements at the positions
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i1, . . . , ik, and move this element to the output zone inB.
After that, we update the necessary index variables and re-
peat the process until all the elements have been merged.
Implemented this way, each element will be moved just
once and the number of comparisons, per each element,
will be k−1. This gives us(k−1)·n comparisons andn el-
ement moves in total.

The number of comparisons can be reduced by imple-
menting a selection tree of depth⌈log k⌉ above thek cur-
rent input elements. Initially, to build a selection tree,
k−1 comparisons are required. Then the smallest element,
not yet processed, can be moved to the output zone.
After this, the element following the smallest element in
the same subsequence is inserted in the tree and the se-
lection tree is updated. To do this, only⌈log k⌉ compar-
isons are needed. To avoid element moves, only pointers
to elements are stored in the selection tree. (For more de-
tails concerning this data structure, see [1–3].) The num-
ber of moves remains unchanged, but now we havek−1
comparisons for the first element and only⌈log k⌉ com-
parisons per each other element. This gives us a total of
(k−1) + ⌈log k⌉·(n−1) ≤ ⌈log k⌉·n + O(1) comparisons.

3 Comparisons in a blockwise merging

This section describes one of the cardinal tricks used in
our algorithm. Again, we are given the arrayA consisting
of the sorted subsequencesA1, . . . , Ak, to be merged to-
gether. We still have the extra arrayB, used as an output
zone.

However, now the entire arrayA is divided into blocks
of equal sizes (the exact value ofs will be determined
later, so that the number of comparisons and moves is min-
imized) and, before the merging can start, these blocks are
mixed up quite arbitrarily. Because of the permutation of
blocks inA, we no longer know the original membership
of blocks in the input sequencesA1, . . . , Ak.

Still, the relative order of elements inside individual
blocks is preserved. Moreover, we shall also assume that
n1, . . . , nk, the respective lengths of input sequences, are
positive integer multiples ofs, and hence, before mixing
the blocks up, there was always a block boundary between
the last element ofAi and the first element ofAi+1, for
eachi ∈ 1, . . . , k−1.

Before passing further, we define the following relative
order of blocks in the arrayA. Let X be a block with the
leftmost and the rightmost elements denoted byxL andxR,
respectively. Such block can be represented in the form
X = 〈xL, xR〉. Similarly, letY = 〈yL, yR〉 be an another
block. We say that the blockX is smaller than or equal
to Y , if xL < yL, orxL = yL andxR ≤ yR. Otherwise,X is
greater thanY . In other words, the blocks are ordered ac-
cording to their leftmost elements and, in the case of equal

leftmost elements, the elements at the rightmost positions
are used as the second order criterion.

Now the modified merging algorithm proceeds as fol-
lows. First, using the above block ordering, find the small-
estk blocks in the arrayA. These blocks will initially be-
come thek current input blocks, their leftmost elements be-
coming thek current input elements. Thej-th current input
block will be denoted byXj , similarly, thej-th current in-
put element byxj . The positions of current input elements
are kept in index variablesi1, . . . , ik. Above thek current
input elements, we build a selection tree. All blocks that
are not input blocks are calledcommon blocks.

After that, the merging process can proceed in the same
way as described in Section 2. That is, using the selec-
tion tree, determineij , the position of the smallest input
element not yet processed, among thek current input el-
ements, and move this element to the output zone in the
arrayB. Then the element positioned immediately on the
right of xj , within the same blockXj , becomes a newj-th
current input element, its index pointer is inserted into the
selection tree, and the tree is updated, with⌈log k⌉ com-
parisons. This can be repeated until one of the current input
blocks becomes empty.

When this happens, i.e., each time the elementxj , just
moved to the output zone, was the last (rightmost) element
in the corresponding input blockXj , the blockXj is “dis-
carded” and the smallest (according to our relative block
ordering) common block not yet processed will be used
as the newj-th current input block. The leftmost element
in this block will become the newj-th current input ele-
ment. Since the blocks are mixed up in the arrayA, we
need to scan sequentially all blocks (actually, all blocks
not yet processed only) to determine which one of them is
the smallest. This search for a new input block consumes
O((n/s)2) additional comparisons: there are at mostn/s

blocks and such search is activated only if one of the in-
put blocks has been discarded as empty, i.e., at mostn/s

times. (For the time being, just assume that we can distin-
guish discarded blocks from those not yet processed, at no
extra cost.)

However, before merging, the blocks have been mixed
up quite arbitrarily and hence their origin in the input sub-
sequencesA1, . . . , Ak cannot be recovered. The proof that
the above algorithm behaves correctly, that is, the elements
are transported to the output zone in sorted order, will be
published in the full version of the paper.

The number of element moves remains unchanged, but
now we use⌈log k⌉ ·n + O((n/s)2) comparisons, under
assumption that we can distinguish discarded blocks from
those not yet processed at no extra cost.
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4 In-place merging, simplified case

Now we shall convert the above merging algorithm into a
procedure working “almost” in-place. More precisely, we
are again given the arrayA containing the sorted subse-
quencesA1, . . . , Ak, of respective lengthsn1, . . . , nk, with
∑k

i=1
ni = n. All these lengths are positive integer multi-

ples of the given parameters.
However, we no longer have a separate arrayB of

size n. Instead, we have some extrak ·s elements posi-
tioned at the very end of the arrayA, behindAk. The ele-
ments in this small additional area are greater than any of
the elements inA1, . . . , Ak. During the computation, they
can be mixed with other elements, but their original con-
tents cannot be destroyed. These elements will be called
buffer elements. To let the elements ever move, we have
also one extra location where we can put a single element
aside.

The sorted output should be formed within the same
arrayA, in the locations occupied by the input sequences
A1, . . . , Ak. (As a consequence, the buffer elements should
also end up in their original locations.) Therefore,
the moves are performed in a different way, based on the
idea of internal buffering, used in a two-way in-place merg-
ing [4]. Nevertheless, the comparisons are performed in the
same way as described in Section 3.

4.1 Initiation

Divide the entire arrayA into blocks of equal sizes. Since
the lengths of all input sequencesA1, . . . , Ak are positive
integer multiples ofs, there is always a block boundary be-
tween the last element ofAi and the first element ofAi+1,
for eachi ∈ 1, . . . , k−1. Similarly, the buffer elements,
positioned in the small additional area at the very end, form
the lastk blocks.

Initially, the lastk blocks will be used asfree blocks,
their starting positions are stored in afree block stackof
heightk. After that, the position of one free block is picked
out of the stack and this block is used as a so-calledescape
block. We also maintain acurrent escape positionec, which
is initially the position of the first (leftmost) element in the
escape block. We create a hole here by putting the buffer
element at this position aside.

Now, find the smallestk blocks2 in the area occupied
by A1, . . . , Ak, according to the relative block ordering de-
fined in Section 3. This can be done withO(k2) ≤ O(1)
comparisons, by the use of somek cursors (index vari-
ables) moving along inA, since each of the sequences

2 Picking simply the leftmost blocks in the sequences
A1, . . . , Ak would do no harm. In addition, this would not re-
quire any initial element comparisons. However, we are pre-
senting the algorithm in a form that is suitable for application
in the general case, comparing elements in accordance with the
strategy presented in Section 3.

A1, . . . , Ak is sorted. The smallestk blocks will initially
become thek current input blocksX1, . . . ,Xk. For each
j = 1, . . . , k, the first elementxj in the blockXj becomes
a j-th current input element, and its position is kept in the
index variableij . Above thek input elements, we build
a selection tree of depth⌈log k⌉. To do that,k−1 ≤ O(1)
initial comparisons are needed.

The very first block of the arrayA becomes anoutput
blockand a positionoc = 1 pointing there becomes acur-
rent output position. The initial output position may —
quite likely — coincide with a position of some current in-
put element. Observe thatec mod s = oc mod s, which is
an invariant we shall keep in the course of the entire com-
putation. All other blocks are calledcommon blocks.

In general, the algorithm maintains current positions
of the following special blocks: free blocks, the number
of which ranges between0 andk, their leftmost positions
are stored in the free block stack; exactlyk input blocks,
the current input positions inside the respective blocks are
stored in the index variablesi1, . . . , ik; one output block
with the current output positionoc inside this block; and
one escape block with the current escape positionec in-
side. The values ofoc andec are synchronized modulos.

Usually, the optional free blocks, thek current input
blocks, the output block, and the escape block are all dis-
joint, and the merging proceeds as described in Section 4.2.
However, after the initiation, the output block may overlay
one of the current input blocks, if the leftmost block inA1

has been selected as an input block. If this happens, the cur-
rent output position coincides with a position of one of the
current input elements, and the computation starts in a very
special mode of Section 4.9.

4.2 Standard situation

The standard situation is illustrated by Fig. 1. During the
computation, thek ·s buffer elements can be found at the
following locations: to the left of thej-th input elementxj

in thej-th input blockXj , for j ∈ {1, . . . , k}, to the right
of ec in the escape block, with the hole at the positionec,
and also in free blocks, consisting of buffer elements only.

The elements merged already, from all the input blocks,
form a contiguous output zone at the very beginning ofA,
ending at positionoc−1. Hence, the next element to be
output will go to the positionoc in the output block.

All elements not merged yet are scattered in blocks be-
tween the output zone and the end of the arrayA. The per-
mutation of these blocks is allowed, however, elements to
be merged keep their relative positions within each block.
On the other hand, the origin of the blocks in the subse-
quencesA1, . . . , Ak cannot be recovered. So optional free
blocks, input blocks, escape block, and common blocks can
reside anywhere between the output zone and the end of the
arrayA.
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Fig. 1.Standard situation.

The output block spans across the current output posi-
tion oc, so its left part belongs to the output zone. As the
output grows to the right, the elements lying to the right
of oc are moved from the output block to the correspond-
ing positions in the escape block, i.e., to the right ofec.
The positions ofoc andec are synchronized, i.e., we have
alwaysoc mod s = ec mod s. Hence, the relative posi-
tions of escaping elements are preserved within the blocks.
Moreover,oc and ec reach their respective block bound-
aries at the same time.

Now we are ready for merging. Using the selection tree,
we determinexj , the smallest element among thek current
input elements in the blocksX1, . . . ,Xk, and move this
element to the output zone as follows:

Step A. The element at the positionoc in the output block
escapes to the hole at the positionec.

Step B. The smallest input elementxj not yet processed
is moved from the positionij to its final position atoc.

Step C. A new hole is created at the positionec+1 by
moving its buffer element to the place released by the
smallest input element just moved. After that, all nec-
essary index variables are incremented and the selec-
tion tree is updated.

This gives3 moves and⌈log k⌉ comparisons per each el-
ement transported to its final location. Now there are vari-
ous special cases that should be detected and handled with
care. All exceptions are checked up on after the execution
of Step B, in the order of their appearance, unless stated
otherwise. Most of the exception handling routines replace
Step C by a different action.

4.3 Escape block becomes full

If the rightmost element of the output block is moved to
the last position of the escape block, the new hole cannot
be created at the positionec+1 in Step C. Instead, one free
block at the top of the stack becomes the new escape block
and a new hole is created at the beginning of this block.
This is accomplished by removing its starting position from
the free block stack and assigning it toec.

The subsequent move of the buffer element from the
new position ofec to the place released by the smallest
input element does not increase the number of moves; it
replaces the move in Step C. The selection tree is updated
in the standard way.

It should be pointed out that, at this moment, there does
exist at least one free block in the stack. Assume, for exam-
ple, that thej-th input elementxj has just been transported
to the output zone. After that, we haverj ∈ {1, . . . , s}
buffer elements in thej-th input blockXj , including the
hole, butrh ∈ {0, . . . , s−1} buffer elements in other input
blocksXh, for eachh ∈ {1, . . . , k}, h 6= j, since each
input block, except forXj , contains at least one input ele-
ment. Moreover, the escape block is full, and hence it does
not contain any buffer elements at all. Assuming there is no
free block available, this gives at mosts+(k−1)·(s−1) < k·s
buffer elements in total. But this is a contradiction, since
the number of buffer elements, including the hole, is al-
ways equal tok ·s.

4.4 Current input block becomes empty

We check next whether the smallest elementxj , just moved
from the positionij to the output zone, was the last element
of the corresponding input blockXj . If so, we have an en-
tire block consisting of buffer elements only, with hole at
the end after Step B. This hole is filled in the standard
way, described in Step C, but the old input blockXj be-
comes a free block and its starting position is saved in the
stack. Since we havek ·s buffer elements in total, a stack
of heightk is sufficient.

Next, we have to find a newj-th input blockXj , and
assign a new value toij . Since the blocks are mixed up,
we scan sequentially the remaining common blocks to de-
termine which common block should become the newj-th
current input block. The smallest common block, accord-
ing to the block ordering introduced in Section 3, is the
next one to be processed. As already shown in Section 3,
the elements are transported to the output zone in sorted
order even though this strategy does not necessarily pick
up thej-th input block from thej-th input sequenceAj .

Free blocks, as well as all remaining current input
blocks, are ignored in this scanning. Moreover, the ele-
ments to the left ofec in the escape block (if not empty)
together with the elements to the right ofoc in the output
block are viewed as a single logical block. In a practical im-
plementation, we can start with the leftmost escape-block
element and the rightmost output-block element as a start-
ing key and search the rest of the array for a common block
with a smaller key.3 If the logical block composed of the
left part of the escape block and the right part of the output

3 It is quite straightforward to detect whether a block beginning
at a given positionℓ is common: the value ofℓ must not be
saved in the free block stack, and⌊ℓ/s⌋ must be different from
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block should be processed next, the program control will
be switched to the mode described in Section 4.5.

If the escape block is empty, then bothec andoc point
to the beginning of their respective blocks. Then the escape
block is skipped and the output block is handled as a com-
mon block, so we may even find out that the new input
block should be located at the same position as the output
block. This special mode is explained in Section 4.9.

The search for new input blocks costsO((n/s)2) ad-
ditional comparisons: there areO(n/s) blocks in total and
such search is activated only if one of the input blocks is ex-
hausted, i.e., at mostO(n/s) times. The same upper bound
holds for arithmetic operations with indexes as well.

4.5 One of the input blocks overlays the escape block

If the common block that should be processed next is the
logical block composed of the left part of the escape block
and the right part of the output block, then both the new
current input blockXj and the escape block are located
within the same physical block. Herexj is always posi-
tioned to the left ofec and the buffer elements are both to
the left ofxj and to the right ofec.

Once the position ofxj is properly initiated, all actions
are performed in the standard way described in Section 4.2.
That is, the elements are transported from the output block
to the position ofec, from the input blocks to the position
of oc, and buffer elements fromec+1 to locations released
in the input blocks. Sinceec moves to the right “faster” than
doesij , this special case returns automatically to the stan-
dard mode as soon asec reaches a block boundary. Then
the escape block separates from the current input blockXj

as described in Section 4.3.

4.6 Output block overlays the escape block

Next we check whether the output zone, crossing a block
boundary, does not bump into any “special” block. It is
easy to see that this may happen only ifec points to the
beginning of the escape block that is empty, using the fact
that the positions ofoc andec are synchronized and that the
special handling of Section 4.3 is performed first.

Now consider that the output block overlays the escape
block, i.e., they are both located within the same physical
block. In this mode, we always haveoc = ec. The element
movement corresponds now to a more efficient scheme:

Step B’. The smallest input elementxj not yet processed
is moved to the hole at the positionoc = ec.

⌊i1/s⌋, . . . , ⌊ik/s⌋ (excluding⌊ij/s⌋), and also from⌊ec/s⌋.
For each given block, this can be verified inO(k) ≤ O(1)
time, performing auxiliary arithmetic operations with indexes
only, but no element comparisons or moves.

Step C’. A new hole is created at the positionoc +1 =
ec +1 by moving its buffer element to the place re-
leased byxj . Then all necessary index variables are
incremented and the selection tree is updated.

Step A is eliminated, sinceoc = ec. This mode is termi-
nated as soon asoc andec reach a block boundary. We also
need a slightly modified version of the routine described
in Section 4.4. If one of the input blocks becomes empty,
it becomes free as usual, but the combined output/escape
block is skipped in the search for the next input block.

4.7 Output block overlays a free block

If the output zone crosses a block boundary and the value
of oc is equal to somefℓ, the leftmost position of a block
stored in the free block stack, the new output block and the
corresponding free block are overlaid. This can be verified
in O(k) ≤ O(1) time. By the same argument as in Sec-
tion 4.6, we have thatec must point to the beginning of an
empty escape block.

Therefore, we can easily swap the free block with the
escape block by swapping the pointers stored infℓ andec,
since both these blocks contain buffer elements only. Sec-
ond, one move suffices to transport the hole from one block
to another. Note that this element move is for free, we ac-
tually save some moves because the nexts transports to the
output zone will require only2s moves, instead of3s as in
the standard case. Thus, the program control is switched to
the mode described in Section 4.6.

4.8 Output block overlays a current input block

If the output positionoc points to someXj after crossing
a block boundary, the output block overlays thej-th in-
put blockXj . Again, by the argument presented in Sec-
tion 4.6, oc can point to the beginning of an input block
only if ec points to the beginning of an empty escape block.
There are now two cases to consider.

First, if thej-th current input elementxj is the leftmost
element ofXj , the program control is switched immedi-
ately to the special mode to be described in Section 4.9.

Second, ifxj is not the leftmost element ofXj , we dis-
pose of the empty escape block as free by storing its start-
ing positionec in the stack, create a hole atoc by moving
a single buffer element from the positionoc to ec, and over-
lay the output block by a new escape block, by assigning
the value ofoc to ec. The additional transportation of the
hole is for free, not increasing the total number of moves,
because we can charge it as (nonexistent) Step A for the
next element that will be transported to the output zone.
Sincexj is not placed at the beginning of the block, we
can guarantee that at least one transport to the output will
use only two moves in the next future.
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This special mode can be viewed as ifthree blockswere
overlaid, namely, the output, escape, and the current in-
put block Xj . The buffer elements are between the hole
at ec = oc and the current input elementxj . The elements
are moved according to Step B’ and Step C’ of Section 4.6.
However, there is a different exception handling here.

(1) If the rightmost input element of this combined block
has been transported to the output zone, then the input
blockXj separates from the output/escape block, since
we search for the next input block to be processed. But
here, unlike in Section 4.4, the combined output/
escape block is not disposed of as free, moreover, it is
skipped out during the search. The program control is
switched to the mode of Section 4.6 as the output and
escape blocks are still overlaid.

(2) Let us now consider that this combined block becomes
full. This may happen only if, for someh 6= j, an ele-
mentxh from another input blockXh is moved to the
output zone and, after Step B’, the output positionoc

“bumps” intoxj . In this case, we take one free block
from the top of the stack and change it into a new es-
cape block. We definitely have at least one free block
available, since we disposed one block as free at the
very beginning of this mode. The hole, located inXh

at the position of the last element transported to the
output, jumps to a positionec in the new escape block,
so thatec mod s = oc mod s. This move replaces
Step C’ for the last element just merged. Hence, it does
not increase the total number of moves. Then we fol-
low the instructions of Section 4.9.

4.9 Output zone bumps into a current input element

The program control can jump to this special mode from
several different places (Sections 4.1, 4.4, and two differ-
ent places in Section 4.8). In any case, we have an empty
escape block, containing the hole and buffer elements only.
The output block and a blockXj , which is one of the in-
put blocks, are overlaid. Moreover, there is no room in be-
tween, the output positionoc is pointing to the current in-
put elementxj . The position of hole in the escape block is
synchronized withoc, i.e., we haveec mod s = oc mod s.

As long as the elements to be output are selected in
the input blockXj , they can be moved to the output zone.
This needs no actual transportation, just the positions ofoc

and ij are moved synchronously to the right. To keepec

synchronized withoc, we move the hole along the escape
block in parallel, which gives us one move per element.
There are two ways out of this loop.

(1) If oc andij reach the block boundary, we simply search
for the next input block to be processed; the current
configuration is the same as if, in the standard mode,
oc, ec, andij reached the block boundaries at the same
time (with the old input blockXj disposed of as free,

by Section 4.4). Thus, unless something “exceptional”
happens, the program control returns to the standard
mode. (The possible exceptions are those discussed in
Sections 4.6–4.8, and 4.10.) The single move required
to place the hole back to the beginning of the escape
block is for free, it substitutes Step C for the last ele-
ment merged.

(2) If the element to be transported to the output zone is
an elementxh from another input blockXh, for some
h 6= j, some rearrangements are necessary. Recall that
the hole positionec in the escape block is synchro-
nized with oc, i.e., we haveec mod s = oc mod s.
First, the input elementxj is moved from positionoc

to positionec. Now we can transportxh to the output
positionoc. Finally, a new hole is created4 at the po-
sition ec+1 by moving its buffer element to the place
released byxh.
The result is that the current input blockXj , overlaid
by the output block, jumps and overlays the escape
block. Thus, the control is switched to the mode of
Section 4.5.
Clearly, this rearrangement needs only three moves.
Since one more element has been transported to the
output zone, the number of moves is the same as in the
standard case.

4.10 Common blocks are exhausted

If one of the current input blocks becomes empty, but there
is no common block to become a new input block, the
above procedure is stopped. At this point, the output zone,
consisting of the elements merged already in their final lo-
cations, is followed by a residual zone of sizen′ starting at
the positionoc. This zone consists of the right part of the
output block,k−1 unmerged input blocks, at mostk free
blocks, and one escape block. Thus, the total length of this
residual zone isn′ ≤ s + (k−1)·s + k·s + s = (2k+1)·s.

The residual zone can be sorted by the use of Heapsort
(including also the buffer element put aside at the very be-
ginning of the computation, to create a hole). This will cost
only O(k ·s·log(k ·s)) ≤ O(s·log s) comparisons and the
same number of moves [5–9]. Alternatively, we could also
use an algorithm sorting in-place withO(s·log s) compar-
isons but onlyO(s) moves [10].

4 Unless the positionec+1 itself is across the block boundary.
If xj is moved to the rightmost position in the escape block,
the escape block jumps immediately and one free block be-
comes a new escape block. This nested exception thus returns
the algorithm to the standard mode; all “special” blocks now
reside in pairwise disjoint regions. However, we jump to the
point where the standard routine checks the exceptions of Sec-
tions 4.4–4.10. Among others, we have to check whether the
input blockXh has not become empty, or if the output zone,
just crossing a block boundary, has not bumped into any other
“special” block again.
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Now we are done: the buffer elements are greater than
any other element, and hence the array now consists of the
subsequencesA1, . . . , Ak merged into a single sorted se-
quence, followed by a sorted sequence of buffer elements.

4.11 Summary

Summing up the costs paid for maintaining the selection
tree, transporting the elements to the output zone, search-
ing for smallest input blocks, and for sorting the resid-
ual zone, it is easy to see that the above algorithm uses
⌈log k⌉·n + O((n/s)2) + O(s·log s) element comparisons
and3·n + O(s·log s) moves. Fors = ⌈n2/3/(log n)1/3⌉,
this gives an algorithm with⌈log k⌉·n + O((n·log n)2/3)
comparisons and3·n + O((n·log n)2/3) moves.

5 Conclusion

In this paper we have shown thatk-way blockwise in-place
merging can be accomplished efficiently with almost op-
timal number of element comparisons and moves. More-
over, the number of element moves is independent onk,
the number of input sequences. Note that this algorithm
does not merge stably, that is, the relative order of equal el-
ements may not be preserved. Whether there exist a stable
multiway blockwise in-place merging algorithm is left as
an open problem.

We conjecture that, using the algorithm described here
as a subroutine, it is possible to devise an asymptotically
efficient multiway in-place merging algorithm. We dare to
formulate this conjecture since the work on such algorithm
is currently in progress.
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Abstract. Cover is a type of a regularity of strings. A restricted
approximate coverw of stringT is a factor ofT such that every
position ofT lies within some approximate occurrence ofw in T .
In this paper, the problem ofall restricted smallest distance ap-
proximate covers of a stringis studied and a polynomial time and
space algorithm for solving the problem is presented. It searches
for all restricted approximate covers of a string with given lim-
ited approximation using Hamming distance and it computes the
smallest distance for each found cover. The solution is based on
a finite automata approach, that provides a straightforward way
to design algorithms to many problems in stringology. Therefore
it is shown that the set of problems solvable using finite automata
includes the one studied in this paper.

1 Introduction

Searching regularities of strings is used in a wide area of
applications like molecular biology and computer–assisted
music analysis. One of typical regularities is cover.

Finding exact covers is not sufficient in some applica-
tions, thus approximate covers have to be computed. In this
paper, the Hamming distance is considered.

Exact covers were introduced in [1], an algorithm for
computation of all exact covers in linear time was pre-
sented in [4]. An algorithm using finite automata approach
to computation of all exact covers was introduced in [5].

The algorithm presented in [2] searches for one
restricted smallest approximate cover (i.e. cover with the
smallest distance), using dynamic programming. An algo-
rithm using finite automata approach to computation all
restricted approximate covers for Hamming, Levenshtein,
and Damerau distance was introduced in [3].

This paper is organized as follows. In Section 2, some
notations and definitions used in this paper are described.
In Section 3, the algorithm for the problem is presented. In
Section 4, the complexities of the algorithm are proven. In
Section 5, experimental results are shown.

2 Preliminaries

An alphabetis a nonempty finite set of symbols, denoted
by A. A stringover an alphabet is a finite sequence of sym-

⋆ This research was partially supported by the Ministry of Edu-
cation, Youth, and Sport of the Czech Republic under research
program MSM 6840770014, by the Czech Science Foundation
as project No. 201/06/1039, and by the Czech Technical Uni-
versity in Prague as project No. CTU0803113.

bols of the alphabet. Empty string is an empty sequence of
symbols, denoted byε. An effective alphabetof a stringT

is a set of symbols that really occur inT . Only effective
alphabet is considered in this paper. Alanguageis a set
of strings. A set of all strings over alphabetA is denoted
by A∗. The length of a stringw is denoted by|w|, thei–th
symbol ofw is denoted byw[i]. An operationconcatena-
tion is defined in this way:x, y ∈ A∗, concatenation ofx
andy is xy, may be denoted byx.y. An operationsuperpo-
sition is defined in this way:x = pu, y = us, superposition
of x andy is pus. Supposeu,w, x, T ∈ A∗. w is aprefix
of T if T = wu, w is a suffixof T if T = uw, andw is
a factor (also called a substring) ofT if T = uwx. A set of
all prefixes ofT is denoted byPref (T ), a set of all suffixes
of T is denoted bySuff (T ), and a set of all factors ofT is
denoted byFact(T ).

A deterministic finite automaton(also called a deter-
ministic finite state machine, denoted by DFA) is a quin-
tuple (Q,A, δ, q0, F ), whereQ is a nonempty finite set of
states,A is an input alphabet,δ is a transition function,
δ : Q × A 7→ Q, q0 ∈ Q is an initial state andF ⊆ Q is
a set of final states.

A nondeterministic finite automatonwithout ε–tran-
sitions is a quintuple(Q,A, δ, q0, F ), whereQ is a non-
empty finite set of states,A is an input alphabet,δ is a tran-
sition function, whereδ : Q × A 7→ P(Q), q0 ∈ Q is an
initial state andF ⊆ Q is a set of final states. It is denoted
by NFA.

A stateq is a successorof statep of a deterministic
finite automaton(Q,A, δ, q0, F ) if q = δ(p, a) for some
a ∈ A. A stateqN is a successor of a statepN of a NFA
(QN , A, δN , q0N , FN ) if q ∈ δN (pN , a).

String w = a1a2 . . . a
|w|

is said to beaccepted by
a DFA (Q,A, δ, q0, F ) if there exists a sequence
δ(q0, a1) = q1, δ(q1, a2) = q2, . . . , δ(q|w|−1, a|w|

) ∈ F .
Stringw = a1a2 . . . a

|w|
is said to beaccepted by a NFA

(Q,A, δ, q0, F ) if there exists a sequence
δ(q0, a1) = Q1, δ(q1, a2) = Q2, . . . , δ(q|w|−1, a|w|

) ⊆ F

for someq1 ∈ Q1, . . . , q|w|−1 ∈ Q
|w|−1. A language ac-

cepted by a finite automatonM is denoted byL(M).
A left language of a stateq of a nondeterministic fi-

nite automaton(Q,A, δ, q0, F ) is a set of stringsw =
a1a2 . . . a

|w|
, where for eachw exists a sequence

δ(q0, a1) = Q1, δ(q1, a2) = Q2, . . . , δ(q|w|−1, a|w|
) =

Q
|w|

, q ∈ Q
|w|

for someq1 ∈ Q1, . . . , q|w|−1 ∈ Q
|w|−1.

A left language of a stateq of a DFA (Q,A, δ, q0, F )
is a set of strings w = a1a2 . . . a

|w|
, where for
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eachw exists a sequenceδ(q0, a1) = q1, δ(q1, a2) =
q2, . . . , δ(q|w|−1, a|w|

) = q.
A maxfactor of a stateq of a DFA (Q,A, δ, q0, F ) is

the longest string of left language ofq, denoted by
maxfactor(q). A depth of a stateq of a DFA is the length
of maxfactor(q), denoted bydepth(q).

A DFA MD = (Q,A, δ, q0, F ) is equivalentto a NFA
MN = (QN , A, δN , q0N , FN ) if L(MN ) = L(MD). Sub-
set construction may be used:

1. SetQ = {{q0}} will be defined, stateq0 = {q0N} will
be treated as unmarked.

2. If each state inQ is marked then continue with step 4.
3. Unmarked stateq will be chosen fromQ and the fol-

lowing operations will be executed:
(a) δ(q, a) =

⋃
δN (pN , a) for pN ∈ q and for all

a ∈ A,
(b) Q = Q ∪ δ(q, a) for all a ∈ A,
(c) stateq ∈ Q will be marked,
(d) continue with step 2.

4. F = {q : q ∈ Q, pN ∩ FN 6= ∅, pN ∈ q}.

Using subset construction ofMD equivalent toMN , every
stateqD ∈ Q corresponds to some subset ofQN . This sub-
set is called ad–subset, denoted byd(qD). Each element
of the d–subset corresponds to some state ofQN . Where
no confusion arises, depth of a state corresponding to an
elementrj ∈ d(qD) of d–subsetd(qD) is simply denoted
by rj , as numeric representation ofrj corresponds to the
depth. In the algorithms below,d–subset is supposed to be
implemented as a list, preserving order of its elements. An
element of thed–subset is denoted byri, where the sub-
scripti means an index (order) of the elementri within the
d–subset.

A distanceis the minimum number of editing opera-
tions that are necessary to convert a stringx into a stringy.
The maximum allowed distance is denoted byk.

The Hamming distancebetween stringsx and y

is equal to the minimum number of editing operations re-
place that are necessary to convertx into y. The Hamming
distance function is denoted byDH .

Stringw ∈ A∗ is anapproximate prefixof a stringT ∈
A∗ with the maximum Hamming distancek if there exists
stringp ∈ Pref (T ) such thatDH(w, p) ≤ k. Stringw is
an approximate suffixof the stringT if there exists string
s ∈ Suff (T ) such thatDH(w, s) ≤ k.

A nondeterministic Hamming suffix automatonM for
a string T and distancek is such nondeterministic
finite automaton withoutε–transitions, thatL(M) =
{w : DH(w, s) ≤ k, s ∈ Suff (T )}. Such an automaton
M = (Q,A, δ, q0, F ) may be constructed in this way:

1. Create a layer of|T | + 1 states:
(a) each stateq0

i corresponds to a positioni in T (plus
initial stateq0, thus0 < i ≤ |T |),

(b) for each stateq0
i (but the lastq0

|T |

) define transition

δ(q0
i , T [i]) = q0

i+1,

(c) define the last stateq0
|T |

final (note that until now
such automaton accepts exactlyT ).

2. Similarly, create a layer for each “number of errors”l,
1 ≤ l ≤ k (only exception: we do not need any state
ql
i for l > i).

3. For each stateql
i (but the lastq

|T |
in each layer and

but the last layer) and for each symbola ∈ A, a 6=
T [i] (not occurring inT at positioni), define transition
δ(ql

i, T [i]) = ql+1

i+1.
4. Create “long” transitions fromq0: δ(q0, a) = {q0

i :
a = T [i], a ≤ i ≤ |T |}∪{q1

i : a 6= T [i], 1 ≤ i ≤ |T |}.

For example of a transition diagram of a nondeterministic
Hamming suffix automaton see Fig. 1.

A levelof a state of a nondeterministic Hamming suf-
fix automaton corresponds to the number of errors, adepth
of a state of this automaton is equal to the corresponding
position inT .

Definition 1 (Restricted approximate cover). Let T

andw be strings. We say, thatw is a restricted approximate
coverof T with Hamming distancek if w is a factor ofT
and there exist stringss1, s2, . . . , sr (all some substrings
of T ) such that:

1. DH(w, si) ≤ k for all i where1 ≤ i ≤ r,
2. T can be constructed by superpositions and concate-

nations of copies of the stringss1, s2, . . . , sr.

Note 1. An approximate cover is more general regularity
than restricted approximate cover, because (unrestricted)
approximate cover ofT needs not be a factor ofT . In this
paper, only restricted approximate cover is considered.

Definition 2 (Restricted smallest distance approximate
cover). Let T and w be strings. We say, thatw is a re-
stricted smallest distance approximate coverof T with dis-
tancek if w is a restricted approximate cover ofT with
the distancek and there exists nol < k such thatw is
a restricted approximate cover ofT with the distancel.

Problem 1 (All restricted smallest distance approxi-
mate covers of a string).Given stringT over alphabetA,
Hamming distance functionDH and distancek, find all
restricted approximate covers ofT and their smallest dis-
tances. A set of all restricted smallest distance approximate
covers of stringT under Hamming distancek is denoted by
coversH k (T ).

As any approximate cover of a stringT under Ham-
ming distance is an approximate prefix and an approximate
suffix of T (proven in [3]), an automaton accepting only
such strings can be used.

Definition 3 (Approximate cover candidate automa-
ton). An approximate cover candidate automa-
ton (Q,A, δ, q0, F ) for string T ∈ A∗, Hamming dis-
tance functionDH and the maximum distancek accepts
setW = {w1, w2, . . . , wl} of factors ofT , where for each
wi ∈ W holds:
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1. there existsp ∈ Pref (T ) such thatDH(p,wi) ≤ k,
and

2. there existss ∈ Suff (T ) such thatDH(s, wi) ≤ k.

In [3], a construction of an automaton accepting inter-
section of approximate prefixes and approximate suffixes is
used for construction of a deterministic approximate cover
candidate automaton. Although this is a straightforward
idea, specialized method (more effective) is presented for
Hamming distance in the following section.

3 Problem solution

The principle of the solution is following: first, we perform
a subset construction of a deterministic cover candidate au-
tomaton from a nondeterministic Hamming suffix automa-
ton for stringT andk, as everyd(q) represents a set of posi-
tions ofw = maxfactor(q) within T . If we treat withd(q)
as with a sorted list (ordered by depths of its elements),
each pair of subsequent elements represents positions of
subsequent occurrences ofw within T . When for such po-
sitionsi, j, i < j holdsj− i > |w|, we know thatw cannot
be a cover ofT . The distance ofw is the minimuml such
that it is possible to remove all elementsr ∈ d(q) having
level(r) > l and the previous condition holds.

In fact, it is not necessary to save complete determinis-
tic automaton. Unlike in [3], we do not make construction
of the deterministic cover candidate automaton and sub-
sequent computation of covering. A depth–first search al-
gorithm is used to perform subset construction and com-
putation of covering and of the distance of each cover: in
Algorithm 2, for each state and symbol, a successorq is
generated, it is determined whether it represents a cover
and the distance is computed. Whenq represents an ap-
proximate prefix, its successors are recursively generated
and processed. Note that the set of final states of the de-
terministic approximate cover candidate automaton is not
needed (it would contain all states havingd–subsets con-
taining element corresponding to some final state of the
nondeterministic Hamming suffix automaton).

Distancel of each coverw = maxfactor(q) may vary
between0 and k. Moreover, it cannot be less than level
of the first or the last element ofd(q), because each cover
must be an approximate prefix and suffix. Of course, it can-
not be more than the maximum level of elements ofd(q).
The Algorithm 1 removes all the elements having the max-
imum level but the first and the last element ofd(q), and
tries whetherw coversT without those removed positions.

Example 1.Let us have a stringT = aabccccb over alpha-
betA = {a, b, c} and let us compute a set of all restricted
smallest distance approximate covers ofT under Hamming
distancek = 2 using Algorithm 3.

Because of the distance 2, we are interested in covers
of length at least 3 or having distance less than 2. We con-
struct a nondeterministic Hamming suffix automatonMS

Algorithm 1 Smallest distance of a cover ofT .
Input: d–subsetd(q) representing a coverw of T .
Output: The smallest distancel of w.

1: lmin ← max{level(r1), level(r|d(q)|)}
2: lmax ← maxr∈d(q){level(r)}
3: l ← lmax

4: repeat
5: for all r ∈ d(q) \ {r1, r|d(q)|} : level(r) = l do
6: remover from d(q)
7: end for
8: l ← l − 1
9: until l ≥ lmin and for alli = 2, 3, . . . , |d(q)| : ri − ri−1 ≤

depth(q)
10: l ← l + 1.

Algorithm 2 Process state of a deterministic approximate
cover candidate automatonM = (Q,A, δ, q0, F ) con-
structed for stringT and the maximum distancek from
a nondeterministic Hamming suffix automatonMS =
(QS , A, δS , q0S , FS).
Input: Stateqi having depthi and thed–subsetd(qi).
Output: The temporary set of restricted smallest distance approx-
imate coversc.

1: c ← ∅
2: for all a ∈ A do
3: create new stateq, definedepth(q) = depth(qi) + 1
4: for all rs in d(qi) (in order as stored ind(qi)) do
5: append allri ∈ δS(rs, a) to d(q) in ascending order by

depth(ri)
6: end for
7: if for the firstr1 ∈ d(q) holdsr1 ≤ depth(qi) then
8: if existsr ∈ d(q) wherelevel(r) = 0 within MS then
9: definew = maxfactor(q) = maxfactor(qi).a

10: if r|d(q)| ∈ FS then
11: if for all i = 2, 3, . . . , |d(q)| : depth(ri) −

depth(ri−1) ≤ depth(q) then
12: definel the smallest distance ofw (Alg. 1)
13: if |w| > k or l < |w| then
14: c ← c ∪ (w, l)
15: end if
16: end if
17: end if
18: process stateq (this algorithm),c′ is result
19: c ← c ∪ c

′

20: end if
21: end if
22: end for

(see Fig. 1), then an approximate cover candidate automa-
tonM is analysed (see Fig. 2).

Looking at thed–subset{3, 4′′, 8′′}, it represents an
approximate prefix and suffixaab of length 3, but for its
positions holds8 − 4 £ 3, thus the factoraab is not an ap-
proximate cover ofT with Hamming distance 2. Looking
at the otherd–subset{3′′, 5′′, 6′, 7′, 8}, it represents factor
ccb, that coversT with Hamming distance 2. It is checked
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Algorithm 3 Computation of a set of all restricted smallest
distance approximate covers for stringT and the Hamming
distancek.
Input: StringT = a1a2 . . . an, the Hamming distancek.
Output: Set of all restricted smallest distance approximate covers
coversH k (T ) of string T using the Hamming distance function
DH and the distancek.

1: coversH k (T ) ← {(T, 0)}.
2: Construct nondeterministic Hamming suffix automaton

MS = (QS , A, δS , q0S , FS) for T andk.
3: Create stateq0 of the deterministic approximate cover candi-

date automatonM(T ) = (Q, A, δ, q0, F ).
4: Definemaxfactor(q0) = ε.
5: Process stateq0 using Algorithm 2.
6: coversH k (T ) is the resulting set from the previous step.

whether it coversT with distance 1 (Alg. 1). As the first
element of thed–subset has level equal to 2,lmin is equal
to 2. The resulting set of the covers iscoversaabccccbH (2 )=
{(ccb, 2), (aabccccb, 0)}.

0 1 2 3 4 5 6 7 8
a a b c c c c b

a b c c c c b

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′
a b c c c c b

b, c b, c a, c a, b a, b a, b a, b a, c

b, c a, c a, b a, b a, b a, b a, c

2′′ 3′′ 4′′ 5′′ 6′′ 7′′ 8′′
b c c c c b

b, c a, c a, b a, b a, b a, b a, c

Fig. 1. Transition diagram of nondeterministic Hamming suffix
automaton for stringaabccccb and the distance 2.

4 Complexities

Lemma 1. The nondeterministic Hamming suffix automa-
ton MS = (Q,A, δ, q0, F ) for string T and the distancek
contains(|T | + 1) · (k + 1) − k2

+k
2

states and|A| · (|T | ·

(k + 1) − 1 + k−k2

2
) + |T | − k + 1 transitions.

Proof. The automaton consists of layers of statesq(i) for
each leveli. The layer of statesq0 contains|T | + 1 states.
Each layer of statesq(i) contains one state less in compari-
son with layer of statesq(i−1), thus it contains|T | − i + 1
and layer of statesq(k) contains|T | − k + 1 states.

The automaton contains|A| transitions from each state,
with some exceptions. There arek + 1 final states having
no successor. In the layer of statesq(k), each state has only
one successor. From the initial state, there are|T | tran-
sitions defined to the statesq(0) having level(q(0)) = 0
and |T | · (|A| − 1) transitions to the statesq(1) having

level(q(1)) = 1. Thus inMS there are|Q|·|A|+|T |·|A|−
(k+1)·|A|−(|T |−k+1)·(|A|−1)= |A|·(|Q|−2)+|T |−k+1
transitions.

Note 2. As restricted approximate covers of stringT are
exact factors ofT , it is meaningful to consider effective
alphabetA only, thus|A| ≤ |T | always holds. It is also
meaningless to consider largek, because every factor ofT

having length less or equal tok is always approximate
cover ofT . Thusk ≤ |T | always holds.

Usually,k ≪ |T | and|A| ≪ |T | (e.g. in DNA analysis,
A = {a, c, g, t}). Thereforek and|A| may be considered
as small constants independent of|T |.

Lemma 2. The deterministic approximate cover candi-
date automatonM for stringT and the Hamming distance

contains at most|T |
2
+|T |

2
+ 1 states.

Proof. Eachd–subsetd(q) of M contains at least oner
such thatlevel(r) = 0, thusmaxfactor(q) ∈ Fact(T ).
The number of possible factors of lengthdepth(q) is at
most |T | − depth(q) + 1, thus the maximum number of
states ofM having equal depth is also|T | − depth(q) + 1.
The automatonM also contains an initial state. Therefore,
the number of states ofM is at most(|T |−1+1)+(|T |−|T |+1)

2
·

|T | + 1.

Lemma 3. During the construction of the deterministic
cover candidate automatonM for stringT , Algorithms 2, 3
need to hold at most|T | + 2 states at a time.

Proof. Algorithm 2 works as a depth–first search algo-
rithm. For each state and symbol it generates at most one
state – possible successor. Thus it holds at most|T | + 1
states ofM (|T | states havingd–subsets representing ex-
act prefixes ofT plus initial state) and a state generated for
a final state, having emptyd–subset.

Lemma 4. During the construction of the deterministic
cover candidate automatonM for stringT , Algorithms 2, 3

need to hold at most|T |
2
+|T |

2
+ 1 elements ofd–subsets at

a time.

Proof. Alg. 2 needs at most|T | + 2 states in a memory
at a time (Lemma 3). The deterministic cover candidate
automatonM = (Q,A, δ, q0, F ) is constructed by subset
construction from a nondeterministic Hamming suffix au-
tomatonMS = (QS , A, δS , q0S , FS). In MS , each state
but q0S has at most one successor for each symbol,q0S

has|T | successors for each symbol. For each statepS and
its successorqS in MS holds: depth(qS) > depth(pS).
The longest possibled–subsetd(p) containsr

|T |
having

depth(r
|T |

) = |T |, and r1 having depth(r1) = 1. As
|δS(r1, a)| ≤ 1 andδS(r

|T |
, a) = ∅ for everya ∈ A, for

statep and its successorq in M holds:|d(q)| ≤ |d(p)| for
p 6= q0 and|d(q)| ≤ |T | for p = q0.
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0 123′4′5′6′7′8′

1′2′34′5′6′7′8

1′2′3′45678′

23′4′′5′′6′′7′′8′′

2′34′′5′′6′′7′′8′

2′′3′45′6′7′8′′

2′′3′4′′5′6′7′8

2′′3′′4′5678′

34′′8′′

3′′45′′6′′7′′

3′′5′′6′7′8

45′′

4′′56′′7′′

56′′

5′′67′′

67′′

6′′7

7 8
a

b

c

a
b

c

b

c

b

c

b

c

c

c

c

c

c

c b

Fig. 2. Transition diagram of complete deterministic approximate cover candidate automaton for stringT = aabccccb and the maxi-
mum Hamming distance 2.

Theorem 1. Space complexity of Alg. 3 isO(|T |2).

Proof. It clearly holds that for construction of the
nondeterministic Hamming suffix automatonMS =
(QS , A, δS , q0S , FS), there is no need for any additional
data structures. For the purpose of the construction of the
deterministic cover candidate automatonM , only the set
of states and transitions fromq0S need to be preserved,
because the rest may be computed later inO(1) time and
space using knowledge of a depth and a level of a state,k,
andT . Thus the space complexity of this construction is
O((k + |A|) · |T |).

During the computation of the smallest distance (Al-
gorithm 1), onlyO(1) additional data is needed. During
the processing of states ofM (Algorithm 2), the needed
space is limited by the number of elements of alld–subsets
(Lemma 4) preserved in a memory and by the number of
all approximate covers (the result, limited by the number
of all factors ofT – at mostO(|T |2)).

Lemma 5. Using Algorithms 2, and 3 for construction of
a deterministic cover candidate automatonM =
(Q,A, δ, q0, F ) from a nondeterministic Hamming suffix
automatonMS = (QS , A, δS , q0S , FS), all d–subsets are
sorted in ascending order by depths withinMS .

Proof. Having p, q ∈ Q \ {q0} such thatq is a succes-
sor of p, suppose thatd(p) is sorted in order by depths
within MS . It holds that for anypS , qS ∈ QS such thatqS

is a successor ofpS , depth(qS) > depth(pS). Therefore
d(q) constructed from already sortedd(p) is also sorted.

Forp = q0, it is supposed thatδS(q0S , a) is constructed
as sorted in order by depths withinMS .

Lemma 6. Time complexity of Algorithm 1 isO(k · |T |)
for each state.

Proof. Algorithm 1 may remove some elements of
ad–subset in each iteration, thus the iteration may take
O(|T |) time. The number of iterations may be at mostk.

Lemma 7. Time complexity of Algorithm 2 (from the ini-
tial state) isO((k + |A|) · |T |3).

Proof. Algorithm 2 constructs for all statesq and alla ∈ A

thed–subsets of all possible successors ofq. The number of
states isO(|T |2) (Lemma 2) and the number of elements of
eachd–subset isO(|T |). For each state, the computation of
covering is performed (it takesO(|T |)), and for each cover
(their number isO(T 2)), the computation of the smallest
distance is performed (it takesO(k · |T |) for each cover –
Lemma 6).

Theorem 2. Time complexity of Alg. 3 isO((k+|A|)·|T |3).

Proof. It clearly holds that construction of the nondeter-
ministic Hamming suffix automaton takesO((k+|A|)·|T |).
Construction of the deterministic cover candidate automa-
ton takesO((k + |A|) · |T |3) (Lemma 7).

5 Experimental results

The algorithm was implemented in C++ using STL, the
program was compiled using the GNU C++ com-
piler with O3 optimizations level. The dataset used to test
the algorithm is the nucleotide sequence of Saccharomyces
cerevisiae chromosome IV1. The stringT consists of the
first |T | characters of the chromosome.

The first set of tests was run on a AMD Athlon 64
3200+ (2200 MHz) system, with 2.5 GB of RAM, under
Fedora Linux operating system (see Figs. 3, 4).

The second set of tests was run on a AMD Athlon
(1400 MHz) system, with 1.2 GB of RAM, under Gentoo
Linux operating system (see Figs. 5, 6).

Note 3. In comparison with experimental results presented
in [2], the algorithm presented in this paper runs a bit faster
for the same data, even on a slightly slower com-
puter (1.3 seconds in [2] for text length 100 vs. maximum
1.0 second for text length 114 – see Fig. 6).

6 Conclusion and future work

In this paper, we have shown that an algorithm design
based on a determinisation of a suffix automaton is ap-
propriate for all restricted smallest distance approximate

1 The Saccharomyces cerevisiae chromosome IV dataset could
be downloaded from http://www.genome.jp/.
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Athlon64, for k=11 and k=31

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

Text length

T
im

e 
[s

ec
]

Fig. 3. Time consumption with respect to the text size (solid line
for k = 11, dotted one fork = 31).

Athlon64, for |T|=1162 and |T|=1550
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Fig. 4. Time consumption with respect to the distance (solid line
for |T | = 1162, dotted one for|T | = 1550).

Athlon, for k=101 and k=201
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Fig. 5. Time consumption with respect to the text size (solid line
for k = 101, dotted one fork = 201).

covers of a string problem for Hamming distance. The pre-
sented algorithm is straightforward, easy to understand and
to implement and its theoretical and experimental time re-
quirements are comparable to the existing approach ([2]).

The algorithm may be extended to work with other dis-
tance functions, possibly using the idea presented in [3].
Theoretical and experimental analysis similar to one pre-
sented here may be accomplished. The algorithm may be
also extended to use parallelism.

Athlon, for |T|=114 and |T|=153
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Fig. 6. Time consumption with respect to the maximum distance
(solid line for|T | = 114, dotted one for|T | = 153).
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Abstract. The paper deals with quality measures of whole sets
of rules extracted from data, as a counterpart to more commonly
used measures of individual rules. This research has been mo-
tivated by increasingly frequent extraction of non-classification
rules, such as association rules and rules of observational logic,
in real-world data mining tasks. The paer sketches the typology
of rules extraction methods and of their rulesets, and recalls that
quality measures for whole sets of rules have been so far used
only in the case of classification rulesets. It then proposes three
possible ways how such measures can be extended to general
rulesets. The paper also recalls the possibility to measure the de-
pendence of classification ruleset on parameters of the classifica-
tion method by means of ROC curves, and proposes a generaliza-
tion of ROC curves to general rulesets. Finally, a brief illustration
on rulesets extracted by means of the method GUHA is given.

1 Introduction

Logical formulas of specific kinds, usually calledrules,
are a traditional way of formally representing knowledge.
Therefore, it is not surprising that they are also the most
frequent representation of the knowledge discovered
in data mining. Existing methods for rules extraction are
based on a broad variety of paradigms and theoretical prin-
ciples. However, methods relying on different underlying
assumptions can lead to the extraction of different or even
contradictory rulesets from the same data. Moreover, the
set of rules extracted with a particular method can substan-
tially depend on some tunable parameter or parameters of
the method, such as significance level, thresholds, size pa-
rameters, trade-off coefficients etc. For that reason, it isde-
sirable to have measures of various qualitative aspects of
the extracted rulesets. So far, such measures are available
only for sets of classification rules, and their dependence
on tunable parameters can be described only for classifi-
cation into two classes [10, 15]. As far as more general
kinds of rules are concerned, measures of quality have been
proposed only for individual rules [6, 11, 24, 26, 29], or for
contrast sets of rules, which finally can be replaced with
a single rule [2, 16]; if a whole ruleset is taken into consid-
eration, then only as a context for measuring the quality of
an individual rule [27, 28].

⋆ The research reported in this paper has been supported by the
grant No. 201/08/1744 of the Grant Agency of the Czech Re-
public and partially supported by the Institutional Research
Plan AV0Z10300504.

The research reporeted in this paper has been moti-
vated by increasingly frequent extraction of non-classifica-
tion rules in real-world data mining tasks. The paper dis-
cusses three possible ways of extending existing ruleset
quality measures from classification to general rulesets.
The proposed extensions are introduced in Section 4, af-
ter the basic typology of rules extraction methods and ex-
amples of measures for classification rulesets are recalled
in the following two sections, and before a generalization
of ROC curves is proposed in Section 5. The paper con-
cludes with a brief illustration on rulesets extracted with
the method GUHA.

2 Typology of rules extraction methods

The most natural base for differentiating between existing
rules extraction methods is thesyntax and semantics of the
extracted rules. Syntactical differences between them are,
however, not very deep since principally, any ruler has
one of the formsSr ∼ S′

r, or Ar → Cr, whereSr, S′

r, Ar

and Cr are formulas of the considered logic, and∼, →
are symbols of the language of that logic. The difference
between both forms concerns semantic properties of the
symbols∼ and→: Sr ∼ S′

r is symmetric with respect to
Sr, S′

r in the sense that its validity always coincides with
that ofSr ∼ S′

r whereasAr → Cr is not symmetric with
respect toAr, Cr in that sense. In the case of a proposi-
tional logic,∼ and→ are the connectives equivalence and
implication, respectively, whereas in the case of a predi-
cate logic, they are generalized quantifiers. To distinguish
the formulas involved in the asymmetric case,Ar is called
antecedentandCr consequentof r.

The more important is the semantic of the rules
(cf. [6]), especially the difference betweenrules of
the Boolean logicand rules of a fuzzy logic. Due to the
semantics of Boolean and fuzzy formulas, the former are
valid for crisp sets of objects, whereas the validity of the
latter is a fuzzy set on the universe of all considered ob-
jects. Boolean rulesets are extracted more frequently, espe-
cially some specific types of them, such asclassification
rulesets[11, 15]. Those are sets of implications such that
(Ar)r∈R

and{Cr}r∈R
partition the setO of considered

objects, whereR is the considered ruleset, and{Cr}r∈R

stands for the set of distinct formulas in(Cr)r∈R
. Aban-

doning the requirement that(Ar)r∈R
partitionsO (at least

in the sense of a crisp partitioning) allows to generalize
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those rulesets also to fuzzy antecedents. For Boolean ante-
cedents, however, this requirement entails a natural defin-
ition of the validity of a whole classification rulesetR for
an objectx. Assuming that all information aboutx con-
veyed byR is conveyed by the single ruler coveringx

(i.e., with Ar valid for x), the validity ofR for x can be
defined to coincide with the validity ofAr → Cr for thatr,
which in turn equals the validity ofCr for x.

As far as the Boolean predicate logic is concerned, gen-
eralized quantifiers both for symmetric and for asymmetric
rules were studied in the 1970s within the framework of
theobservational logic[13], which is a Boolean predicate
logic with generalized quantifiers. For a set of data about
n objects, the truth evaluation of the Boolean predicateϕ

on those objects is a vector‖ϕ‖ ∈ {0, 1}n, whereas the
truth evaluation of a sentence(Qx)(ϕ1(x), . . . , ϕm(x))
consisting ofm Boolean predicatesϕ1, . . . , ϕm and an
m-ary generalized quantifierQ is the function value

‖(Qx)(ϕ1(x), . . . , ϕm(x))‖ = TfQ(‖ϕ1‖, . . . , ‖ϕm‖),
(1)

of a {0, 1}-valued functionTfQ on the set ofm-column
binary matrices, which is calledtruth functionof the quan-
tifier Q. Observational logic underlies one of the earliest
methods for the extraction of general rules from data,
called General Unary Hypotheses Automaton (GUHA). In
GUHA, the truth functionTfQ of a generalized quanti-
fier Q is always a function of the 4-fold table

S′

r ¬S′

r

Cr ¬Cr

Sr Ar a b

¬Sr ¬Ar c d

. (2)

Hence,TfQ is a {0, 1}-valued function on quadruples of
nonnegative integers. For symmetric rules, GUHA uses
quantifiers fulfilling

a′ ≥ a & b′ ≤ b & c′ ≤ c & d′ ≥ d &

& TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (3)

They are calledassociational quantifiers. For asymmetric
rules, it uses quantifiers fulfilling the stronger condition

a′ ≥ a & b′ ≤ b &

& TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (4)

which are calledimplicational quantifiers. This condition
covers also the frequently encounteredassociation rules
[1, 6, 40] (since methods for the extraction of association
rules have been developed outside the framework of ob-
servational logic, the terminology is a bit confus-
ing here: although associational rules are asymmetric, their
name evokes the quantifier for the symmetric ones).

Orthogonally to the typology according to the seman-
tics of the extracted rules, all extraction methods can be
divided into two large groups:

– Methods that extract logical rules from datadirectly,
without any intermediate formal representation of the
discovered knowledge. Such methods have always
formed the mainstream of the extraction of Boolean
rules: from the observational logic methods [13] and
the methodAQ [30, 31] in the late 1970s, through the
extraction of association rules [1, 40] and the method
CN2 [4], relying on a paradigm similar to that of AQ,
to recent methods based oninductive logic program-
ming [5, 33] andgenetic algorithms[9]. They include
also important methods for fuzzy rules, in particular
ANFIS [22, 23] andNEFCLASS[34, 35], fuzzy gener-
alizationsof observational logic[18, 19] and a recent
method based onfuzzy transform[36].

– Methods that employ someintermediate representa-
tion of the extracted knowledge, useful by itself. This
group includes two important kinds of methods:clas-
sification trees[3, 37] and methods based onartificial
neural networks (ANN). The latter are used both for
Boolean and for fuzzy rules [7, 21, 39] (cf. also the sur-
vey papers [32, 38]).

3 Existing measures for classification
rulesets

A survey of measures of quality for classification rulesets
(with possibly fuzzy antecedents) has been given in the
monograph [15]. All measures have been divided there into
four groups: inaccuracy, imprecision, inseparability andre-
semblance. Space limitation allows to recall here only the
main representatives of the more important groups:

Inaccuracymeasures the discrepancy between the true
class of the considered objects and the class predicted by
the ruleset. Its most frequently encountered representative
is thequadratic score(also called Brier score):

Inacc =
1

|O|

∑

x∈O

∑

C∈{Cr}r∈R

(
δC(x) − δ̂C(x)

)2

, (5)

where| | denotes cardinality,O is the considered set of ob-
jects,δC(x) ∈ {0, 1} is the validity of the propositionC
for x ∈ O, andδ̂C(x) is the agreement betweenC and the
class predicted forx by R. In the general case of a fuzzy
logic, δ̂C(x) = maxCr=C‖Ar‖x, with ‖Ar‖x ∈ 〈0, 1〉 de-
noting the truth grade ofAr for x.

Imprecision measures the discrepancy between the
probability distribution of the classes, conditioned on the
values of attributes occurring in antecedents, and the class
predicted by the ruleset. Its most common representative is

Impr =

=
1

|O|

∑

x∈O

∑

C∈{Cr}r∈R

(
δC(x) − δ̂C(x)

) (
1 − δ̂C(x)

)
2

.

(6)



Measures of quality of rulesets extracted from data 29

As was already mentioned in the introduction, the ex-
tracted ruleset can substantially depend on tunable para-
meters of the employed method. This was so far system-
atically studied only for dichotomous classification with
R = {A → C,¬A → ¬C}. In that case, puttingAr = A,
Cr = C allows the information about the validity ofA
andC for O to be again summarized by means of the 4-fold
table (2), which also depends on the parameter values. The
influence of the parameter values on the result of dichoto-
mous classification is usually investigated by means of the
measuressensitivity= a

a+c
and specificity= d

b+d
[15].

Connecting points (1-specificity,sensitivity)= ( b
b+d

, a
a+c

)
for the considered parameter values forms a curve with
graph in the unit square, calledreceiver operating charac-
teristic (ROC), due to the area where such curves have first
been in routine use. In machine learning, a modified ver-
sion of those curves has been proposed, in which the points
connected for considered parameter values are(b, a) [10].
The graph of such a curve then lies in the rectangle with
vertices(0, 0) and (b + d, a + c), and is calledcoverage
graph.

The graphs of ROC curves and coverage graphs can
provide information about the influence of parameter val-
ues not only on the sensitivity and specificity, but also on
other measures. It is sufficient to complement the graph
with isolines of the measure and to investigate their inter-
sections with the original curve [10].

4 Three extensions to more general kinds
of rules

In the particular case of classification rulesets with Boolean
antecedents, some algebra allows to substantially sim-
plify (5)–(6):

Inacc =
2|O−|

|O|
= 1 −

|O+| − |O−|

|O|
,

Impr =
|O−|

|O|
= 1 −

|O+|

|O|
,

(7)

where

O+ = {x ∈ O : R is valid forx},

O− = {x ∈ O : R is not valid forx}.
(8)

This not only shows that, in the case of Boolean antece-
dents, the quadratic score is sufficient to describe also the
imprecision, but also suggests an approach how to extend
those measures to general rulesets: to use (7)–(8) as the de-
finition of measures (5)–(6). More generally, any measure
of quality of classification rulesets with Boolean antece-
dents (e.g., any measure surveyed in [15]) that can be re-
formulated by means ofO+ andO−, can be extended in
such a way that the reformulation is used as the definition
of that measure for general rulesets.

For sets of asymmetric rules, also the notion of cover-
ing an object by a rule, which was recalled in Section 2,
can be generalized. Notice, however, that for fuzzy antece-
dents, the validity ofAr, r ∈ R is a fuzzy set onO. Con-
sequently, the setO

R
of objects covered byR is a fuzzy

set onO with the membership function

µ
R

(x) = ‖(∃r ∈ R) Ar‖x = max
r∈R

‖Ar‖x. (9)

Observe that according to (9),O
R

= O for classifica-
tion rulesets with Boolean antecedents. Therefore, various
generalizations of classification measures to general rule-
sets of asymmetric rules are possible: whereverO occurs
in the definition of a measure for classification rulesets,
eitherO or O

R
can occur in its general definition, pro-

videdO
R

6= ∅. To allow unified treatment of symmetric
and asymmetric rules, the concept of covering an object
by a rule will be extended also to symmetric rules, in such
a way that an objectx is covered bySr ∼ S′

r if either Sr

or S′

r is valid forx. Hence, a counterpart of (9) for a setR
is a fuzzy set with the membership function

µ
R

(x) = ‖(∃r ∈ R)(Sr ∨ S′

r)‖x =

= max
r∈R

max(‖Sr‖x, ‖S′

r‖x). (10)

According to (8), the proposed way of extending mea-
sures of quality from classification rulesets with Boolean
antecedents to general rulesets requires to generalize the
concept of validity of a general ruleset for an object. How-
ever, there are multiple possibilities for such a generaliza-
tion. Indeed, at least any of the following points of view is
possible:

Boolean validity of the ruleset based on simultane-
ous validity of all covering rules. According to this point
of view, the validity of a rulesetR for a covered objectx is
a Boolean property expressing the simultaneous validity of
all rules that coverx. Consequently, the setsO+ andO−

defined in (8) are crisp sets

O+ = {x ∈ O : µR(x) > 0 &

(∀r∈R) ‖r coversx & r is valid forx‖ = ‖r coversx‖},
(11)

O− = {x ∈ O : µR(x) > 0 &

(∃r∈R) ‖r coversx & r is valid forx‖ < ‖r coversx‖},
(12)

where

‖r coversx‖ =

{
‖(Sr ∨ S

′
r
)‖x for symmetric rules,

‖Ar‖x for asymmetric rules,
(13)

and similarly

‖r coversx & r is valid forx‖ =

=

{
‖(Sr ∨ S

′
r
)&r‖x for symmetric rules,

‖Ar&r‖x for asymmetric rules.
(14)
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The following consequences of this point of view are
worth noticing:
(i) It is immaterial how the truth grade‖r‖x of a ruler

being valid for an objectx is evaluated (thus also how
‖¬r‖x is evaluated).

(ii) If µ
R

(x) = 0, thenx 6∈ O+ ∪ O−.
(iii) For classification rulesets with Boolean antecedents,

the validity ofR according to this point of view coin-
cides with the definition in Section 2 because in that
case, there is exactly one rule that coversx.
Boolean validity of the ruleset based on the validity

of the majority of covering rules. According to this point
of view, the validity of a rulesetR for a covered objectx
is a Boolean property expressing the validity of most of
the rules that coverx. Consequently, the setsO+ andO−

in (8) are crisp sets

O+ = {x ∈ O : µR(x) > 0 &

&
∑

r∈R

‖r coversx & r is valid forx‖ >

>

∑

r∈R

‖r coversx & ¬r is valid forx‖}, (15)

O− = {x ∈ O : µR(x) > 0 &

&
∑

r∈R

‖r coversx & r is valid forx‖

≤ |
∑

r∈R

‖r coversx & ¬r is valid forx‖}, (16)

where the truth grade‖r covers & ¬r is valid forx‖ is
again evaluated according to (14), replacingr with ¬r.
Observe that also this point of view has the above conse-
quences (i)–(iii), the last one again due to the fact that there
is exactly one rule coveringx.

Fuzzy validity of the ruleset based on the relative va-
lidity of covering rules. In this case, the validity of a rule-
setR for a covered objectx is a fuzzy property express-
ing the ratio of the validity of rules fromR for x to the
covering ofx with those rules. Consequently, the setsO+

andO− are fuzzy sets onO with membershipsµ+ andµ
−

,
respectively, such that ifµ

R
(x) > 0,

µ+(x) =

∑
r∈R

‖r coversx & r is valid forx‖
∑

r∈R
‖r coversx|‖

(17)

µ
−

(x) =

∑
r∈R

‖r coversx & ¬r is valid forx‖
∑

r∈R
‖r coversx|‖

(18)

where the involved truth grades are again evaluated accord-
ing to (13) and (14). Moreover, (17)–(18) will be com-
plemented with the definitionµ+(x) = µ

−
(x) = 0 if

µ
R

(x) = 0, to get again the validity of (ii) above, whereas
(i) and (iii) are consequences also of this point of view.

Further, the fact thatO+ andO− are now fuzzy sets im-
plies that whenever|O+| or |O−| occur in the definitions of
quality measures for Boolean classification rulesets, fuzzy
cardinalities have to be used in their generalizations to gen-
eral rulesets according to this point of view. Hence,

|O+| =
∑

x∈O

µ+(x), |O−| =
∑

x∈O

µ
−

(x). (19)

For example, the measure

Inacc = 1 −

∑

x∈O

(µ+(x) − µ
−

(x))

|O|
(20)

is a generalization of (5), whereas the measures

Impr1 = 1 −

∑

x∈O

µ+(x)

|O|
, (21)

Impr2 = 1 −

∑

x∈O

µ+(x)

|O
R
|

= 1 −

∑

x∈O

µ+(x)

∑

x∈O

µ
R

(x)
(22)

are generalizations of (6).

5 Extensions of ROC curves to more general
kinds of rules

Observe that in the case of Boolean classification withR =
{A → C,¬A → ¬C}, the information about the valid-
ity of R for objectsx ∈ O can be also viewed as infor-
mation about the validity of a rulesetR′ = {A → C}.
However,R′ is not any more a classification ruleset, but
only a general one, which can be described only by means
of the above introduced setsO

R
, O+, O−. In particular,

|O+| = a and |O−| = b, which suggests the possibil-
ity to generalize coverage graphs introduced in Section 3
to general rulesets by means of a curve connecting points
(|O−|, |O+|) for each of the values of the considered pa-
rameters. For a generalization of ROC curves to general
rulesets, those points have to be scaled to the unit square.
Since the resulting curve will be used to investigate the de-
pendence on parameter values, the scaling factor itself must
be independent of those values. The only available factor
fulfilling this condition is the number of objects,|O| (the
other available factors,|O

R
|, |O+| and |O−| depend on

the evaluations‖Sr‖ and‖S′

r‖, or ‖Ar‖ and‖Cr‖, which
in turn depend on the parameter values). Consequently, the
proposed generalization of ROC curves will connect points

( |O
−
|

|O|

,
|O

+
|

|O|

).
For practical construction of the proposed generaliza-

tion of ROC curves, the following proposition, proven
in [17], can be quite useful:
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Proposition 1. Let the covering of individual objects with
individual rules be a Boolean property (i.e., the set of rules
covering a particular objectx be a crisp subset ofR).
Then irrespectively of which of the above points of view of
ruleset validity is adopted, there always exists a constant
c ∈ (0, 1〉 and an increasing bijectiong : 〈0, c〉 → 〈0, 1〉
such that

|O+| + |O−| ≤ max(1, max
x∈〈0,c〉

x + g−1(1 − g(x)))|O|.

(23)

Moreover, in the particular cases of Boolean logic and of
all three fundamental fuzzy logics (Łukasiewicz, Gödel,
product), (23) holds withc = 1 andg equal to identity,

|O+| + |O−| ≤ |O|. (24)

Thus in those cases, the points( |O
−
|

|O|

,
|O

+
|

|O|

), forming the
generalization of ROC curves, lie below the diagonal
(〈0, 1〉, 〈1, 0〉).

The proposition is illustrated in Figure 1, together with
isolines of the three example measures introduced
in (20)–(22). Observe that the isolines ofImpr2 depend on
the relationship between the three cardinalities|O+| =∑

x∈O
µ+(x), |O−| =

∑
x∈O

µ
−

(x) and |O
R
| =∑

x∈O
µ
R

(x). The isolines depicted in Figure 1(c) corre-
spond to the relationship|O

R
| = |O+| + |O−|, which is

true in Łukasiewicz logic (thus in particular also in Boolean
logic).

6 Experimentally testing the approach

The proposed approach has been so far experimentally
tested for six rules extraction methods on three benchmark
data sets, as well as on data from one real-world knowledge
discovery task [20]. For each method, 1–3 parameters were
tuned, the values of them being chosen among 2–10 pos-
sibilities. For some data sets, some combinations of para-
meter values did not extract any rules. Whenever a particu-
lar combination of parameter vaules extracted a nonempty
ruleset from the considered data, it was tested on those data
by means of a 10-fold crossvalidation. Consequently, the
number of rulesets extracted from each data set varied be-
tween 1000 and 1500.

As a very brief illustration, Figure 2 shows the pro-
posed generalization of ROC curves for two rulesets ex-
tracted from the best known benchmark set, the iris data,
originally used in 1930s by R.A. Fisher [8], by means of
the GUHA quantifierfounded implication. This quantifier,
denoted→s,θ, s, θ ∈ (0, 1〉 has its truth functionTf

→s,θ

defined in such a way that the ruleAr →s,θ Cr is valid
exactly for those data for which the conditional probabil-
ity p(Cr|Ar) of the validity ofCr conditioned onAr, esti-
mated with the unbiased estimatea

a+b
, is at leastθ, whereas

Fig. 1. Isolines of the three measures introduced in (20)–(22),

drawn with respect to the coordinates( |O−|
|O|

,
|O+|
|O|

) of points
forming the proposed generalization of ROC curves.

Ar and Cr are simultaneously valid in at least the pro-
portion s of the data [13]. Hence,Tf

→s,θ
= 1 iff a

a+b
≥

θ & a
a+b+c+d

≥ s. As was pointed out in [14], rules with
this quantifier are actually association rules with supports

and confidenceθ. Each curve corresponds to changing only
one of the parameterss, θ, the value of the other is fixed.

7 Conclusions

The paper has dealt with quality measures of rules
extracted from data, though not in the usual context of in-
dividual rules, but in the context of whole rulesets. Three
kinds of extensions of measures already in use for classi-
fication rulesets have been proposed. In addition, the con-
cept of ROC-curves has been generalized, to enable inves-
tigating the dependence of general rulesets on the values of
parameters of the extraction method.

The paper actuallly discusses some general aspects re-
lated to an ongoing investigation into the possibility to re-
flect uncertain validity of rulesets extracted from data when
measuring their quality. The outcomes of that investigation
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Fig. 2.Example of generalized ROC curves for rulesets extracted
from the iris data by means of the GUHA quantifier founded im-
plication.

are intended to be published elsewhere [17]. They com-
prise theoretical elaboration of the last proposed kind of
extensions of ruleset quality measures, as well as results
of extensive experimental tests on rulesets extracted from
benchmark and real-world data sets by means of six meth-
ods attempting to cover a possibly broad spectrum of rules
extraction methods. Those results indicate that the ap-
proach is feasible and can contribute to the ultimate objec-
tive of quality measures: to allow comparing the knowl-
edge extracted with different data mining methods and in-
vestigating how the extracted knowledge depends on the
values of their parameters.
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Abstract. Some applications require high-speed encryption even
at the expense of reduced security. With a fixed secure, but slow
cryptographic algorithm, there still is an appealing possibility for
encryption speedup by encrypting only some portion of data. In
this paper we analyze the ciphertext security obtained this way.
We show that it is not possible to exclude from encryption even
a small constant fraction of data without significantly compro-
mising security.

1 Motivation, assumptions, goals

Volume of data is nowadays bigger than ever. Multimedia
are a typical example. Fast real-time on-demand encryption
of multiple multimedia streams requires specialized pow-
erful hardware.

It is sometimes not possible (or economical) to use
powerful enough hardware solution. Then we can replace
the encryption algorithm with a faster – although maybe
less secure one. Another possibility is to use selective en-
cryption with the original secure algorithm. In this case we
encrypt only some fraction of plaintext. Letp denote the
fraction of encrypted plaintext. The parameterp ranges be-
tween0 (no encryption) and1 (full encryption) and is used
to control the balance between the encryption speedup and
the security.

For example, selective encryption is used for on-line
encryption of MPEG video [1]. In this case, the knowledge
of the internal data structure is exploited in order to encrypt
only DC coefficients and sign bits of motion vectors. Sim-
ilar techniques are also used for pictures [2]. For overview
of selective encryption methods see [3]. Security of these
algorithms is not formally proved.

We formally analyze security of selective encryption
in this paper. As we are interested in a general case, we
make no assumptions on the internal data structure or on
statistical properties of the plaintext.

We originally hoped that it could be possible to selec-
tively encrypt portion of plaintext while maintaining rea-
sonable security. However, we show that this does
not work. Since we prove a negative result, it is only better
if assumptions are more disadvantageous for the attacker
than in practical usage:

⋆ Supported by VEGA grant No. 1/3106/06.

1. One-time pad is used as the encrypting algorithm.
One-time pad is the first and only encryption algorithm
for which there is a proof of perfect secrecy if the key is
truly random, never reused, and kept secret. We choose
this cipher to abstract from eventual weaknesses of the
actual cipher which can be exploited by attacker. The-
oretical results obtained this way can be used in prac-
tice as upper bounds for security of any other selected
encryption algorithm.

2. Attacker can manage no more than ciphertext-only at-
tack.
The attacker is assumed to have access only to a ci-
phertext and full description of selective encryption al-
gorithm. This means that the attacker knows the enci-
phering algorithm and also the method of bit selection
for enciphering.

3. Attack is peformed using brute force.
Key space is searched from the most probable key to
the least probable key omitting impossible keys to min-
imize the attacker’s work. We assume that the selection
algorithm chooses bits for encrypting independently
from plaintext content (besides its length). In general
it cannot be expected that a better attack is possible.
However in actual situation specific properties1 of
plaintext can lead to a more efficient attack.

4. Attack complexity measure is defined as a fraction of
key space that attacker has to search in average to find
the key.
Attacker tries every possible key until he finds one that
deciphers to the desired plaintext. We ignore the com-
plexity of verifying whether deciphered plaintext is the
original one. For selective encryption withp = 1 (one-
time pad), the expected attack complexity is1/2. For
selective encryption withp = 0 expected complexity
is 0. We consider every cipher for which attack com-
plexity approaches0 as plaintext length goes to+∞
insecure.

We assume that encryptingp percent of plaintext bits
with selective encryption reduces sender’s work top per-
cent omitting overhead necessary for selecting those bits.
In this situation we will be satisfied with (and accept this
as reasonable degradation of security) reduction of attack

1 E.g. high redundancy of plaintext poses an even greater risk for
selective encryption then for full text encryption.
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complexity from1/2 to p/2, because this means that at-
tacker’s work is in average also reduced top percent but no
more.

2 Selectors

In this paper we will assume that plaintext is a bit sequence
– sequence of zeros and ones. Letn > 0 denote plaintext
sequence length. If we want to selectively encrypt
p ∈ (0, 1) percent of plaintext, then we have to choose
k = np bits of plaintext for encryption. In [4] we analyzed
different ways of bit selection for selective encryption. We
introduced the notion of selector – algorithm which per-
forms selection of thek bits for encryption based onn
and p. The output of selector on inputn and p is a bit
sequence of lengthn with k = np ones – indicating po-
sitions of bits chosen for encryption. Selective encryption
algorithm proceeds in the following way:

1. The selector selectsk = np bits for encryption.
2. Encrypt only selected bits with one-time pad2.

As it can be seen our model was limited to selections which
have exactlyk = np bits selected. In [4] we proved that
among the analyzed selectors only fully random selection
of exactlyp percents of bits provides reasonable security
for p ≥ 1/2. In this place it is necessary to mention that
in [4] we measured the attack complexity by the number of
possible plaintexts3.

Because we are interested in the values ofp < 1/2 we
relax the assumption that exactlyk = np bits have to be se-
lected, and we only require that in averagek bits have to be
selected. This relaxation allows for using a selector which
for every bit flips a biased coin – one falls with probabil-
ity p, zero with probability1 − p. Lets call this selector
coin flipping selector. We hope that this step allow us to go
with p below1/2 because it introduce more uncertainty to
attacker as all plaintext are now possible. For that reason
we have to also change our attack complexity measure and
we choose one mentioned in previous section.

3 The coin flipping selector analysis

In the rest of the paper we will show the behavior of the
attack complexity for the coin flipping selector for large
messages (we will assume thatn goes to infinity).

2 Xor them with truly random noise.
3 For example, letp = 1/2. For a random bit selector there are
2n−1 possible plaintexts for every ciphertext. If the selector do
not use randomness and deterministically selects every even
bit, there are only2n/2 possible plaintexts.

3.1 Average fraction of key space equation

Firstly we need to determine the probability of the key of
lengthn with exactlyk ones on fixedly chosen positions
if in the selective encryption the coin flipping selector is
used. Let denote this probability asPK(n, k, p), wherep is
probability of encrypting.

Theorem 1.

PK(n, k, p) =
(p

2

)k (
1 −

p

2

)n−k

Proof.

PK(n, k, p) =

n−k∑

i=0

(
n − k

i

)

pk+i(1 − p)(n−k)−i 1

2k+i
,

because we can get the key with exactlyk ones on fixedly
chosen positions from any selection with exactlyk+i ones
with k ones on those fixedly chosen positions andi ones
arbitrarily chosen from remainingn − k positions. Also
one-time pad has to select for thosek positions bit1 and
for remainingi positions bit0 (thus we get2−(k+i)). We
can simplify the last equation as follows:

(p

2

)k
n−k∑

i=0

(
n − k

i

)(p

2

)i

(1 − p)(n−k)−i =

=
(p

2

)k (p

2
+ (1 − p)

)n−k

=
(p

2

)k (
1 −

p

2

)n−k

.

⊓⊔

Derivative of the functionPK(n, k, p) with respect to
k is:

PK(n, k, p) ln

(
p

2 − p

)

.

Since for all studiedn > 0 and0 < p < 1 expression
ln( p

2−p
) is negative andPK(n, k, p) is positive we know,

thatPK(n, k, p) is strictly decreasing function with respect
to k ∈ 〈0, n〉. Thus effective attacker will start searching
key space from the most probable0n key to the least prob-
able1n key in direction of increasing number of ones in
the key. Sort all2n keys in this order4 in an array with in-
dexes from1 to 2n. Then denoteL(n, k) index of first key
of lengthn with k ones andU(n, k) will denote index of
the last key of lengthn with k ones. It can easily be seen
that:

L(n, k) = 1 +

k−1∑

i=0

(
n

i

)

, U(n, k) =

k∑

i=0

(
n

i

)

.

4 Ordering of keys with equal number of ones is irrelevant since
all have the same probability. It can be arbitrary but fixed.
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Theorem 2. Let I(n, p) be a position in the above men-
tioned array where attacker finds the key in average case.
ThenI(n, p) equals to:

1

2
+

1

2

(
2 − p

p

)n n∑

k=0

[(
p

2 − p

)k (
n

k

) k∑

i=0

(
n + 1

i

)]

.

Proof. Let Pr(n, p, i) be probability that attacker finds key
in positioni. Then:

I(n, p) =
2

n

∑

i=1

iPr(n, p, i).

SincePr(n, p, i) is constant for alli betweenL(n, k) and
U(n, k) we can write:

I(n, p) =

n∑

k=0




U(n,k)∑

i=L(n,k)

iPK(n, k, p)





SincePK(n, k, p) does not depend oni we can move it in
front of inner sum. The inner sum then reduces to:

U(n,k)∑

i=L(n,k)

i = [U(n, k) − L(n, k) + 1]
L(n, k) + U(n, k)

2

Thus equation forI(n, p) changes to:

n∑

k=0

PK(n, k, p)
1

2

(
n

k

)[

1 −

(
n

k

)

+ 2

k∑

i=0

(
n

i

)]

︸ ︷︷ ︸
Mark this term asx(n, k).

.

It is obvious thatx(n, 0) = 2 andx(n, k + 1)− x(n, k) =
(
n+1

k+1

)
. Sox(n, k) = 1 +

∑k

i=0

(
n+1

i

)
. After substituting

x(n, k) andPK(n, k, p) we can writeI(n, p) as:

1

2

n∑

k=0

(p

2

)k (
1 −

p

2

)n−k
(

n

k

) [

1 +

k∑

i=0

(
n + 1

i

)]

.

Then after factoring out
(
1 − p

2

)n
we get:

1

2

(
1 −

p

2

)n
n∑

k=0

(
p

2 − p

)k (
n

k

)[

1 +

k∑

i=0

(
n + 1

i

)]

.

By expanding summand and using binomial theorem for(
p

2−p
+ 1

)n

we get:

1

2

(
1 −

p

2

)n
(

2

2 − p

)n

+

+
1

2

(
1 −

p

2

)n
n∑

k=0

(
p

2 − p

)k (
n

k

) k∑

i=0

(
n + 1

i

)

=

=
1

2
+

1

2

(
2 − p

2

)n n∑

k=0

(
p

2 − p

)k (
n

k

) k∑

i=0

(
n + 1

i

)

.

⊓⊔

Let us denote average fraction of key space which at-
tacker has to search before he finds the key asF (n, p).
Now, when we haveI(n, p), equation forF is obvious:

F (n, p) =

1

2
+ 1

2

(
2−p
2

)n n∑

k=0

(
p

2−p

)k (
n
k

) k∑

i=0

(
n+1

i

)

2n + 1
.

Although we have assumed thatp < 1 we can verify, that
F (n, 1) = 1/2 as expected. We can not useF (n, 0) be-
causePr(n, 0, k) is not a valid probability distribution over
keys of lengthn.

3.2 Asymptotics

Based on Figure 1 we will now try to show that for
all p < 1 holdslimn→∞

F (n, p) = 0. This will be unwel-
come result. It means that even if we encrypt nearly the en-
tire plaintext up to some small fraction, this small fraction
is still sufficient to reduce attack complexity to a negligible
fraction compared to full text encryption.
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Fig. 1.This graph indicates thatlim
n→∞

F (n, p) = 0.

Since we want to prove that the limit goes to zero, it is
possible to simplify the proof by realizing thatF (n, p) ≥ 0
and show that some simpler upper boundf0(n, p) +
f1(n, p)+ f2(n, p) ≥ F (n, p) goes to zero too. We choose
fi(n, p) as follows

f0(n, p) =
1

2n+1
,

f1(n, p) =
1

2n+1

(
2 − p

2

)n α∑

k=0

(
p

2 − p

)k (
n

k

)

Sn+1

k ,

f2(n, p) =
1

2n+1

(
2 − p

2

)n n∑

k=α

(
p

2 − p

)k (
n

k

)

Sn+1

k ,
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whereSn+1

k denotes
∑k

i=0

(
n+1

i

)
andα is n

2
− 1

2
n

5

8 . To
prove the main limit it is sufficient to show that for all
i ∈ {0, 1, 2} limn→∞

fi(n, p) equals to zero. Fori = 0
it is trivial so we move toi = 1. In the proof we will use
following lemma.

Lemma 1 (for proof see [5]).Let ϕ(n) be any function
satisfyinglimn→∞

ϕ(n) = ∞. Then

lim
n→∞

∑n/2−ϕ(n)
√

n

k=0

(
n
k

)

2n
= 0.

Theorem 3. Letp < 1. Thenlimn→∞
f1(n, p) = 0.

Proof. Firstly we replacef1(n, p) with even simpler upper
bound:

f1(n, p) ≤
1

2n+1

(
2 − p

2

)n

Sn+1
α

α∑

k=0

(
p

2 − p

)k(
n

k

)

≤

≤
1

2n+1

(
2 − p

2

)n

Sn+1
α

n∑

k=0

(
p

2 − p

)k (
n

k

)

=

=
1

2n+1

(
2 − p

2

)n

Sn+1
α

(
2

2 − p

)n

=
Sn+1

α

2n+1

Now we can setϕ(n) = (n−1)
5

8 +1

2
√

n
and use lemma 1:

lim
n→∞

Sn+1
α

2n+1
= lim

n→∞

∑n
2
−

1

2
n

5

8

i=0

(
n+1

i

)

2n+1
= 0.

Becasef1(n, p) ≥ 0 the theorem is proved. ⊓⊔

In the proof fori = 2 we will utilize another two lem-
mas.

Lemma 2 (for proof see [6] equation 9.98).Let |k| ≤
1

2
n

5

8 . Then binomial coefficient around center forn → ∞
can be aproximated as follows:

(
n

n
2
− k

)

=
2n

√
π
2
n

e−2 k2

n

(
1 + O

(
n−

1

8

))

Lemma 3. Let ak =
(

p
2−p

)k (
n
k

)
for k ∈ {0, 1, . . . , n}.

Then the following inequality holds:

∀p ∈ (0, 1) ∃m ∀n > m ∀k ≥
n

2
−

1

2
n

5

8 : ak > ak+1.

Proof. We rewrite theorem inequality as a fraction. So we
get∀p ∈ (0, 1) ∃m ∀n > m ∀k ≥ n

2
− 1

2
n

5

8 :

ak+1

ak

< 1 ⇔
p

2 − p

n − k

k + 1
< 1 ⇔

n − k

k + 1
<

2 − p

p
.

Becausen−k
k+1

< n−k
k

it is sufficient to find an arbitrarym

that∀n > m ∀k ≥ n
2
− 1

2
n

5

8 :

n − k

k
<

2 − p

p
⇔ n < k + k

2 − p

p
⇔ n < k

2

p

By solving this inequality we get that it holds for every
k > p

2
n. Because we start withk = n

2
− 1

2
n

5

8 , we will now
solve for whichn holds:

n

2
−

1

2
n

5

8 >
p

2
n ⇔ 1 −

1

n
3

8

> p ⇔ n >

(
1

1 − p

) 8

3

.

Now we have showed that for allp ∈ (0, 1), if we setm to
(

1

1−p

) 8

3

, then

∀n > m ∀k ≥
n

2
−

1

2
n

5

8 : ak > ak+1.

⊓⊔

Now we are able to proof the last theorem on the limit
of functionf2.

Theorem 4. Letp < 1. Thenlimn→∞
f2(n, p) = 0.

Proof. Again we replacef2(n, p) with even simpler upper
bound:

1

2n+1

(
2 − p

2

)n n∑

k=α

(
p

2 − p

)k (
n

k

)

Sn+1

k︸ ︷︷ ︸
≤2n+1

≤

≤

(
2 − p

2

)n n∑

k=α

(
p

2 − p

)k (
n

k

)

︸ ︷︷ ︸
ak

Now we use lemma 3 and the fact that we are interested in
limit for n → ∞. Thus for large enoughn we can upper
bound the last equation by

(
2 − p

2

)n

(n − α + 1) aα =

=

(
2 − p

2

)n

(n − α + 1)

(
p

2 − p

)α (
n

α

)

≤

≤

(
2 − p

2

)n

n

(
p

2 − p

)α (
n

α

)

=

=

(
2 − p

2

)n (
p

2 − p

)n
2

(
2 − p

p

) 1

2
n

5

8

n

(
n

α

)

=

=
[(2 − p)p]

n
2

2n

(
2 − p

p

) 1

2
n

5

8

n

(
n

n
2
− 1

2
n

5

8

)

.

In the sequel we get rid of binomial coefficient by applying
lemma 2. We omit the1 + O(n−

1

8 ) factor from following
equations to save space.

[(2 − p)p]
n
2

2n

(
2 − p

p

) 1

2
n

5

8

n
2n

√
π
2
n

e−2

(
1

2
n

5

8

)
2

n =
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Fig. 2. These graphs illustrate how value ofak starts to decrease
from k = n

2
− 1

2
n

5

8 if large enoughn is used (n > m). For
p = 0.8 based on lemma 3 we get thatm approximately equals
to 73.1.

=

√
2

π
[(2 − p)p]

n

2

(
2 − p

p

) 1

2
n

5

8

√
n e−

1

2

4
√

n

We want to prove now that the last equation goes to zero as
n approaches∞. We will do so by showing that logarithm
of the equation goes to−∞. We also omit constant factor√

2/π as it is irrelevant in this context.

n

2
ln(2−p)p+

1

2
n

5

8 ln

(
2 − p

p

)

+
1

2
ln n−

1

2
4
√

n+O
(
n−

1

8

)

Sincen
2

ln(2−p)p is most influencing summand asn goes
to infinity and ln(2 − p)p < 0 we have proved that the
equation goes to−∞. If we again omit the1+O(n−

1

8 ) fac-
tor from the right-hand side of inequality we get for large
enoughn that

0 ≤ f2(n, p) ≤

√
2

π
[(2−p)p]

n

2

(
2 − p

p

) 1

2
n

5

8

√
n e−

1

2

4
√

n.

As we have proved that the right-hand side goes to zero
asn goes to infinity, we are done. ⊓⊔

4 Conclusion

In this paper we have showed that even the coin flipping
selector tremendously decreases the security of selective
encryption for anyp < 1. In other words it means that
even if we encrypt nearly the entire plaintext up to some
small fraction, this small fraction is still enough to reduce
attack complexity to negligible fraction compared to full
text encryption. The same result holds for random bit selec-
tor from [4] if the attacker and the attack complexity from
this paper is assumed. As a conclusion we can say, that
every studied selector significantly degrades security even
if the encrypted fraction is closed to1 for large enough
messages.
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Abstract. This paper presents the second part of the technical
report [7] in which the study of the relation between Parallel
Communicating Grammar Systems (PCGS) and Freely Rewrit-
ing Restarting Automata (FRR) has been initiated. The first part
of [7] is presented in [6]. Here, the distribution and generation
complexity forPCGS are introduced and studied. It is shown
that analysis by reduction forPCGS with distribution complexity
bounded by a constantk and generation complexity bounded by
some other constantj can be implemented by strongly linearized
deterministicFRR-automata withk rewrites per cycle. We show
infinite hierarchies of classes of languages based on the parame-
tersk, j and on the notion ofskeleton.

1 Introduction

This paper deals with the comparison of Freely Rewriting
Restarting Automata (FRR, [4]) and Parallel Communi-
cating Grammar Systems (PCGS, [1, 8]). Namely, the so-
called linearizedFRR-automaton is used for this purpose.
The motivation for our study is the usefulness of both mod-
els in computational linguistics.

Freely rewriting restarting automata form a suit-
able tool for modelling the so-calledanalysis by reduc-
tion. Analysis by reduction in general facilitates the devel-
opment and testing of categories for syntactic and seman-
tic disambiguation of sentences of natural languages. The
Functional Generative Description for the Czech language
developed in Prague (see, e.g., [2]) is based on this method.

FRR automata work on so-calledcharacteristic lan-
guages, that is, on languages with auxiliary symbols (cat-
egories) included in addition to the input symbols. The
proper language is obtained from a characteristic language
by removing all auxiliary symbols from its sentences. By
requiring that the automata considered arelinearizedwe
restrict the number of auxiliary symbols allowed on the
tape by a function linear in the number of terminals on the
tape. We mainly focus on deterministic restarting automata

⋆ Partially supported by the Slovak Grant Agency for Science
(VEGA) under contract “Theory of Models, Complexity and
Algorithms”.

⋆⋆ Partially supported by the Grant Agency of the Czech Republic
under Grant-No. 405/08/0681 and by the program Information
Society under project 1ET100300517.

in order to ensure thecorrectness preserving propertyfor
the analysis, i.e., after any restart in an accepting computa-
tion the content of the tape is a word from the characteristic
language. In fact, we mainly considerstrongly lexicalized
restarting automata. This additional restriction requires that
all rewrite operations are deletions.

Parallel Communicating Grammar Systems are able to
handle creations of copies of generated strings and their
regular mappings in a natural way. This ability strongly
resembles the generation of coordinations in Czech (and
some other natural languages) sentences, where coordina-
tions are certain contiguous segments (not only lexicalized
elements). However, the synonymy of coordinations has
not yet been modelled appropriately.

In this paper the notions of distribution and genera-
tion complexity forPCGS are introduced and studied. It
is shown that analysis by reduction forPCGS with dis-
tribution complexity bounded by a constantk and gener-
ation complexity bounded by some other constantj can
be implemented by strongly linearized deterministicFRR-
automata withk rewrites per cycle. We show infinite hier-
archies of classes of languages based on the parametersk, j

and on the notion ofskeleton. The notion of skeleton is in-
troduced in order to model the principle of so-called seg-
ments in (Czech) sentences (or in text). The elements of
skeletons are so-calledislands, which serve to model the
so-called separators of segments (see [3]).

2 Basic notions

A freely rewriting restarting automaton, abbreviated
asFRR-automaton, is described by an 8-tupleM =
(Q,Σ, Γ, c, $, q0, k, δ). It consists of a finite-state control,
a flexible tape, and a read/write window of a fixed size
k ≥ 1. HereQ denotes a finite set of (internal) states that
contains the initial stateq0, Σ is a finite input alphabet, and
Γ is a finite tape alphabet that containsΣ. The elements of
Γ r Σ are calledauxiliary symbols. The additional sym-
bols c, $ 6∈ Γ are used as markers for the left and right end
of the workspace, respectively. They cannot be removed
from the tape. The behavior ofM is described by a tran-
sition functionδ that associates transition steps to certain
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pairs of the form(q, u) consisting of a stateq and a pos-
sible contentu of the read/write window. There are four
types of transition steps:move-right steps, rewrite steps,
restart steps, andaccept steps. A move-right stepsimply
shifts the read/write window one position to the right and
changes the internal state. Arewrite stepcausesM to re-
place a non-empty prefixu of the content of the read/write
window by a shorter wordv, thereby shortening the length
of the tape, and to change the state. Further, the read/write
window is placed immediately to the right of the stringv.
A restart stepcausesM to place its read/write window over
the left end of the tape, so that the first symbol it sees is the
left sentinel c, and to reenter the initial stateq0. Finally, an
accept stepsimply causesM to halt and accept.

A configurationof M is described by a stringαqβ,
whereq ∈ Q, and eitherα = ε (the empty word) and
β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ andβ ∈ Γ ∗ · {$}; here
q represents the current state,αβ is the current content of
the tape, and it is understood that the window contains the
first k symbols ofβ or all of β when|β| ≤ k. A restarting
configurationis of the formq0cw$, wherew ∈ Γ ∗.

Any computation ofM consists of certain phases.
A phase, called acycle, starts in a restarting configuration.
The window is shifted along the tape by move-right and
rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further
restart operation is performed, the computation necessarily
finishes in a halting configuration – such a phase is called
a tail. It is required that in each cycleM performs at least
one rewrite step. As each rewrite step shortens the tape,
we see that each cycle reduces the length of the tape. We
use the notationu ⊢c

M v to denote a cycle ofM that be-
gins with the restarting configurationq0cu$ and ends with
the restarting configurationq0cv$; the relation⊢c∗

M is the
reflexive and transitive closure of⊢c

M .

A word w ∈ Γ ∗ is acceptedby M , if there is a compu-
tation which starts from the restarting configurationq0cw$,
and ends with an application of an accept step. ByLC(M)
we denote the language consisting of all words accepted
by M . It is thecharacteristic languageof M .

By PrΣ we denote the projection fromΓ ∗ onto Σ∗,
that is,PrΣ is the morphism defined bya 7→ a (a ∈ Σ)
andA 7→ ε (A ∈ Γ r Σ). If v := PrΣ(w), thenv is the
Σ-projectionof w, andw is anexpanded versionof v. For
a languageL ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }.

In recent papers restarting automata were mainly used
as acceptors. The (input) languageaccepted by a restart-
ing automatonM is the setL(M) := LC(M)∩Σ∗. Here,
motivated by linguistic considerations to model the analy-
sis by reduction with parallel processing, we are rather in-
terested in the so-calledproper language ofM , which is
the set of wordsLP(M) := PrΣ(LC(M)). Hence, a word
v ∈ Σ∗ belongs toLP(M) if and only if there exists an
expanded versionu of v such thatu ∈ LC(M).

For each typeX of restarting automata, we useLC(X)
and LP(X) to denote the class of all characteristic lan-
guages and the class of all proper languages of automata
of this type.

Following basic properties ofFRR-automata are often
used in proofs.

(Correctness Preserving Property.) Each deterministic
FRR-automatonM is correctness preserving, i.e., if
u ∈ LC(M) andu ⊢c∗

M v, thenv ∈ LC(M), too.

(Cycle Pumping Lemma.) For anyFRR-automatonM ,
there exists a constantp such that the following property
holds. Assume thatuxvyz ⊢c

M ux′vy′z is a cycle ofM ,
where u = u1u2 · · ·un for some non-empty words
u1, . . . , un and an integern > p. Then there exist
r, s ∈ N+, 1 ≤ r < s ≤ n, such that
u1 · · ·ur−1(ur · · ·us−1)

ius · · ·unxvyz ⊢c
M

u1 · · ·ur−1(ur · · ·us−1)
ius · · ·unx′vy′z

holds for alli ≥ 0, that is,ur · · ·us−1 is a “pumping fac-
tor” in the above cycle. Similarly, such a pumping factor
can be found in any factorization of length greater thanp

of v or z as well as in any factorization of length greater
thanp of a word accepted in a tail computation.

We focus our attention onFRR-automata, for which
the use of auxiliary symbols is less restricted than in [4].

Definition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an
FRR-automaton,|x|K denotes the number of occurrences
of symbols fromK in wordx.

(a) TheFRR-automatonM is calledlinearizedif there ex-
ists a constantj ∈ N+ such that|w|Γ−Σ ≤ j ·|w|Σ +j

for eachw ∈ LC(M).
(b) M is calledstrongly linearizedif it is linearized, and

if each of its rewrite operations just deletes some sym-
bols.

Since linearizedFRR automata use linear space only,
we have the following:

Corollary 1. If M is a linearizedFRR-automaton, then
the proper languageLP(M) is context-sensitive.

In what follows we are mainly interested in strongly
linearizedFRR-automata and their proper languages. We
denote by(S)LnRR the class of (strongly) linearized de-
terministicFRR-automata, byN(S)LnRR the class of non-
deterministic (strongly) linearizedFRR-automata, and by
t-A the subclass ofA-automata which execute at mostt

rewrite steps in any cycle.

2.1 Parallel Communicating Grammar Systems

A PCGS of degree m, m ≥ 1, is an(m + 1)-tuple
Π = (G1, . . . , Gm,K), where for all i ∈ {1, . . . ,m},
Gi = (Ni, T, Si, Pi), so-called component grammars,
are regular grammars satisfyingNi ∩ T = ∅ and K ⊆
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{Q1, . . . , Qm}
⋂ ⋃m

i=1
Ni is a set of special symbols,

calledcommunication symbols.
A configurationis anm-tuple C = (x1, . . . , xm), xi =
αiAi, αi ∈ T ∗, Ai ∈ (Ni ∪ ε); we call xi the i-th com-
ponent of the configuration(resp. component). Thenon-
terminal cutof configurationC is them−tuple N(C) =
(A1, A2, . . . , Am). If the nonterminal cutN(C) contains
at least one communication symbol, it is denotedNC(C)
and called an NC-cut.

We say that aconfigurationX = (x1, . . . , xm) di-
rectly derives a configurationY = (y1, . . . , ym), and write
X ⇒ Y , if Y is derived fromX by onegenerativeor com-
municationstep (see below). Informally, in a communica-
tion step any occurrence of a communication symbolQi

in X is substituted by thei-th component ofX (assuming
that this component does not contain any communication
symbol).

1. (Generative step) If|xi|K = 0 for all i , 1 ≤ i ≤ m,
then

xi
Gi

⇒ yi for xi ∈ T ∗Ni and
yi = xi for xi ∈ T+.

2. (Communication step) If|xi|K > 0 for somei, 1 ≤
i ≤ m, then for eachk such thatxk = zkQjk

, zk ∈
T ∗, Qjk

∈ K, the following is true:
(a) if |xjk

|K = 0, thenyk = zkxjk
andyjk

= Sjk
;

(b) if |xjk
|K = 1, thenyk = xk.

For all remaining indicest, for which xt does not contain
a communication symbol andQt has not occurred in any
of thexi’s, we putyt = xt.

Now, we describe the derivations inPCGSs. A deri-
vationof a PCGS Π is a sequence of configurationsD =
C1, C2, . . . , Ct, whereCi ⇒ Ci+1 in Π. If the first com-
ponent ofCt is a terminal wordw, then we usually write
D(w) instead ofD. Analogously, we denote byW (D) the
terminal word generated within the derivationD. Every
derivation can be viewed as a sequence ofgenerativeand
communication steps, too.

If no communication symbol appears in any of the
component grammars, then we perform agenerative step
consisting of rewriting steps synchronously performed in
each of the component grammarsGi, 1 ≤ i ≤ m. If any
of the components is a terminal string, it is left unchanged.
If any of the component grammars contains a nonterminal
that cannot be rewritten, the derivation is blocked. If the
first grammarG1 contains a terminal wordw, the deriva-
tion finishes andw is the word generated byΠ in this
derivation.

If a communication symbol is present in any of the
components, then acommunication stepis performed. It
consists of replacing those communication symbols with
the phrases they refer to for which the phrases do not con-
tain communication symbols. Such an individual replace-
ment is called acommunication. Obviously, in one com-
munication step at mostm−1 communications can be per-
formed. If some communication symbol was not replaced

in this communication step, it may be replaced in one of the
next communication steps. Communication steps are per-
formed until no more communication symbols are present
or the derivation is blocked, because no communication
symbol can be replaced in the last communication step.

The(terminal) languageL(Π) generated by aPCGS Π is
a set of the terminal words generated byG1 (in cooperation
with the other grammars):

L(Π) = {α ∈ T ∗| (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.

Let D = D(w) = C0, C1, . . . , Ct be a derivation of
w by Π; D(w), Π andw are fixed in what follows. With
derivationD(w), several notions can be associated which
help to analyze the derivation ofΠ and to unambiguously
determinew.
The trace of a (sub)derivationD is the sequenceT (D)
= N(C0)N(C1) . . . N(Ct) of the nonterminal cuts of the
individual configurations ofD.

TheNC-sequenceis defined analogously;NCS(D) is the
sequence of the NC-cuts of the configurations in the
(sub)derivationD. Let us recall that any NC-cut contains
at least one communication symbol.

A cycle in a derivationis a subsequenceN(C), N(C1),
. . . , N(Cj), N(C) of nonterminal cuts of the derivation4

in which the first and the last cuts (N(C)) are the same.
If N(C) is an NC-cut, and none of the intermediate cuts
N(Ci) is an NC-cut, then the cycle is called acommuni-
cation cycle. A generative cycleis defined analogously, we
only require thatnoneof its cuts is an NC-cut.

Note that, if there is a cycle in the derivationD(w),
then manifold repetition of the cycle is possible and the
resulting derivation is again a derivation of some terminal
word. We call a derivationD(w) reduced, if each repeti-
tion of each of its cycles leads to alonger terminal word
ω; |w| < |ω|. Obviously, to every derivationD(w) there is
an equivalent reduced derivationD′(w).

A generative sectionis a non-empty sequence of genera-
tive steps between two consecutive communication steps
in D(w)5, resp. before the first and/or after the last com-
munication steps inD(w).
Thedegree of generationDG(D(w)) is the number of gen-
erative sections ofD(w). In the following we consider only
PCGS without communication cycles, i.e., DG(D(w))
is bounded by a constant depending only onΠ.

g(i, j) (g(i, j,D(w))) denotes the terminal part generated
by Gi within the j-th generative section ofD(w), we
call it the(i, j)-(generative) factor (ofD(w));

n(i, j) (n(i, j,D(w))) denotes the number of occurrences
of g(i, j) in w;

4 More precisely it is a subsequence of trace of the derivation.
5 Note that if some communication cut contains more than one

communication symbol, then there might be no generative step
between two communication steps.
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g(i, j, l) denotes thel-th occurrence ofg(i, j) in w, we call
it the (i, j, l)-(generative) factor.

Thecommunication structureCS(D(w)) of D(w) is
CS(D(w)) = (i1, j1, l1), (i2, j2, l2) , . . . , (ir, jr, lr),

wherew = g(i1, j1, l1), g(i2, j2, l2) . . . g(ir, jr, lr). The
setof these indices is denotedI(D(w)).

N(j,D(w)) = Σi n(i, j,D(w)), where the sum is taken
over suchi for which ∃s : i = is & (is, js, ls) ∈
I(D(w)).

Thedegree of distributionDD(D(w)) of D(w) is the max-
imum over all (defined)N(j,D(w)).

Now, we are ready to introduce the notions ofdistrib-
ution complexityandgeneration complexity. First, the dis-
tribution complexity of a derivationD (denotedDD(D))
is the degree of distribution introduced above.

Then, the distribution complexity of a language and the
associated complexity class are defined in the usual way
(always considering the corresponding maximum): distrib-
ution complexity of a derivationÃ distribution complexity
of a wordÃ distribution complexity of a languageL (de-
notedDD(L)) as a function of the length of the wordÃ
f(n)−DD as class of languages whose distribution com-
plexity is bounded byf(n).

The generation complexity is introduced analogously.
Here, we are mainly interested in the classes of languages
with t-DD and/or withj-DG for some natural numbersj, t.
We denote byj-t-DDG the class of languages such that, to
any languageL of this class, there is aPCGS Π such that
L(Π) = L, andDD(L(Π)) = t, DG(L(Π)) = j.

Relevant observations about derivations ofPCGS
(see [5] for more information) are summarized in the fol-
lowing facts:

Fact 1 LetΠ be aPCGS without a communication cycle.
Then there are constantd(Π), ℓ(Π), s(Π) such that

1. the numbern(i, j) of occurrences of individual
g(i, j)′s in a reduced derivationD(w) is bounded by
d(Π);n(i, j) ≤ d(Π);

2. the length of the communication structure for every re-
duced derivationD(w) is bounded byℓ(Π);

3. the cardinality of the set of possible communication
structures corresponding to reduced derivations byΠ

is bounded bys(Π).

Fact 2 LetΠ be aPCGS without a communication cycle,
D(w) a reduced derivation of a terminal wordw. Then
there is a constante(Π) such that, if more thane(Π) gen-
erative steps of one generative section are performed, then
at least oneg(i, j,D(w)) is changed (see Example 1
in [7]).

3 Bounded degree of distribution

We start the section showing that a language generated by
a PCGS Π with constant distribution complexity can be
analyzed (by reduction) by at-SLnRR-automatonM .

In fact, the result follows from the analysis of the proof
of Theorem 1 ([7]). For better understanding and to mo-
tivate the notions defined below we sketch the mentioned
proof (from [7]).

The high-level idea is to merge the terminal wordw

with the information describing its reduced deriva-
tion D(w) in a way allowing simultaneously the ”simula-
tion/reduction” of the derivationD(w) and the correctness
checking. Analysis by reduction is based on the deletion
of the parts of a (characteristic) word which correspond to
parts generated within one generative cycle. We call such
a merged (characteristic) wordΠ-description ofw.
Let (α1A1, . . . , αmAm) be the configuration at the begin-
ning of thej-th generative section,
(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . .

(α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)
the sub-derivation corresponding to this generative section.
Merging the description of this sub-derivation intog(i, j, l)
we obtain the extended version ofg(i, j, l):

[b, i, j, l]

(
A1

A2

· · ·

Am

)

α1,i

(
A1,1
A1,2
· · ·

A1,m

)

α2,i

(
A2,1
A2,2
· · ·

A2,m

)

. . .

. . . αs,i

(
As,1
As,2
· · ·

As,m

)

[e, i, j, l].

Such a description ofg(i, j, l) is denotedex-g(i, j, l). We
use ex-g(i, j, l) to merge the (topological) information
about derivationD(w) into w. Obviously, we can speak
abouttraces andfactor cyclesin ex-g(i, j, l) similarly as
we speak about traces and generative cycles in derivations.

Let w,D(w), ex-g(i, j, l), be as above. Replace any
g(i, j, l) in w by ex-g(i, j, l); the result is denotedex-w.
Then, concatenating the NC-sequence ofD(w), the com-
munication structure given byD(w), andex-w we obtain
theΠ-description ofw:

Πd(D(w)) = NCS(D(w))CS(D(w))ex-w.

Observations.Let Πd(D(w)) be theΠ-description ofw.

(a) When a reduced derivationD(w) is taken, then the
length ofΠd(D(w)) is bounded from above bycΠ ·
|w|+cΠ , wherecΠ is a constant depending onΠ only.

(b) From Πd(D(w)) the terminal wordw is easily ob-
tained by deleting all symbols which are not terminal
symbols ofΠ.

(c) Let T (D(w)) be the trace ofD(w), and T (Π) :=
{T (D(w)) | w ∈ L(Π)}. Then,T (Π) is a regular
language, and the sets of NC-cuts and communication
sequences ofΠ are finite. Note that a finite automaton
is also able to check whether a given stringx is a cor-
rect ex-g(i, j, l), NCS(D(w)), or CS(D(w)) given
by Π.
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Analyzing the proof of Theorem 1 from [7] we have the
following consequence. The construction of ak-SLnRR-
automaton M accepting the characteristic language
LC(M) = {Πd(D(w)) | w ∈ L(Π)} is outlined in [7].

Corollary 2. For all k ∈ N, k-DD ⊆ LP(k-SLnRR).

For t ∈ N+, separation ofPCGSs of distribution com-
plexity t from the proper languages of nondeterministic lin-
earizedFRR-automata with at mostt−1 rewrites per cycle,
is done with the help of the language

Lt := { c1wd · · · ctwd | w ∈ {a, b}∗ },

whereΣ1 := {c1, . . . , ct, d} is a new alphabet disjoint
from Σ0 := {a, b}.

Proposition 1. For all t ∈ N+,
Lt ∈ L(t-DD) r LP((t − 1)-NLnRR).

Proof. It is not hard to show thatLt ∈ L(t-DD). We use
aPCGS with t + 1 component grammars for that:
(S1, S2, . . . , St+1) ⇒

∗

⇒∗ (c1Q2, c2Q3, . . . , ctQt+1, wd)
⇒∗ (c1wdc2wd . . . ctwd, S2, . . . , St, St+1).

For the lower-bound part we use a similar technique as
in [4].

Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a nondeterminis-
tic linearizedFRR-automaton that executes at mostt − 1
rewrites per cycle, whereΣ := Σ0 ∪ Σ1. Assume
that LP(M) = Lt holds. Consider the wordw :=
c1a

nbnd · · · cta
nbnd ∈ Lt, wheren is a large integer. Then

there exists an expanded versionW ∈ Γ ∗ of w such that
W ∈ LC(M). Let W be a shortest expanded version ofw

in LC(M). Consider an accepting computation ofM on
input W . Clearly this cannot just be an accepting tail, and
hence, it begins with a cycle of the formW ⊢c

M W1.
From the Correctness Preserving Property it follows that
W1 ∈ LC(M), which implies thatw1 := PrΣ(W1) ∈
Lt. As |W1| < |W |, we see from our choice ofW that
w1 6= w, that is,w1 = c1x1d · · · ctx1d for some word
x1 ∈ Σ∗

0 of length|x1| < 2n. However, in the above cy-
cle M executes at mostt − 1 rewrite steps, that is, it can-
not possibly rewrite each of thet occurrences ofanbn into
the same wordx1. It follows thatw1 6∈ Lt, implying that
Lt 6∈ LP((t − 1)-NLnRR). 2

As L(t-DD) ⊆ LP(t-SLnRR), we obtain the follow-
ing hierarchies from Proposition 1, whereLP(t-DD) just
denotes the classL(t-DD).

Theorem 1. For all X ∈ {DD, LnRR, SLnRR, NLnRR,
NSLnRR}, and all t ≥ 1,

LP(t-X) ⊂ LP((t + 1)-X) ⊂
⋃

t≥1

LP(t-X) ⊂ LP(X).

4 Skeletons

In this part we define the notions ofskeletonand islands
whose introduction has been motivated by our attempt to
model two basic kinds of coordinated segments in (Czech,
German, Slovak) sentences. The islands in a level of skele-
ton serve to denote places of coordinated segments which
are coordinated in a mutually dependent (bound) way. The
different levels of islands serve for modelling the inde-
pendence of segments. A technical example how to con-
struct skeletons is given by the construction in the proof
of [7] Theorem 1. In fact, skeletons are only defined for
t-SLnRR-automata that fulfill certain additional require-
ments.

Definition 2. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be
a t-SLnRR-automaton for somet ∈ N+, and lets ∈ N+.
Let SK(s) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s } be a sub-
alphabet of cardinalityt · s of Γ ′ = Γ ∪ {c, $}. For each
j ∈ {1, . . . , s}, let SK(s, j) = {c1,j , . . . , ct,j} be thej-th
levelof SK(s). We say thatSK(s) is ans-skeleton (skele-
ton)of M if the following holds:

1. For all w ∈ LC(M) and all c ∈ SK(s), |w|c ≤ 1,
that is,w contains at most one occurrence ofc.

2. Each rewrite operation ofM deletes a single continu-
ous factor from the actual contents of the window, and
at that point the window must contain exactly one oc-
currence of a symbol fromSK(s). This symbol is ei-
ther in the first or in the last position of the window.

3. If a cycleC of M contains a rewrite operation during
which a symbolci,j ∈ S(s, j) is in the first or last
position of the window, then every rewrite operation
during C is executed with some element ofS(s, j) in
the first or last position of the window.

4. If w ∈ LC(M), w = xyz, such that|y| > k, andy

does not contain any element ofSK(s), then starting
from the restarting configuration corresponding tow,
M will execute at least one cycle before it accepts.

The elements ofSK(s) are calledislandsof M . We say
that SK(s) is a left skeletonof M , if M executes rewrite
operations only with an island in the leftmost position of its
window.

Thus, in each cycleM performs up tot rewrite (that
is, delete) operations, and during each of these operations
a different islandci,j of the same levelSK(j) is inside
the window. As there ares such levels, we see that there
are essentially justs different ways to perform the rewrite
steps of a cycle.

By LP(t-SK(s)) (resp. byLP(t-LSK(s))) we denote
the class of proper languages oft-SLnRR-automata with
s-skeletons(resp. with lefts-skeletons). The correspond-
ing classes of characteristic languages are denoted by
LC(t-SK(s)) (resp. byLC(t-LSK(s))).
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Observe that the symbols of the form[b, i, s, l] in the
construction of ans-SLnRR-automatonM accepting the
languageLC(M) = {Πd(D(w)) | w ∈ L(Π) } play
the role of islands forM , and their complete set is a left
skeleton forM . This observation serves as the basis for the
proof of the next corollary. Recall thats-t-DDG denotes
the class of PCGSs that have simultaneously generation de-
grees and distribution degreet.

Corollary 3.
For all s, t ∈ N+, L(s-t-DDG) ⊆ LP(t-LSK(s)).

To separatePCGSs of generation complexityt and dis-
tribution complexitys from the class of proper languages
of (t − 1)-LSK(s)-automata we define languageL(t,s).
This language is based on a kind of bounded concatenation
of Lt. Fors, t ∈ N+ andi ≤ s, let
L(t) := { c1wd · · · ctwd | w ∈ {a, b}∗, ci ∈ Σi, d ∈ ∆ },
whereΣ1, . . . Σs,∆ are new alphabets with empty inter-
section with{a, b}. Then,

L(t,s) := (L(t))
s.

Proposition 2. For all s, t ∈ N+,

(a) L(t,s) ∈ L(s-t-DDG),
(b) L(t,s) /∈ LP(t-SK(s − 1)) for s > 1, and
(c) L(t,s) /∈ LP((t − 1)-SK(s)) for t > 1.

Sketch of the proof.Note thatLt = L(t) = L(t,1) when
|Σ1| = · · · = |Σt| = |∆| = 1.
(a) For the upper-bound part we use aPCGS with (t+s)
component grammars, which realizes phases correspond-
ing to s generative sections. The group of gram-
marsGs+1, . . . , Gs+t plays the role ofG2, . . . , Gt+1 from
the proof of Proposition 1, while the component grammars
G1, . . . , Gs play the role of grammarG1 from that proof.
At the end of thep-th generative section, there is a wordωpi

present in component grammarGs+1, where ωp =
c1,pwpdp . . . ct,pwpdp is a terminal word andi, 1 ≤ i ≤ s,

is a nonterminal symbol indicating thatGi is the grammar
into which ωp should be communicated. Finally, the syn-
chronized communication concatenates allω’s in an appro-
priate6 way in component grammarG1.

(b) Assume thatM is a t-SK(s − 1)-automaton such
that LP(M) = L(t,s). Thus,M has a(s − 1)-skeleton
SK(s − 1) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s − 1 }.
Now assume that, fori = 1, . . . , s, wi ∈ Lt,i, that is,
w := w1w2 · · ·ws ∈ L(t,s). Further, letW be an expanded
version ofw. For each cycle ofM in an accepting compu-
tation on inputW , there exists an indexj ∈ {1, . . . , s− 1}
such that each rewrite step of this cycle is executed with

6 The construction ofPCGS heavily utilizes nondeterminism.
In case of “wrong” nondeterministic choices the derivation is
blocked.

an islandci,j in the left- or rightmost position of the win-
dow. From the proof of Proposition 1 we see that, for each
of the factorsLt,j , t rewrite steps per cycle are required.
Thus, each of the factorsWi must containt islands, that
is, W must contain at leastt · s islands. However, as the
wordW ∈ LC(M) contains at most a single occurrence of
each symbol of the setSK(s − 1), and as|SK(s − 1)| =
t · (s − 1), W can contain at mostt · (s − 1) islands. This
contradicts the observation above, implying thatL(t,s) is
not the proper language of anyt-SK(s − 1)-automaton.
(c) For the lower-bound part recall Proposition 1 where
Lt 6∈ LP((t − 1)-NLnRR) is shown to hold. From the
proof it follows that L(t,s) 6∈ LP((t − 1)-NLnRR).
As (t − 1)-SK(s)-automata are a special type of(t − 1)-
SLnRR-automata, the non-inclusion result in (c) follows.

2

Next we consider the languageLpe := {wcwR | w ∈
{0, 1}∗ }. By taking the symbolc as an island, we easily
obtain the following result.

Proposition 3. Lpe ∈ LP(2-SK(1)).

On the other hand, this language cannot be accepted if
we restrict our attention to left skeletons.

Proposition 4. ∀s, t ∈ N+ : Lpe 6∈ LP(t-LSK(s)).

Proof. Assume thatM is at-LSK(s)-automaton such that
LP(M) = Lpe, that is,M has a left skeletonSK(s) =
{ ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s }. Let w = (anbn)m, where
n,m ∈ N+ are sufficiently large, and letz = wcwR ∈
Lpe. Then there exists a (shortest) expanded versionZ ∈
Γ+ of z such thatZ ∈ LC(M). Hence, the computation
of M on inputZ is accepting, but because of the Pump-
ing Lemma it cannot just consist of an accepting tail, that
is, it begins with a cycleZ ⊢c

M V , whereV ∈ LC(M)

and|V | < |Z|. Thus,v = PrΣ(V ) ∈ Lpe, but v 6= z. In
this cycleM performs up tot delete operations that each
delete a continuous factor ofZ to the right of an islandci,j

for some levelj ∈ {1, . . . , s}. It follows thatv = w1cw
R
1

for some wordw1 ∈ {a, b}∗ satisfying|w1| < |w|, and
that w1 is obtained fromw by deleting some factors, and
wR

1 is obtained fromwR by deleting the corresponding re-
verse factors. When deleting a factorx within the prefixw
to the right of an islandci,j , then this means that this island
“moves” to the right insidew, that is, fromci,jxy the factor
ci,jy is obtained. Here we just consider the projection ofZ

onto (SK(s, j) ∪ {a, b})∗. Now when the corresponding
factorxR is deleted fromwR, then it is to the right of an
islandci′,j , that is, fromyRci′,jx

R the factoryRci′,j is ob-
tained. Thus, while for deleting the factory of w the same
islandci,j could be used in a later cycle, an island different
from ci′,j is needed foryR. The same argument applies to
the case that the roles ofw andwR are interchanged. This
means that in the process of synchronously processingw
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andwR, the same island can be used repeatedly in subse-
quence cycles within one of the two parts, but the corre-
sponding deletions in the other part require new islands in
each cycle. Ifw is of sufficient length, then it follows that
t · s islands will not suffice. Hence,Lpe 6∈ LP(t-LSK(s)).

2

The results above yield the following consequences.

Theorem 2. For all X ∈ {LSK, SK}, and alls, t ≥ 1, we
have the followingproperinclusions:

(a) s-t-DDG ⊂ (s + 1)-t-DDG.
(b) s-t-DDG ⊂ s-(t + 1)-DDG.
(c) LP(t-X(s)) ⊂ LP((t + 1)-X(s)).
(d) LP(t-X(s)) ⊂ LP(t-X(s + 1)).
(e) s-t-DDG ⊆ LP(t-LSK(s)) ⊆ LP(t-SK(s)).
(f) LP(t-LSK(s)) ⊂ LP(t-SK(s)) for t ≥ 2.

5 Conclusion

The study of the relation betweenPCGS and FRR was
motivated by computational linguistics; both models seem
to be useful in this field. While in [6] the basic relation be-
tween the computational power of these two models was
established, the aim of this paper was to introduce and
study the relevant complexity measures ofPCGS and re-
strictions on computation ofFRR.

We have succeeded in showing infinite hierarchies both
for PCGSs andFRRs. The question of whetherj-k-DDG
is equal toLP(j-LSK(k)) or not remains open.

We also believe that properly using nondeterminism the
next conjecture can be shown.

Conjecture 1.For anyL ∈ j-k-DDG, there is a correctness
preserving k-NSLnRR-automatonM with a leftj-skeleton
SK(j) such thatL = LP (M), andM has no auxiliary
symbols outside ofSK(j).
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Stanislav Slǔsńy and Roman Neruda and Petra Vidnerová
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Abstract. An emergence of intelligent behavior within a simple
robotic agent is studied in this paper. Two control mechanisms for
an agent are considered — new direction of reinforcement learn-
ing called relational reinforcement learning, and a radial basis
function neural network trained by evolutionary algorithm. Rela-
tional reinforcement learning is a new interdisciplinary approach
combining logical programming with traditional reinforcement
learning. Radial basis function networks offer wider interpreta-
tion possibilities than commonly used multilayer perceptrons. Re-
sults are discussed on the maze exploration problem.

1 Introduction

One of the key question of Artificial Intelligence is how
to design intelligent agents. Several approaches have been
studied so far. In our previous work, we have been examin-
ing mainly Evolutionary robotics (ER).

The ER approach attacks the problem through a self-
organization process based on artificial evo-lu-ti-on [13].
Robot control system is typically realized by a neural net-
work, which provides direct mapping from robot’s sensors
to effectors. Most of current applications use traditional
multi-layer perceptron networks. In our approach we uti-
lize local unit network architecture called radial basis func-
tion (RBF) network, which has competitive performance,
more learning options, and (due to its local nature) better
interpretation possibilities [18, 19].

This article gives summary of our experiences and
comparison to Reinforcement Learning (RL) - another
widely studied approach in Artificial Intelligence. RL is fo-
cusing on agent, that is interacting with the environment
by its sensors and effectors. This interaction process helps
agent to learn effective behavior. These kinds of tasks are
commonly studied on miniature mobile robots of type
Khepera [2] and E-puck [1].

2 Related work

The book [16] provides comprehensive introduction to the
ER, with focus on robot systems. Recently, effort is made

⋆ This work has been supported by the Ministry of Education of
the Czech Republic under the project Center of Applied Cyber-
netics No. 1M684077004 (1M0567), S. Slušńy been partially
supported by by the Czech Science Foundation under the con-
tract no. 201/05/H014G.

to study emergence of intelligent behavior within the group
of robots.

Pioneering work was done by Martinoli [14]. He solved
the task, in which group of simulated Khepera robots were
asked to find “food items” randomly distributed on
an arena. The control system was developed by the artifi-
cial evolution. Our work with single robot and robot teams
were published in [19, 18].

Reinforcement learning is gaining increasing attention
in recent years. The basic overview of the field can be
found in [20].

3 Evolutionary robotics

The evolutionary algorithms (EA) [13, 12] represent a sto-
chastic search technique used to find approximate solutions
to optimization and search problems. They use techniques
inspired by evolutionary biology such as mutation, selec-
tion, and crossover. The EA typically works with a popula-
tion of individualsrepresenting abstract representations of
feasible solutions. Each individual is assigned afitnessthat
is a measure of how good solution it represents. The bet-
ter the solution is, the higher the fitness value it gets. The
population evolves toward better solutions. The evolution
starts from a population of completely random individuals
and iterates in generations. In each generation, the fitness
of each individual is evaluated. Individuals are stochasti-
cally selected from the current population (based on their
fitness), and modified by means of operatorsmutationand
crossoverto form a new population. The new population is
then used in the next iteration of the algorithm.

Feed forward neural used as robot controllers are en-
coded in order to use them in the evolutionary algorithm.
The encoded vector is represented as a floating-point en-
coded vector of real parameters determining the network
weights.

Typical evolutionary operators for this case have been
used, namely the uniform crossover and the muta-
tion which performs a slight additive change in the para-
meter value. The rate of these operators is quite big, en-
suring exploration capabilities of an evolutionary learning.
A standard roulette-wheel selection is used together with
a small elitist rate parameter. Detailed discussions about
fitness function are presented in the next section.
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4 Relational reinforcement learning

The lack of theoretical insight into EA is the most serious
problem of the previous approach. The RL is based on dy-
namic programming [6], which has been studied more than
50 years already. It has solid theoretical backgrounds built
around Markov chains and several proved fundamental re-
sults. On the other side, it is not possible usually to fulfill
theoretical assumptions in the experiments.

The general model of agent-environment interaction is
modeled through the notion of rewards. The essential as-
sumption of RL states, that agent is able to sense rewards
coming from the environment. Rewards evaluate taken ac-
tions, agent’s task is to maximize them. The next assump-
tion is that agent is working in discrete time steps. Sym-
bol S will denote finite discrete set of states and symbolA

set of actions. In each time stept, agent determines its ac-
tual state and chooses one action. Therefore, agent’s life
can be written as a sequence

o0a0r0s1a1r1... (1)

wherest denotes state, which is determined by processing
sensors input,at ∈ A action and finally symbolrt ∈ R

representsreward, that was received at timet.
Formally, agent’s task is to maximize

V π(st) = rt + γrt+1 + γ2rt+2 + ... =
∑

i=0

γirt+i (2)

where the quantityV π(st) [16] is called discounted cu-
mulative reward. It is telling us, what reward can be ex-
pected, if the agent starts in statest and follows policyπ,
0 ≤ γ < 1 is a constant that determines the relative value
of delayed versus immediate rewards.

The most serious assumption of RL algorithms is the
Markov property, which states, that agent does not need
history of previous states to make decision. The decision
of the agent is based on the last statest only. When this
property holds, we can use theory coming from the field of
Markov decision processes(MDP).

The policyπ, which determines what action is chosen
in particular state, can be defined as functionπ : S → A,
whereπ(st) = at. Now, the agent’s task is to find opti-
mal strategyπ∗. Optimal strategy is the one, that maximal-
izes expected reward. In MDP, single optimal deterministic
strategy always exists, no matter in what state has the agent
started.

Optimal strategyπ∗ can now be defined as

π∗ = arg max
π

V π(s),∀s ∈ S (3)

To simplify the notation, let’s writeV ∗(s) instead of
symbolV π∗

, value function corresponding to optimal strat-
egyπ∗.

V ∗(s) = max
π

V π(s) (4)

The first breakthrough of RL was the Q-learning al-
gorithm [21, 4], which computes optimal strategy in de-
scribed conditions.

The key idea of the algorithm is to define the so-called
Q-values. Qπ(s, a) is the expected reward, if the agent
takes actiona in states and then follows policyπ.

Qπ(s, a) = r(s, a) + γV π(s′), (5)

wheres′ is the state, in which agent occurs taking actiona

in states (s′ = δ(s, a)).

It is probably most commonly used algorithm of RL,
mainly because of its simplicity. However, several
improvements have been suggested to speed up the algo-
rithm. In real life applications, state space is usually toobig
and convergence toward optimal strategy is slow. In recent
years, there have been a lot of efforts devoted to rethinking
idea of states by using function approximators [7], defin-
ing notion of options and hierarchical abstractions [5]. Re-
lational reinforcement learning [11] is approach that com-
bines RL with Inductive Logical Programming.

The distinction between classical RL and Relational
Reinforcement Learning is the way how the Q-values are
represented. In classical Q-learning algorithm are Q-values
stored in the table. In relational version of the algorithm,
they are stored in the structure calledLogical decision
tree [8]. In our experiments, we have used logical deci-
sion trees as implemented in the programs TILDE [8] from
package ACE-ilProlog [9].

– for eachs, a do
• initialize the table entryQ′(s, a) = 0
• e = 0

– do forever
• e = e + 1
• i = 0
• generate a random states0

• while not goal(si) do
∗ select an actionai and execute it
∗ receive an immediate rewardri = r(si, ai)
∗ observe the new statesi+1

∗ i = i + 1
• endwhile
• for j = i − 1 to 0 do

∗ updateQ′(sj , aj) = rj + γ maxa
′ Q

′(sj+1, a
′)

Fig. 1.Scheme of Q-learning algorithm, taken from [11].
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5 Evolutionary RBF Networks

Evolutionary robotics combines two AI approaches: neural
networks and evolutionary algorithms. Neural network re-
ceives input values from robot’s sensors and it outputs con-
trol signals to the wheels. This way it realizes a control
system of the robot.

Evolutionary algorithms [13, 12] are then used to train
such a network. It would be difficult to utilize the training
by traditional supervised learning algorithms since they re-
quire instant feedback in each step. Here we typically can
evaluate each run of a robot as a good or bad one, but it is
impossible to assess each one move as good or bad. Thus,
the evolutionary algorithm represent one of the few possi-
bilities, how to train the network.

The RBF network[17, 15, 10], used in this work,
is a feed-forward neural network with one hidden layer of
RBF unitsand linear output layer. The network function is
given by Eq. (7).

y(x) = ϕ

(
‖ x − c ‖

b

)

(6)

fs(x) =

h∑

j=1

wjsϕ

(
‖ x − cj ‖

bj

)

, (7)

wherefs is the output of the s-th output unit,y is the out-
put of a hidden unit,ϕ is an activation function, typically
Gaussian functionϕ(s) = e−s2

.

Fig. 2.A scheme of a Radial Basis Function Network.

The evolutionary algorithm is summarised in Fig. 3.
It works with a population ofindividualsrepresenting ab-
stract representations of feasible solutions. Each individual
is assigned afitnessthat is a measure of how good solu-
tion it represents. The evolution starts from a population
of completely random individuals and iterates in genera-
tions. Individuals are stochastically selected from the cur-
rent population (based on their fitness), and modified by
means of genetic operatorsmutationto form a new gener-
ation.

In case of RBF networks learning, each individual en-
codes one RBF network. The individual consists of
h blocks:

IRBF = {B1, . . . , Bh}, (8)

1. START: Create populationP (0) = {I1, · · · , IN}.
2. FITNESS EVALUATION: For each individual evaluate fit-

ness function.
3. TEST: If the stop criterion is satisfied, return the solution.
4. NEW GENERATION: Create empty population

P (i + 1) and repeat the following procedure until
P (i + 1) hasN individuals.

i) Selection: Select two individuals fromP (i) :
I1 ← selection(Pi),
I2 ← selection(Pi).

ii) Crossover: With probabilitypc:
(I1, I2) ← crossover(I1, I2)

iii) Mutation: With probabilitypm:
Ik ← mutate(Ik), k = 1, 2

iv) Insert: InsertI1, I2 into Pi+1

5. LOOP: Go to step 2.

Fig. 3.Scheme of an evolutionary algorithm.

whereh is a number of hidden units. Each of the blocks
contains parameter values of one RBF units:

Bk = {ck1, . . . , ckn, bk, wk1, . . . , wkm}, (9)

wheren is the number of inputs,m is the number of out-
puts,ck = {ck1, . . . , ckn} is thek-th unit’s centre,bk the
width andwk = {wk1, . . . , wkm} the weights connecting
k-th hidden unit with the output layer. The parameter val-
ues are encoded using direct floating-point encoding.

We use standardtournament selection, 1-point
crossover and additive mutation. Additive mutation
changes the values in the individual by adding small value
randomly drawn from〈−ǫ, ǫ〉.

The fitness function should reflect how good the robot
is in given tasks and so it is always problem dependent.
Detailed description of the fitness function is included in
the experiment section.

6 Experiments

In order to compare performance and properties of
described algorithms, we conducted simulated experiment.
Miniature robot of type e-puck [1] was trained to explore
the environment and avoid walls. E-puck is a mobile ro-
bot with a diameter of 70 mm and a weight of 50 g. The

Fig. 4.Miniature e-puck robot.
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robot is supported by two lateral wheels that can rotate
in both directions and two rigid pivots in the front and
in the back. The sensory system employs eight “active in-
frared light” sensors distributed around the body, six on one
side and two on other side. In “passive mode”, they mea-
sure the amount of infrared light in the environment, which
is roughly proportional to the amount of visible light. In
“active mode” these sensors emit a ray of infrared light
and measure the amount of reflected light. The closer they
are to a surface, the higher is the amount of infrared light
measured. The e-puck sensors can detect a white paper at
a maximum distance of approximately 8 cm. Sensors re-
turn values from interval[0, 4095]. Effectors accept values
from interval [−1000, 1000]. The higher value, the faster
the motor is moving.

Sensor value Meaning
0-50 NOWHERE
51-300 FEEL
301-500 VERYFAR
501-1000 FAR
1001-2000 NEAR
2001-3000 VERYNEAR
3001-4095 CRASHED

Table 1.Sensor values and their meaning.

Without any further preprocessing of sensor’s and ef-
fector’s values, the state space would be too big. Therefore,
instead of raw sensor values, learning algorithms worked
with “perceptions”. Instead of4095 raw sensor values, we
used only5 perceptions(table 1). Effector’s values were
processed in similar way: instead of2000 values, learning
algorithm chosen from values[−500,−100, 200, 300, 500].
To reduce the state space even more, we grouped pairs of
sensors together and back sensors were not used at all.

The agent was trained in the simulated environment of
size 100 x 60 cm and tested in more complex environment
of size 110 x 100 cm. We used Webots [3] simulation soft-

Fig. 5. Agent was trained in the simulated environment of size
100 x 60 cm.

Fig. 6.Simulated testing environment of size 110 x 100 cm.

ware. Simulation process consisted of predefined number
of steps. In each simulation step agent processed sensor
values and set speed to the left and right motor. One simu-
lation step took 32 ms.

6.1 Evolutionary RBF networks

The evolutionary RBF networks were applied to the maze
exploration task. The network input and output values are
preprocessed in the same way as for the reinforcement
learning.

To stimulate maze exploration, agent is rewarded, when
it passes through the zone. The zone is randomly located
area, which can not be sensed by an agent. Therefore,
∆j is 1, if agent passed through the zone inj-th trial and0
otherwise. The fitness value is then computed as

Fitness =

4∑

j=1

(Sj + ∆j), (10)

where quantitySj is computed by summing normalized
trial gainsTk,j in each simulation stepk and trialj.

Sj =

800∑

k=1

Tk,j

800
. (11)

The three componentTk,j motivates agent to move and
avoid obstacles.

Tk,j = Vk,j(1 −
√

∆Vk,j)(1 − ik,j) (12)

First component Vk,j is computed by summing
absolute values of motor speed ink-th simulation step and
j-th trial, generating value between 0 and 1. The second
component(1 −

√
∆Vk,j) encourages the two wheels to

rotate in the same direction. The last component(1− ik,j)
supports agent’s ability to avoid obstacles. The valueik,j of
the most active sensor ink-th simulation step andj-th trial
provides a conservative measure of how close the robot is
to an object. The closer it is to an object, the higher the
measured value in range from 0 to 1. Thus,Tk,j is in range
from 0 to 1, too.
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The experiment was repeated 10 times, each run lasted
200 generations (each generation corresponding to
800 simulation steps). In all cases the successful behavior
was found, i.e. the evolved robot was able to explore the
whole maze without crashing to the walls. See Fig. 7 for
the mean, minimal and maximal fitness over 10 runs.

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140  160  180  200

F
itn

es
s

Generations

Fitness function

min
max

mean

Fig. 7. The mean, minimal and maximal fitness function over
10 runs of evolution. Fitness is scaled in a way that successful
walk through the whole maze corresponds to the fitness 600 and
higher.

Table 2 and Figure 8 show parameters of an evolved
network with five RBF units. For the sake of clarity, the
parameters listed are also discretized. We can understand
them as rules providing mapping from input sensor space
to motor control. However, these ‘rules’ act in accord, since
the whole network computes linear sum of the five corre-
sponding gaussians.

Sensor Width Motor
left front right left right
VERYNEAR NEAR VERYFAR 1.56 500 -100
FEEL NOWHERE NOWHERE 1.93 -500 500
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500
VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 2.Rules represented by RBF units (listed values are origi-
nal RBF network parameters after discretization).

6.2 Reinforcement learning

The same experiment has been performed by means of re-
lational reinforcement learning algorithm described above
under the same simulated environment and identical con-
ditions. The performance of the Reinforcement learning

Fig. 8.The evolved RBF network (see also Tab. 2). Local units re-
sponses plotted in 2D input space corresponding to left and right
sensory inputs.

agent is shown on figure 9. The graph shows average num-
ber of steps from each learning episode. It can be seen that
after 10000 episodes, the agent has learned the success-
ful behavior. This number roughly corresponds to the time
complexity of the GA, where 200 populations of 50 indi-
viduals also result in10000 simulations. The fitness of the
solution found by RL is slightly better than the GA-found
solution, on the other hand the inner representation of the
neural network is much more compact.
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Fig. 9. Learning curve for Reinforcement Learning agent aver-
aged on 10 runs.

7 Discussion

This article presented survey of popular approaches in mo-
bile robotics used to robot behavior synthesis. In our fu-
ture work, we would like to design hybrid intelligent sys-
tem, combining the advantages of these approaches. This
way, agent would benefit from using three widely stud-
ied fields: Inductive Logic Programming, Neural Networks
and Reinforcement Learning. The Reinforcement Learning
has strong mathematical background. On the other side, in
real experiments, some of the assumptions are not realis-
tic. Neural networks are very popular in robotics, because
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they provide straightforward mapping from input signals to
output signals, several levels of adaptation and are robust
to noise. Inductive logic programming allows agent to rea-
son about states, thus concentrating attention on the most
promising parts of the state space.

The experiments showed that a preprocessing plays
rather important role in the case of robotic agent control.
In our approach we have chosen a rather strong processing
of inputs and outputs, which is suitable for RL algorithms
mainly. In our future work we would like to study control
with less preprocessed inputs/outputs which can be used
mainly for the neural network controller. Also, another im-
mediate work is to extract the most frequently used state
transitions from the RL algorithm and interpret them as
rules in a similar fashion we did with the RBF network.
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