Preface

The 8th workshop ITAT'08 - Information Technology - Applications and
Theory (http://ics.upjs.sk/itat) was held in Horsky hotel Hrebienok,
(http: // www. sor ea. sk/ Def aul t. aspx?Cat | D=24&hi d=4) located 1280 meter above
the sea level in High Tatrad(t p: / / ww. t at ry. sk/), Slovakia, in end of September 2008.

ITAT workshop is a place of meeting of people working in infatics from former Czechoslovakia (official
languages for oral presentations are Czech, Slovak anshPplioceedings papers are in English).

Emphasis is on exchange of information between particiyaather than make it highly selective. Work-

shop offers a first possibility for a student to make a pubtespntation and to discuss with the “elders”.

A big space is devoted to informal discussions (the placegitionaly chosen at least 1000 meter above
the sea level in a location not directly accessible by pubdiosport).

Thematically workshop ranges from foundations of inforiggtsecurity, through data and semantic web
to software engineering.
These proceedings consists of

— 8 original scientific papers
All papers were refereed by at least two independent referékere were 41 submissions.

The workshop was organized by Institute of Informatics oivdrsity of P.J. Safarik in KoSice; Institute
of Computer Science of Academy of Sciences of the Czech Rieplvague; Faculty of Mathematics
and Physics, School of Computer Science, Charles UniyeRiigue and Slovak Society for Artificial
Intelligence.

Partial support has to be acknowledged from projects of thgrBm Information Society of the Thematic
Program Il of the National Research Program of the Czech BledlET100300419 “Intelligent models, al-
gorithms, methods and tools for the semantic web realizdtiod 1ET100300517 “Methods for intelligent
systems and their application in data mining and naturgdage processing”.

Peter Vojtas

Program Committee

Peter Vojtas, (chairCharles University, Prague, CZ

Gabriela AndrejkovaUniversity of P.J. Safarik, KoSice, SK

Méria Bielikova,Slovak University of Technology in Bratislava, SK
Leo Galambo&Charles University, Prague, CZ

Ladislav Hluchy Slovak Academy of Sciences, Bratislava, SK
Tomas HorvathUniversity of P.J. Saféarik, Kosice, SK

Karel JeZzekThe University of West Bohemia, Plzen, CZ

Jozef JirasekJniversity of P.J. Safarik, KoSice, SK

Jana Kohoutkovaylasaryk University, Brno, CZ

Stanislav Kraji, University of P.J. Safarik, KoSice, SK

Véra Kilirkova]nstitute of Computer Science, AS CR, Prague, CZ
Markéta LopatkovaCharles University, Prague, CZ

Jan Para#li, Technical University in KoSice, SK

Dana Pardubsk&omenius University, Bratislava, SK

Martin Platek,Charles University, Prague, CZ

Jaroslav PokornyCharles University, Prague, CZ

Karel Richta,Czech Technical University, Prague, CZ

Gabriel Semanisinniversity of P.J. Safarik, KoSice, SK

Vaclav SnaselTechnical University VSB in Ostrava, CZ

Vojtéch SvatekUniversity of Economics in Prague, CZ

Jifi Sima,Institute of Computer Science, AS CR, Prague, CZ
Julius Stuller)nstitute of Computer Science, AS CR, Prague, CZ
Jakub YaghobCharles University, Prague, CZ

Filip Zavoral,Charles University, Prague, CZ

Stanislav Zak|nstitute of Computer Science, AS CR, Prague, CZ
Filip Zelezny,Czech Technical University, Prague, CZ

Organizing Committee

Tomas Horvath, (chair)niversity of P.J. Safarik, KoSice, SK
Hanka Bilkovéa]nstitute of Computer Science, AS CR, Prague, CZ
Peter GurskyUniversity of P.J. Safarik, KoSice, SK

Rébert NovotnyUniversity of P.J. Safarik, Kosice, SK

Jana PribolovaJniversity of P.J. Safarik, Koice, SK

Veronika Vanekovayniversity of P.J. Saféarik, Kosice, SK

Organization

ITAT 2008 Information Technologies — Applications and Theay was organized by
University of P.J. Saféarik, KoSice, SK

Institute of Computer Science, AS CR, Prague, CZ

Faculty of Mathematics and Physics, Charles UniversitggBe, CZ

Slovak Society for Artificial Intelligence, SK

Table of Contents

Extending Datalog t0 COVEr XQUETYttt e e e e e et et et et e et e e e et 1.
D. Bednérek

Determining XSLT streamability using new hierarchical X8Ddel i i,
J. Dvorékova, F. Zavoral

Multiway blockwise in-place Merging 13
V. Geffert, J. Gajdos

Searching all approximate covers and their distance ugiitg fiutomata 21.
O. Guth, B. Melichar, M. Balik

Measures of quality of rulesets extracted from data .. .o oo e 27
M. Holeha

The coin flipping selector for selective enCryptiono oot e e 35
R. Ostertag

ONPCGS and FRR-AUIOMALAottt et et e i e e e e e et e e e e e e e e ettt 41
D. Pardubska, M. Platek, F. Otto

Learning algorithms for small mobile robots: case study @zenexploration, 49
S. Slusny, R. Neruda, P. Vidnerova

Extending Datalog to cover XQuery

David Bedrarek

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University Prague
davi d. bednarek@f f. cuni.cz

Abstract. Datalog is a traditional platform in database researcta detailed representation of the most important XQuery
and, due to its ability to comprehend recursion, it seems to bere operators is given.

a good choice for modeling XQuery. Unfortunately, XQuery func-

tions have arguments carrying sequences; therefore, logic-based

models of XQuery must be second-order languages and, core- BTLog

quently, Datalog is usually extended by node-set variables. In

this paper, we suggest an alternative approach - extending Data-

log by allowing structured variables in a form similar to Dewey raditional Datalog program is a set of rules in the form of
numbers. This extension is then used to model the behaviof N clauses without function symbols. We will extend this
a XQuery program as a whole, using predicates that reflect tgfinition with one binary function symbdl, correspond-
semantics of XQuery functions only in the context of the givigig to the creation of a binary tréE(z, y) from subtrees:
program. This fact distinguishes our approach from traditionandy. We will call this languag@TLog(from binary-tree
models that strive to comprehend the behavior of a function indegic). Of course, addition of a function symbol raises the
pendently of its context. The advantage of this approach is thapwer of the language quite dramatically; therefore, some

uses the same means to model the structural recursion of doﬁPOpertieS of Datalog are lost and new problems are raised:
ments and the functional recursion of programs, allowing various

modes of bulk processing, loop reversal and other optimization . .
techniques P g. ‘oop P — Termination- using ther -operator, any number of val-

ues may be generated. Therefore, termination is not

generally guaranteed and any BTLog evaluation algo-
1 Introduction rithm shall cope with termination problems.

— Minimal model semantics without negation, minimal

Contemporary XQuery processing and optimization tech- model semantics works well with BTLog, just as it
niques are usually focused on querying and, in most cases, works with Datalog without negation.
ignore the existence of user-defined functions. In the era Stratification— In Datalog', stratification is used to
of XSLT 1.0, the implementation techniques had to recog- extend the notion of minimal model. Similar defini-
nize user-defined functions (templates) well (see for in- tion may be used in BTLog, resulting in the language
stance [3]); however, this branch of research appears dis- BTLog™strat,
continued as the Community shifted to XQUery. The re—_ Non-stratifiable program semantiesstable modesge-
cent development in the area of query languages for XML mantics is used for non-stratified BTLogrograms.
shows that the XQuery language will likely be used as one
of the main application development languages in the XML pefinition of the abovementioned terms and detailed
world [1]. In particular, intensive use of user-defined fungjiscussion of theoretical properties of such a language may

tions may be expected. be found for instance in [5].
There were several attempts to apply Datalog or Data-

log-like models to XPath or XQuery. There are also top-

down approaches using structural recursion, i.e. stron@y Abstraction of a XQuery program
syntactically limited form of Horn clauses with function

symbols [7]. More general forms, using first-order 10giG;mjjarly to the normative definition of the XQuery seman-
were aIsp used in the_area of XML cpnstramts [8]. tics, we use (abstract) grammar rules of tree gram-

In this paper, we (informally) define the language B4y (9] as the base for the models. A XQuery program is
Log as an extension of Datalog. In the Section 3, an 3Bymalized as a forest of abstract syntax trees (AST), one

straction of an XQuery program as a forestis defined. In thge tor each user-defined function and one for the main ex-

fourth section, the principles of the transformation to BBression. Each node of each AST, i.e. each sub-expression

Log is defined and shown on an example. In the SeCt'ona%pearing in the program, has a (program-wide) unagle

* Project of the program “Information society” of the Thematiiress . These addresses will participate as subscripts in
program Il of the National research program of the Czech RBTLog predicate names and they will also appear as con-
public, No. 1ET100300419 stants in some rules.

2 David Bediarek

g(function toc ($P)
h

return

in
G i(sestion)

return

$X/section

n

Fig. 2. Query 1 — Forest model.

decl are function toc($P)

;) and document nodes, the mapping is divided into two
{ for $X in $P return <section> {

interweavedists.

- $Xtitle , toc($Xsection) } </section> — Eachsequenceontaining document nodes is accom-
' panied by aree environmentvhich contains the en-
<toc> { coding of the document trees to which the nodes of the
toc(for $S in doc("D') return $S/ book) sequence belong. _ _ _

} </toc> — Evaluating & or -expression corresponds to iteration

through all sequence identifiers in the value ofitime
clause.

— A particular context reached during XQuery evalua-
tion is identified by the pair of aall stack containing

. . ositions in the program code, anctantrol variable
Fig. 2 shows the abstract syntax forest corresponding P prog

. stack containing sequence identifiers selected by the
to the Query 1 at Fig. 1. Node adresses are shown as Ietters]c or -expressions along the call stack.
left to the nodes.

i — Node identifiers, tree identifiers, sequence identifiers,
For each AST noddZ, the setvars[E] contains the

. . . : and control variable stacks share the same domain of
names ofaccessible variablesn particular, wher¥ is the binary trees with values on leaves, allowing to con-
root of a function ASTyars[E] contains the names of ar- '

fthe f . including implici ik struct each kind of identifier from the others. In most
guments of the function, including implicit arguments fike cases, a binary tree is used to encode a (generalized)
the context node.

string — then, the rightmost path in the tree has the
length of the string and the children of the rightmost
path are the letters of the string.

Fig. 1. Query 1.

4 Principles of the transformation

The model is based on the following principles: 4.1 Model predicates

— Nodes within a tree are identified ode identifiers o, nodel assigns a set of predicates to each AST node,
FGS]”;g Dewey IDlabeling scheme. (See, for iNstancgs tg each address:

— Atree is encoded using a mapp|ng of Dewey labels to- |nvocati0ninVE (Z,f) enumerates the contexts in which
node properties the expressiorE is evaluated. Argumentrepresents

— A tree created during XQuery evaluation is identified
by atree identifierderived from the context in which
the tree was constructed.

— A node is globally identified by the pair of a tree iden-
tifier and a node identifier.

— A sequence (i.e. any XQuery expression value) is mod-
eled using a mapping afequence identifierd se-
guence itemsSince a sequence may mix atomic values

the call stack that brought the execution to the exam-
ined expressiorE. f is the stack of sequence identi-
fiers selected by théor -clauses throughout the de-
scent along to E. The two stacks together form the
identification of the dynamic context in which an ex-
pression is evaluated. While the XQuery standard de-
fines dynamic context as the set of variable assign-
ments (with some negligible additions), our notion of

dynamic context is based on the stack pair that deter-
mines the descent through the code to the examined
expression, combining both the code path stored in
and thef or -control variables iry. The key to the suf-
ficiency of this model is the observation that the vari-
able assignment is a function of the stack pair.

Atomic listalstg (¢, f, s, v) represents the atomic value
portion of the assignment of the result value of the ex-
pressionE to the contexts enumerate by g(s, f).

s is a sequence identifier, is a value of an atomic
type as defined by the XQuery standard. The predicate
alstg (4, f, s,v) is true if the value of the expression
E in the context(i, f) contains the atomic value at
positions.

Node listnlstg (4, f, s, t, n) represents the node portion
of the result value of the expressiéh The meaning of

i, f, ands is the same as islst. t is a tree identifier —

for external documents, it is a literal value, for tempo-
ral trees, it is the expression(iy, f1) corresponding

to the environment identification at the moment of tree
creation.n is a node identifier in the form of a Dewey
ID.

Environmentenvg (i, t, n, a) represents the tree envi-

ronment associated to the result value of the expression The following rules correspond to the functiboc:

E. i determines the call context (note that the envi-
ronment is independent of the control variable stack).
t is a tree identifiern is a node identifierg is a tu-

ple of properties assigned to a node by the XML Data
Model, containing node kind, name, typed and string

values, etc. Particular properties are accessed using

predicate:iame(a, v), string(a, v), etc.

valst ;, gx (i, f, s,v), vnlst; ¢x (i, f,s,t,n), and

venv, gy (i,t,n,a) represent the assignment of the val-
ues of the variabl&x € vars[E] to the contexts sati-
fying invg(i, f). The meaning of the arguments is the
same as inlstg, nlstg, andenvg.

Extending Datalog to cover XQuery

nisty(i, f, T(s,7),t,n) i=nlste(s, T(s, f),r, t,n).

-- the result of the for-expression
vnistg ¢p(T(c,), f,5,t,n) i=nlstq(7, f, s,t,n).

--argumen$Pint oc
venvg gp(T(c,i),t,n,a) —enve(i,t,n,a).

-- environment ofsP in t oc
nistc (4, f,s,t,n) =—nlstg(T(c,9), f,s,t,n).

-- the return value of oc
enve(i, t,n,a) —envg(T(c,i),t,n,a).

-- the return value environment
nisty (i, £, 1, T(4,), 1) —inva(s, f).

-- the<t oc> node
envy (i, T(i,), 1, T(element, toc)) :—inv, (1, f).
envy (i, T(4, f), T(s,p),a) —nlst.(3, f, s, t,m),

env(i, t,n,a),cat(n, m,p).

-- the<t oc> node environment
out(i,t,n,a) —envy(i,t,n,a).

-- the output tree

invj(i, T(s, f)) = vnlstg gp (4, f, 5,1, n).
-- the invocation of the return clause
vnlst; ¢x (7, T(s, f), 1,t,n) =vnlstg ¢p (3, f,s,t,n).
-- variable$X
nlsty (4, f, T(t,n),t,n) —vnlstj gx (i, f,s,t,m),
venvg ¢p (4,2, n, T(element, title)),
child(m, n).
-$X/titl e expression
nlsty (4, f, T(t,n),t,n) ‘—vnlst; gx (i, f, s,t,m),

venvg ¢p (4,2, n, T(element, section)),

child(m, n).
--$X/ sect i on expression

4.2 Example

The following example shows the Query 1 transformed to] _ ,
a BTLog program. The subscripts in the predicate names vnlstg sp(T(m, @), f,5,t,n) ==nlsta (i, f, 5,t, 7).
correspond to the adresses shown in Fig. 2; unused and --argumentPint oc

identity rules were removed. The main expression of the venv, s (T(m, i),t,n, a) :—venvy sp(i, £, n, a).

Query 1 transforms to the following BTLog rules: - environment ofPin t oc

nistm (4, f, s,t,n) i=nlstg(T(m,4), f,s,t,n).
-- the return value of oc

inv,(1,1). -- program start

enve(i, D,n,a) i—inve(i, f),doc(”D”,n, a).
-- doc("D") tree environment

vnlste gs(7, T(s, f), 1,t,n) ‘=nlsta (2, f, s,t,n).

envy, (i,t,m,a) ‘—envg(T(m,i),t,n,a).
-- the return value environment

-- variable$S
nlste (i, f, T(¢,
enve(i, t, n, T(element, book)),
child(m, n).
-- $S/ book node

n)a t? Tl) - Vn|5tf,$s(i7 f7 S, tv m)7

niste (i, £, T(1, s),¢,n) :=nlst (3, f, s,t,n).

nisty (i, f, T(2,),t,n) :i=nlsty (4, f, s, t,n).
-- the concatenated value

envi (i, t,n,a) —venvg ¢p(i,t,n,a).

envi(i,t,n,a) i—envy (i, t,n,a).

3

4 David Bediarek

-- the environment of the concatenation = For Expression — Eg =for $y in E,return E.
nist;(i, f, 1, T(i, f),1) i=inv;(é, f). The for-expression generates a new dynamic context
for each member of the sequengg; in our model, it is
represented by pushing the sequence identifiento the
ean(’L'7 T<Zv f)v L T(element7 tOC)) - ian (i7 f) control StaCkf:
envj(i, T(4, f), T(s,p),a) —nlstc(3, f, s,t,m),

envg(i,t,n,a), cat(n, m,p).

-- the<sect i on> node

invg, (i, T(s, f)) i—nlstg, (¢, f,s,t,m).

--the<sect i on> node environment At the same time, the variablgy is added to the dy-
nlsta(i, £, T(s,7),t,n) i=nlsty(i, T(s, f), 7, £,). namic context, defined as follows:

-- the result of the for-expression vnlsty, gy (5, T(s, f),one, t,n) =
nistg(i, f,s,t,n) —nlsty (2, f, s,t,n). nistg, (¢, f,s,t,n).

-- the result of the function venvp gy (i,t,m,a) —envg, (i,t,m,a).

envg (i, t,n, a) ==envj(i, ¢, n, a). For older variables, the following rules are defined for

-- the result environment each$x € vars[Ep] \ {$y }:

Figure 3 show the dependence graph for the predicatednlstg,_ ¢x (¢, T(s, f), 7, u,m) i=nlstg, (i, f, s,t,n),
of Query 1. There are three strongly connected components vnlst; gy (i, f,ryu,m).
(shown in bold) — the first one carries the environment of '
argument$P (i.e. the input document) down through the
recursion of the functiort oc. The second component Finally, the value of the for-expression is created by the
corresponds to the recursive descent of the varidfle concatenation of the return clause values:
through the document. The third component collects the
constructed nodes back, unwinding the call stack. nistg, (i, f, T(s,7),t,n) ==nlstg, (i, T(s, f), 7,1, n).

envg, (i,t,n,a) i—envg, (i,t,n,a).

venv, gy (i,u,m,a) — venv gy (i, u,m, a).

5 Representation of Core XQuery Let Expression —Ep =l et $y : = Egfreturn Ee

Operators The let-expression adds the varialeto the dynamic
context. Nevertheless, the identification of the context is

There are several variants obre subsets of XQuery, in- not changed and the other variables are also preserved.
cluding thecore grammardefined in the W3C standard
[9], the LixQuery framework [4], and others [2]. Since the INVE (4, f) i=invig, (4, f).
XSLT and XQuery are related languages and the transla- V"|StEm,$y (i, fy8,t,m) i=nlstg, (i, f, s,t,n).
tion from XSLT to XQuery is known (see [2]), the model
may be applied also to XSLT.

Note: Most XQuery operators do not change the as- ,
signment of variable values; therefore, we will omit thg\/here Clause — By = for Sy in E where

propagation rules in the subsequent description. We Wit eturn Erer .

also omit the rules foslst; andvalst, ¢, whenever they Adding where clause to a for-expression a_ffe_cts t_he set

are similar tonlst ; andvlst ,, ¢ ' of contexts generated for the return clause; similarlyi-var
E, '

able models are affected:

venv, sy (i,t,m,a) —envg,,(i,t,m,a).

Function call —E, =f (E;) invg, (1, T(s, f)) i—alstg,, (i, f, s, true).
Assume thafZ; is the root of the function aniix isthe ~ Vnistg, gy (i, T(s, f), one, t, n) i=nlstg, (i, f, s, t,n),
name of the formal argument. The rules implement pushing alstg,, (i, f, s, true).

the call addres#, onto the call stack and popping it back

upon return. vnilsty, ¢y (4, T(s, f),r,u,m) =nlstg, (i, f, s, t,n),

alstg,, (i,f,s,true),vnlstEoﬁx (i, fyryu,m).
invg, (T(Eo, 1), f) =inve, (i, f).
vnIstEf7$X (T(Eo,1), f,s,t,n) —nlstg, (i, f,s,t,n). Equality Test — Ey = E; eq Es
Venv . gx (T(Eo,i),t,n,a) —envg, (i,t,n,a). eqp, (i, f) i—alstg, (i, f, s,v),alstg, (i, f,r,v).
nlstg, (7, f, s5,t,n) ==nlstg, (T(Ey, i), f,s,t,n). alstg, (i, f, 1, true) :—eqp, (i, f).
envg, (i,t,n,a) —envg, (T(Eo,1),t,n,a). alstg, (4, f, 1, false) .= —eqpg, (i, f).

Extending Datalog to cover XQuery 5

Fig. 3. Query 1 — Predicate dependence graph.

Node Construction — Ey = <A>{ E; }</ A> Node-Set Union— Ey = E;7 uni on E,
nlstg, (i, f,one, T(i, f),one) i—invg, (i, f). nistg, (¢, f, T(t,n),t,n) =nlstg, (i, f, s, t,n).
envg, (Z, T(?,, f), one, a) — invED (’L, f), nIStEo (Za fa T(tv TL), t, Tl) - n|StE2 (Zv fv s, t, ’/l)
elementA(a). envg, (Za ta n, a’) - enve, (Z7 ta n, Cl).
envg, (i, T(i, f), T(s,p),a) i—nlstg, (i, f, s, t,m), envg, (i,t,n,a) i—envg, (i,t,n,a).

envg, (i,1,n, a), cat(n, m, p). Note that the sequence identifiersre not referenced

. : at the head of the rule; instead, the identifigt, n) repre-
The auxiliary predicateat corresponds to the concate-

. X o -) senting document order is used.
nation of Dewey identifierss = m.p and it is defined as 9
follows:
Node-Set Intersection— Eg = Ej i ntersecti on E,
cat(p, one, p).
I i, f, T —
cat(T(s,n), T(s,m),p) i—cat(n,m,p). nistg, (i, f, T(t,n), ¢, n)
nistg, (¢, f,r,t,n),nlstg, (i, f, s, t,n).
o) envg, (i,t,n,a) —
Navigation — Ey = E; / axis : * o (b tim,). ,
envg, (i,t,n,a),envg, (i,t,n,a).
nistg, (¢, f, T(t,n),t,n) :=nlstg, (i, f, s, t,m),
envg, (i,t,n,a), azis(m,n). Node-Set Difference— Ey = E; except FEs

envg, (i,t,n,a) —envg, (i,t,n,a). nlstr, (i, £, T(t,n), t,n) i
The selection operator is driven by a predicates nistg, (i, f,r,t,n), ~nlstp, (i, f,s,t,n).

corresponding to thexis used in the navigation operator. envg, (i,t,n,a) i—

These predicates are defined as follows: envp, (i,t,n,a).

child(one, T(s, one)).

child(T(s,m), T(s,n)) - child(m, n). Concatenation = Eo = £y, £

parent(m,n) :—child(n, m). nistg, (4, f, T(one, s),t,n) :—nlstg, (i, f, s, t,n).
descendant(one, T(s,n)). nistg, (4, f, T(two, 8),t,n) i—nlstg, (4, f, s, t,n).
descendant(T (s, m), T(s,n)) :—descendant(m, n). envg, (i,t,n,a) —envg, (i,t,n,a).
ancestor(m, n) :—descendant(n, m). envg, (i,t,n,a) —envpg, (i,t,n,a).

descendantorself(m, n) —cat(n, m, p). Note that whenever the two environmeets/ gz, and

ancestororself(m, n) :— descendantorself(n, m). envg, contain the same tree identifierthe corresponding

6 David Bediarek

tree information is merged by thew g, rules. Since the 3. Groppe, S., Bitcher, S., Birkenheuer, G.,dihg, A.: Refor-
tree identifier exactly determines the context in which the mulating XPath Queries and XSLT Queries on XSLT Views.
tree was created, trees having the same identifier must beTechnical report, University of Paderborn (2006)

identical; therefore, merging the tree environments do ndt Hidders, J., Michiels, P., Paredaens, J., Vercammen, R.: Lix-
alter them anyway. Query: A Formal Foundation for XQuery Research. SIG-

MOD Rec., 34(4):21-26, ACM, New York (2005)
5. Hinrichs, T., Genesereth, M.: Herbrand Logic. Technical
6 Conclusion report LG-2006-02, Stanford University (2006)
6. Lu, J.,, Ling, TW,, Chan, C.-Y,, Chen, T.: From Region En-

We have presented a model of XQuery evaluation based coc_iing to Extended I_Dewey: On Efficient Processing of XML
on Horn clauses under the BTLogyntax. From the syn- W9 Pattern Matching. In: VLDB '05: Proceedings of
tactic point of view, this model comprehends the follow- the 31st International Conference on Very Large Data Bases,

.) . . 193-204. ACM, New York (2005
ing XQuery structures: Declare function, function calk-fo 7 %F:meman P. Fernandez. M (Sucizj D.. UnQL: A Query

Claus‘?{ Iet-clause,. Where-cla}Jse, stable-order-b)s_elau Language and Algebra for Semistructured Data Based on
quantified expressions, equality operator on atomic val- sgryctural Recursion In: The VLDB Journal, pp. 76-110,

ues, Boolean operators including negationni on, Springer-Verlag (2000)

i ntersection, except operators, concatenation)(8. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T.,
operator, statically named document referentes @oc), Segoufin, L.: Two-Variable Logic on Data Trees and XML
forward/reverse axis navigation, name tests; r oot , Reasoning In: PODS'06, ACM, New York (2006)

and element constructors. 9. XQUery 1.0 and XPath 2.0 Formal Semantics, W3C (2007)

There are two important omissions from the cor?- XML~ Query — Use Cases, ~W3C (2007),
XQuery that are not covered by this model: Positional vari- " tP:// W w3. or g/ TR/ xquer y- use- cases/
ables and aggregate functions. There are also some flaws in
error handling, namely the fact that the model may silently
process some situations that shall be signalled as an error.
These issues will be addressed by our future research.

The universal quantified expressiomvery), the
equality operator, and the node-set subtraction operator
(except) involve negation in their BTLog rules. Some
XQuery programs are not stratifiable after conversion to
BTLog™. This is not necessarily a weakness of the ap-
proach — since the XQuery language is Turing-complete,
we shall not expect general stratifiability. This way, the
stratifiability of its BTLog" equivalent may be used
as a borderline between “easy” and “difficult” cases. Fortu-
nately, it shows that most of the real-life XQuery programs
fall in the “easy” stratifiable category — for instance, hkt
XML Query Use Cases [10] programs are stratifiable.

Since termination in XQuery is not guaranteed, it may
be expected that it is not generally guaranteed also in BT-
Log. Our future research will focus on static analysis meth-
ods trying to discover a termination guarantee in a BTLog
program (of course, due to the Turing-completeness, no
method can decide on the existence of a termination guar-
antee).

References

1. Chamberlin, D.: XQuery: Where Do We Go from Here? In:
XIMEP 2006, 3rd International Workshop on XQuery Imple-
mentation, Experiences and Perspectives. ACM Digital Li-
brary, New York (2006)

2. Fokoue, A., Rose, K., Siaon, J., Villard, L.: Compiling
XSLT 2.0 into XQuery 1.0. In: WWW '05: Proceedings
of the 14th International Conference on World Wide Web,
pp. 682-691, ACM, New York (2005)

Determining XSLT streamability using new hierarchical XSD modef

Jana Dvoakowa and Filip Zavoral

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague hGzepublic
{Jana. Dvor akova, Filip.Zavoral }@ff.cuni.cz

Abstract. We introduce a new compact model of XML Schenséreaming processor. The Xord framework is based on the
called a schema tree. Given an XSLT transformatish and formal framework for streaming XML transformations in-
an XML schemasd, we present a method which statically antroduced in [3]. The framework is capable to process auto-
alyzes the schema tree constructed accordingsié and deter- matically a class of top-down XSLT transformations which
mines whethersl can be processed in a streaming manner O@aptures a significant number of practically needed XML

a set of XML documents defined byd. We consider streaming . S .
processing that uses a stack of the size proportional to the deptrt]rcajpsformatlons. The processing is done using a stack of

the input document - this processing is highly efficient in practiége size proportional to the depth of the input XML docu-

since real-world XML documents are shallow. The schema ana’lp-ent - such processing is highly efficient in practice since

sis is performed via stepwise application of templatesgfon €@l XML documents are shallow [9].

the schema tree. We present the implementation of a schema treé/Ve focus especially on the schema-based analyzer

and the static XSLT analyzer on .NET platform. which represents a powerful tool used within the Xord
framework to determine the most efficient way of process-

. ing the given XSLT transformation. For a given XSLT sty-

1 Introduction lesheetrs! and an XML schemasd?, it automatically an-
alyzes the memory usage of the streaming processing of

Many applications need to employ streaming approagh; on a set of documents defined byd.

when processing huge data in XML format. Most typi- Tpe existing models for XML schemas (DOM, .NET

cally, the languages XSLT [10] and XQuery [13] are usegn|Schema) appeared inconvenient for the purpose of the

to specify XML transformations. Both of them enable thgreamability analysis, we therefore introduce the Xord

user to write a high-level specification based on tree Mgsnema Model - a new compact model for schema rep-

nipulation. Common processors of these languages (&gsentation. The model is abstract, and thus not bounded

Saxon, Xalan, AltovaxML) are tree-based, i.e., read the 5 particular schema language. However, in the prototype

whole input_dogument into memory and then perform trﬁ%mementaﬁon we employ W3C XSD notation [11,12] for
transformation itself. XML schemas.

The XSLT and XQuery tree-based processors are ap-
parently not suitable when transforming XML streams &telated work. Several streaming processors for XSLT and
huge XML data. In this case, the transformation can be &Query have been implemented. However, their efficiency
ther written by hand using an event-base parser (e.g., SA¥as demonstrated only by experiments on a small number
StAX) or using some streaming transformation languagé XML transformations and input XML documents. It is
(STX [1], XStream [5]). In both cases, writing the specthus not known how much memory is consumed on clearly
fication is a non-trivial task since the user must explicitigharacterized transformation classes.
handle storing parts of the input document in the memory XML Streaming Machine (XSNi§] processes a subset
buffers for later processing. of XQuery on XML streams without attributes and recur-

In this paper we focus on the problem how to enable thve structures. It is based on a model called XML stream-
user to write a tree manipulation specification in the XSLilig transducer. The processor have been tested on XML
language, and at the same time to process it in a streantioguments of various sizes against a simple query. Using
manner automatically. Such automatic streaming proces¥&M the processing time grows linearly with the document
is supposed to apply the tree-manipulation functions owre, while in the case of standard XQuery processors the
a continuous stream of data while the buffering is treatéithe grows superlinearly. More complex queries have not
automatically. An important issue is to design the procesdween tested.
in such a way that the size of memory buffers is minimized BEA/XQRL[4] is a streaming processor that imple-
for the given transformation and the input document. ments full XQuery. The processor was compared with

We describe the implementation of the Xord frame<alan-J XSLT processor on the set of 25 transformations
work which represents a prototype XSLT automat&nd another test was carried on XMark Benchmarks. BEA

* This work was supported in part by the National programmé We use the ternXML scheméor a general schema for XML
of research (Information society project 1IET100300419). documents.

8 Jana Dviakowa, Filip Zavoral

adopted to model any XML schema language based on
structure definition.

Furthermore, the framework is complemented by a set
of auxiliary helper classes. The algorithmic part of the API

XfXsdSsxtAnalyzer XfTemplateAnalyzer XfSsxt Su pports

SsxtAlgorithm algorithm derived from the abstract
Algorithm model, and
o SSema ot e XsdSsxtAnalyzer algorithm derived from the abstract

2 z Analyzer model, and using the Schema Model and the
Template Model.

XfAnalyzer XfAlgorithm

sch

xslt st xSt

Fig. 1. The Xord framework. . . .
The implementation of the above mentioned models are de-

scribed in more detail in following sections.
processor was fast on small input documents, however, the
processing of large documents was slower since the o%i- .
mizations specially designed for XML streams are limite XSLT representation

in this engine. The Xord framework is currently restricted to process sim-

FluXQuery[7] is a streaming XQuery processor basggle XSLT transformations on XML documents without
on a new internal query languadduX which extends yata values.

XQuery with constructs for streaming processing. XQuery | lesh imol lesh
query is converted into FluX and the memory size is op pimple XSLT stylesheetsSimple XSLT stylesheet con-

mized by examining the query as well as the input DTSISts of an initializing template and several transforming
FluXxQuery supports a subset of XQuery. The engine >mplates. The initializing template sets the current mode
benchmarked against XQuery processors Galax a{ﬂ&he initial .modemo and calls processing of the root ele-
AnonX on selected queries of the XMark benchmark. THRENt of the input document. Itis of the form:
results show that FluxQuery consumes less memory a?ia';;sﬁ@;;;ey_’{a;;;‘fat’es> et 0t o
runtime. </ xsl:tenpl ate>

SPM (Streaming Processing Model) [6] is & one-pasg,e transforming templates are of the form:
streaming XSLT processor without an additional MEMONY. | -\ ol ate matche" name" mode=" >
Authors present a procedure that tries to converts a given ... tenpl ate body ...
XSLT stylesheet into SPM. No algorithm for testing the xs! : tenpl ate>

streamability of XSLT is introduced, and therefore the slaghe template body contains output elements (possibly

of XSLT transformations captured by SPM is not clearlyested) and apply-templates calls. Output elements are of
characterized. the form:

<nane>...el ement content ...</ name>

2 Xord framework Theappl y-t enpl at es construct has ael ect attribute
that contains selecting expression, andbéde attribute.
The Xord framework for analyzing and transforming XMlcxs| : appl y-t enpl ates sel ect ="sel exp” mode="mi "/ >

data is implemented on .NET platform. Its application irk subset of XPath expression is allowed in templates -

terface is formed by a set of interface classes fortravgrsmey contain child and descendant axis. and select nodes
analyzed data structures. The core of the framework CQ '

sists of these abstract models (see Fig. 1): Xypr;?:]_ (i: Step| Step/XPath

1. Template Model for transforming templates imple-Step :=child::Name| descendant:: name

mented by theXfXsltclasses, wherenamerefers to an element name.

2. Schema Modelfor XML schemas implemented by the
XfSchemalasses, Xord Template Model. In the Xord framework, XSLT sty-

3. Algorithm Model for streaming algorithms implemen-lesheets are repr_eserj'Fed by_a set of cIass_eXoah_Tem-_
ted by thexfSsxiclasses, plate Model Its simplified object structure is depicted in

4. Analyzer Model for static analyzers implemented:ig'z'

by the XfXsdSsxtAnalyzeand XfTemplateAnalyzer Each template from the XSLT qontains a sequence of
classes. template calls. A template call consists of the parsed XPath

expression and the template called by épply-templates
Since the models are abstract, the Template Model maymbechanism. The input template file is parsed into these
adopted to model templates of any template-based XMtructures before the analysis. Then the analysis algorith
transformation language and the Schema Model may dieectly traverses the DAG, evaluates the expressions etc.

XfCall

Step

+ Name : string
+ Descendant : bool

exp |

select

XfXpath

+ exp : List<Step>

+ template
+ node
+ select
+ mode

: XfTemplate
: XmINode

: XfXpath

: string

AN \template
\ N

\
calls?
N

XfTemplate

+ match : string

+ mode : string

+ node :XmiNode

+ calls : List<XfCall>

7

Determining XSLT streamability using new ...

XfSchema

+ map : Dictionary<string,Node>

$ o
)

Item

node_

Node

- node
- minOccurs

: Node
sint

- id :string

- maxOccurs : int

children |

ComplexElement

SimpleElement

/

calls _ftemplates
/f .

XfXslt

- children : List<ltem>

- templates : List<XfTemplate>
- calls : List<XfCall>

XfRegexp atom Atom

+ regexp : List<Atom> T+ id : string

Fig. 2. The Xord Template Model. + type

Fig. 3. The Xord Schema Model.

4 Hierarchical XML schema representation

. . for creating schemas programmatically, but its applicatio
We represent an XMI.‘ schema hierarchically a&aemfi ipterface is not very useful for parsing and analyzing exist
tree The representation does not depend on a partlcu"%? schemas

schema notation (DTD, XSD). The schema tree consists 0 '

, i he sch lysis usi XML sch
o kinds of nodes: Since the schema analysis using standard schema

DOM model would be very complicated and tangled, we

— element nodesorrespond to an element type defingd@ve designed aXord Schema Modethich is targeted to
within schema effective representation and analysis of existing schemas

— constructor nodescorrespond to constructors used iﬁ‘. simplified object structure of that model is depicted in

the schema (sequence, choice, *, +, ?) Fig. _ o
The whole schema is represented as an associative ar-

The relationships among element types and constructeg of simple or complex type nodes. Each complex node
are represented by the structure of the tree. contains a list of references to its child nodes with their
Some subtrees of schema tree may be identical - th@dinality. Using this recursive structure that form a DAG
situation occurs if we derive the schema tree from DTD (@r a tree with one particular node selected as a root), the
XSD containing shared element types. When designing fised schema could be easily traversed and processed.
analyzer, the tree representation is more convenient. How-
ever in the implementation of schema-based analyzer egch
type is represented as a single node and the whole schema

is represented as a DAG (see Schema Object Model Bga schema-based analyzer applies the given XSLT style-
low). . _ sheetzsl to the schema treesd, starting at the root node.

In the schema-based analysis, we consider XML sclist, et us remind the principles of the XSLT application
mas without the choice constructor and recursive defifi the XML document tree. Letmp be the current tem-
tions. Such schema can be represented as a single reg{iae of the XSLT stylesheet (at the beginning of the trans-

expression. This representation is useful in the extractigymation, it is the template matching the root element in
part of the analyzer algorithm (see Section 5). the initial modem)

Schema-based analyzer

Xord Schema Model.Although there are well established 1. The node sequence selected by the XPath expressions
and widely used XML parsers, we have found no suitable in the rule calls of the current template are found.
parser for XSD. To perform schema manipulation2. The templates called by the rule calls are applied to the
the .NET Framework provides a set of classes called the selected nodes.

Schema Object Modebr SOM for short. The SOM is for . e
schemas what DOM is for XML documents: thi—{owever, in case of the schgma Free, a qulflcatlon of the
SOM classes represent various parts of a schema, for ex Fﬁt step of this simple algorithm is needed:

ple XmISchemaSimpleTypémISchemaElemerthere are 1. All possible node sequencsslected by the XPath ex-
many other classes that represent attributes, facetgpgirou pressions in the rule calls of the current template are
complex types, and so on. This model is especially useful found.

10 Jana Dviakowa, Filip Zavoral

2. The templates called by the rule calls are applied to f}f8' Anal yzeNede(XfTenplate t, Xf Schema. Node n) {

if(t.Enpt
selected nodes. Mt Enpty)
return true;
, . XfLast Names 11 = t. Get Last Nanes();
Since the set of all possible node sequences selected by~ -2 "ms 1 ast Nares()
. . X L. Xf Regexp re = sch. Extract Fragnent(n, t);
XPath expressions in the first step may be infinite, we rep- i (re. EMpty())

resent it in the form of regular expressiongexp. Such return true:

regular expression is basically a fragment of the schema i, sch. conpare(re, 1i))

tree, i.e., a set of its nodes (not necessarily connected) return fal se;

which is a fragment of the regular expression representing foreach(xfCall call in t.calls) {

the whole schema tree. Li st <Xf Schema. Node> I n =
The regular expressioregexp may contain both ele- new Li st <Xf Schema. Node>() ;
ment nodes and constructor nodes. It is extracted as fol- I'n = sch. Eval Exp(n, call.select);

f oreach(Xf Schema. Node ni in In) {

lows: First, the node sequence selected by the XPath ex-
Anal yzeNode(cal | . tenplate, ni);

pressions are found in the same way as in the XML docu-
ment tree (constructor nodes are skipped). Second, all con-)
structors appearing in the branch of the schema tree from . true:
the root to the selected nodes are added to the sequence.
The hierarchy of the nodes is preserved by delimiting the
nodes appearing at the same level of the schema tree by
parentheses.

We say thategexp represents possibteading orders
of the element names selected by the expressionsiin T stack-based algorithm is based on a formal model

i.e., the order in which the elements are accessed Wgflaqsimple streaming XML transducer (SSXfRgrefore

a document defined by the schemad is read sequen-, o cq|| it theSSXT algorithmThe transducer has a single
tially. Now let names be a sequence of element namegy, + head that reads the input document sequentially, and
in the order they are ca_lled np - cleqr!y, the sequence, single output head that generates the output document
can be constructed statically by examining the last Stepss%uentially. The SSXT is equipped with a stack to store
the XPath expressions imnp. The names sequence rep'temporary data.

resents therocessing ordeof the elements. In case one The SSXT takes an input documeh, and a top-down

of the reading orders does not conform to the processgagl_-l- stylesheetrs! as the input. It readd;,, sequentially
order, the order-preservation of the! is violated and the ;| ;o pass and apply the styleshest stepwise. First

SSXT algorithm is not applicatielt is thus only neces- o template matching the root elementigf in the initial

sary to comparecgexp to thenames sequence in order 10, o e, is set to be the currently processed template-(
check applicability ot the stack-based algorithm. rent templat® The processing proceeds in cycles. During

Implementation. The core of the schema-based analyz&Single cycle, asingle template call of the current tereplat

is the AnalyzeNoddunction which takes two argumentdS Processed.

- a template ofzs! and a node of the schema treed. Processing cycleAll XPath expression within a template

It performs the application of the template to the scherage evaluating concurrently. The evaluation is realized by

tree node as described above. Using the Template Modelerministic finite automata (DFA)A single DFA is con-

and the Schema Models allows the analyzer algorithmatucted for each expression. When the processing of a tem-

be simple and straightforward - see Fig. 4. plate starts, the sequence of the initial states of DFAs is
The comparison of theegexp to thenames sequence pushed on the stack. The input head of SSXT reads the

is accomplished by th€' ompare function. Its implemen- elements ofi;, in document order. When a start-tag is en-

tation is based on inherent properties of its arguments. geuntered, new sequence of DFAs is computed. Three sit-

stead of an expensive checking of swapping for each pa#tions may occur:

of names, the predicate is a compound of two simple step&, new sequence contains no final state - the input head

F|_rst_, regexp,]s, ch(,ac,ked for existence of two distinct names” . ntinues in evaluation,

within any "+ or ™ sequence. Second, the last names inyy e\ sequence contains a single final state which be-

names are stripped to those contained in the schema be~ |45 15 the DFA evaluating the lastly-matched expres-
ing used, adjacent duplicities are reduced to a single name, g5 or an expression locatedter the lastly-matched

aqd th(_e resulting _Ilst is linearly compareq to names con- expression - the corresponding template call is
tained inregexp. Since each name appearingjexp must processed

be contained imames, any difference cause a fail.

}

Fig. 4. The code of thé\nalyzeNodéunction.

6 Stack-based streaming algorithm

- 3 We refer the reader to [2] for a more detailed description of
2 See [3] for further details. this evaluating method.

c) new sequence contains a final state which belongs'%°
the DFA evaluating expression locatdzkfore the
lastly-matched expression, or it contains two or more
final states - error.

In case b), the current cycle configuratiGemplate id,
matched expression id$ pushed on the stack and new
cycle for processing the called template starts. The cycle
configuration is popped after the whole called template has
been processed and the control moves back to the current
template. In case a), the evaluation continues. Here if an
end-tag is encountered, the sequence of the DFA states lo-
cated at the top of the stack is popped. Hence, the
XPath expression of the current template are evaluated on

Determining XSLT streamability using new ... 11

ProcessDf aSequence(Xf Xm xml)

S| Df aSequence ds = stk. Get Df aSequence();
switch(xm . currType) {
case Xnl NodeType. El enent :

S| Df aSequence new.ds = ds. Transition(xnm .currNane);
i f(!newds. HasFinal States()) {

st k. Push(new.ds);

xm . Advance() ;

el se {
XfCall nmyCall = newds.GetCall WthFinal State();

currTenpl ate. Generate(currCall, nyCall);
Xf Tenpl ate cal | edTenpl ate =

xsl t. Sel ect Tenpl at e(xmnl . currNane, nyCall. node);
if(calledTenplate. Enpty) {

“branches” ofd;,,.

Implementation. The implementation of the SSXT algo-
rithm uses both Template Model and Algorithm Model
classes. Since the algorithm is stack-based, the main data
structure used is a polymorphic staei¢: of sequences of
DFA states $IDfaSequengeand cycle configurations

(SICycleConfiy see Fig. 8.

Until the transformation is finished the top of stack is

cal | edTenpl ate. Generate(null, null);

currCall = nyCall;

if(xm.laType == Xnl NodeType. El enent)
st k. Push(new.ds) ;

xnm . Advance() ;

} else {

st k. Push(new SI Cycl eConfi g(currTenpl at e,
nyCall));

currTenpl ate = cal |l edTenpl at e;

currCall = null;

checked and the stack item is processed, see the function }
RunSsxt in Fig. 5. In case of an empty stack and non- }
empty remaining input new DFA sequence is pushed on Preak

the stack.

voi d RunSsxt (Xf Xm xm)
{
Xf Tenpl ate currTenplate = xslt.Start();
XfCall currCall = null;
bool transformed = fal se;
whi | e(!'transforned) {
if(!stk.Empty()) {
switch(stk. Type()) {
case XfStack. |tenilype. Df aSequence:
ProcessDf aSequence() ;
br eak;
case XfStack. |tenilype. Cycl eConfi g:
ProcessCycl eConfig();
br eak;
}
} else {
switch(xm . currType) {
case Xm NodeType. El enment :

st k. Push(new Sl Df aSequence(currTenpl ate));

xm . Advance();
br eak;
case Xml NodeType. EndEl enent :
currTenpl ate. Generate(currCall, null);
transfornmed = true;
br eak;

Fig. 5. The code of the SSXT algorithm.

case Xml NodeType. EndEl enent :
if(xm.laType == Xnl NodeType. EndEl ement)
st k. Pop();
xm . Advance() ;
break;
defaul t:
st k. Pop();
br eak;

}
}

Fig. 6. The code of thé>rocessDfaSequenéenction used in the
SSXT algorithm.

The core of the DFA sequence processing (Fig. 6) is
accomplished when start tags of elements are encountered.
A new DFA sequence is generated on the stack in case the
current DFA sequence contains no final states. Otherwise
the output is generated and a new cycle configuration is
placed on the stack. In case of a template without calls, its
output is generated immediately.

The cycle configuration processing (Fig. 7) depends on
the current XML node type. A start tag pushes a new DFA
sequence while an end tag generates output.

7 Evaluation

The evaluation and measurements of the SSXT algorithm
implementation confirmed our expectation that it requires
a memory proportional to a depth of the input XML doc-

12 Jana Dviakowa, Filip Zavoral

voi d ProcessCycl eConfig(XfXm xn)

{
Sl Cycl eConfig cc = stk. Get Cycl eConfig();
switch(xm . currType) {
case Xm NodeType. El enent :
if(xm.laType == Xnl NodeType. El enent)
st k. Push(new SI Df aSequence(currTenpl ate));
xm . Advance() ;
br eak;
case Xnl NodeType. EndEl enent :
currTenpl ate. Generate(currCall, null);
currTenpl ate = cc.tenpl ate;
currCall = cc.call;
stk. Pop();
br eak;
¥
¥

Fig. 7. The code of the’rocessCycleConfunction used in the
SSXT algorithm.

XfCall XfTemplate
(TemplateModel) (TemplateModel)
+ template : XfTemplate
+ node : XmINode
+ select : XfXpath
+ mode : string
[

Dfaltem
+ call :XfCall

+ match :string

+ mode :string

+ node :XmiINode
+ calls :List<XfCall>
Ed

call

call template

items

SlIDfaSequence

+ template : XfTemplate
+ items : List<Dfaltem>

SICycleConfig

+ template : XfTemplate
+ call : XfCall

N
\
\
CC\

Stackltem

XfStack
- st : Stack<Stackltem>

~ oo :SICycleConfig | stack

- ds :SIDfaSequence

stk

XfAlgorithm
xslt : XfXslt
stk : XfStack
7

Fig. 8. The Xord SSXT Model.

ument. Since most documents are relatively shallow, our XML data.

memory requirements are independent to the docum
size. Even for huge documents like DBLP, the SSXT alg

rithm required few hundreds KB while the commonly used:

stack of the size proportional to the depth of the input XML
document.

Our schema-based analyzer is restricted in several as-
pects - first, a subset of XSLT and XML schema defini-
tions is considered, and second, it currently gives us only
true/false answer whether the stack-based processing is ap
plicable. However, we intend to extend it in the future re-
search - if we examine particular pairs of elements for
which the comparing function returns false and the pos-
sible size of their content, we may compute exact size of
the memory buffers needed for processing such elements.
Then it is only necessary to extend the basic stack-based
streaming algorithm with such buffers and we obtain much
more powerful automatic streaming XSLT processor.

References

1. O. Becker. Transforming XML on the Fly. IRroceedings

of XML Europe 20032003.

Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.

Path sharing and predicate evaluation for high-performance

XML filtering. ACM Trans. Database Sys28(4):467-516,

2003.

. J. Dvadakova. Towards Analyzing Space Complexity of
Streaming XML Transformations. [fhe Second IEEE Inter-
national Conference on Research Challenges in Information
SciencelEEE Computer Society, 2008.

. D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL Streaming XQuery Processor. Rroceed-
ings of VLDB 2003pages 997—-1008, 2003.

. A. Frisch and K. Nakano. Streaming XML Transformations
Using Term Rewriting. InProceedings of PLAN-X 2007
2007.

. Z. Guo, M. Li, X. Wang, and A. Zhou. Scalable XSLT Eval-

uation. InAdvanced Web Technologies and Applications,

LNCS 3007/2004Springer Berlin / Heidelberg, 2004.

C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.

FluXQuery: An optimizing XQuery processor for streaming

In VLDB’2004: Proceedings of the Thirtieth

ent International Conference on Very Large Databaspages

0- 1309-1312, 2004.

B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou.

2.

7.

XSLT processors like Saxon or Xalan crashed or hanged A Transducer-Based XML Query Processor Pioceedings

after allocating about 1.5 GB of memory.

8 Conclusion and future work

We have presented a prototype implementation of the X
framework which represents an automatic streami
processor for the XSLT language. It incorporates a pow:

ful schema-based analyzer which, for a given XSLT trans-

formationz sl and an XML schemasd, analyzes memory
requirements of the streaming processingeef on a set
of XML documents defined bysd. The analyzer employs

a special hierarchical model of XML schema called Xor
Schema Model. We have implemented the Xord frameworﬁ'

on .NET platform for a specific streaming processing usi

of VLDB 2002 pages 227-238, 2002.

1. Mlynkova, K. Toman, and J. Pokoyn Statistical Analysis

of Real XML Data Collections. € OMAD’06: Proc. of the
13th Int. Conf. on Management of Dafaages 20-31, New
Delhi, India, 2006. Tata McGraw-Hill Publishing Company
Limited.

W3C. XSL Transformations (XSLT) Version 1.0, W3C Rec-
ommendation1999.ht t p: / / www. W3. or g/ TR/ xsl t .
W3C. XML Schema Part 1: Structures Sec-
ond Edition, W3C Recommendation 2004.
http://ww. w3. or g/ TR/ xm schena- 1.

W3C. XML Schema Part 2: Datatypes Sec-
ond Edition, w3cC Recommendation 2004.
http://ww. w3. org/ TR/ xm schena- 2.

W3C. XQuery 1.0: An XML Query Language, W3C Recom-
mendation2007.ht t p: / / www. w3. or g/ TR/ xquery.

9.

g
ng
Sdink

12.

ng

Multiway blockwise in-place merging

Viliam Geffert and Jozef Gajdo

Institute of Computer Science, Bagrik University, Faculty of Science
Jesena 5, 041 54 Ka8ice, Slovak Republic
viliam geffert@pjs.sk,jozef.gajdos@pjs. sk

Abstract. We present an algorithm for asymptotically efficierarbitrarily, so we no longer know the original membership
multiway blockwise in-place merging. Given an arrdycontain- of blocks in the input sequencels, . .., A;.
ing sorted subsequences,,..., Ay of respective lengths So far, the problem has been resolved for two-way
ni,...,nk, Where . n; = n, weassume thatextr& -s merging, i.e., folk = 2 [4]. This algorithm use&n + o(n)
elements (so called buffer elements) are positioned at the very Eﬁ%parisonsrjn +o(n) element moves an@(1) extra lo-
of array 4, and that the Iengt_hsl, -+ Tk A1€ POSIUVE INYRT i g for storing elements, in the worst case. Thus, by re-
multiples of some parameter(i.e., multiples of a given block of . . .

peated application of this algorithm, we could carry but

length s). The number of input sequenckss a fixed constant ing in I . f bi >
parameter, not dependent on the lengths of input sequences. gy merging in inear time, for arbitrary > 2. However,

our algorithm merges the subsequeness. . ., Ay into a single IMplemented this way, the-way merging would perform
sorted sequence, performiglog kn)+O0((n/s)?)+O(slog s) 3-[log k]-n+o(n) element moves arttt[log k| -n+o(n)
element comparisons arddn + O(s-log s) element moves. element comparisons. We shall show that the number of
Then, fors = [n?/3/(logn)!/?], this gives an algorithm per- movesdoes not depend oh if the lengthsny, ..., ny are
forming©(log k-n) + O((n-log n)**) comparisons and-n + integer multiples of the block size Namely, using the al-
O((n-logn)*/*) moves. That is, our algorithm runs in lineargorithm of Geffert et. al [4] as our starting point, we show
time, with an asymptotically optimal number of comparisons aat multiway blockwise in-place merging is possible with

with the number of moves independent on the number of inmgg k]-n+O0((n/s)?) + O(slog s) element comparisons
sequences. Moreover, our algorithm is “almost in-place”, it re;)) _ 1,2/3 1/3
quires onlyk extra blocks of size = o(n). and3:n + O(s-log 5) moves. Fows = [n*/"/(logn) /",

this gives an algorithm witfilog k] -n + O((n-logn)?/3)
comparisons and-n + O((n-logn)?/?) moves, and the
number of element moves independent on the number of
input sequences. (It is also easy to show that the number of

: - comparisons cannot be improved.
Given an arrayA[l..n] consisting of sorted subsequences P P)

Aq,..., A, each containing.y,...,n,; elements respec-

tively, where>""_ n; = n, theclassical multiway in-place 2 Comparisons in a simple multivay

merging problem is to rearrange these elements to form merging

a single sorted sequencerotlements, assuming that only

one extra storage location (in addition to the arrdlyis To explain how elements are compared, we first solve
available for storing elements. To store array indicespeoty simpler task. Assume that we are given an artagon-
ters, etc. onlyO(1) storage locations are available. The ekisting of sorted subsequencels, A, ..., A, , that are
ficiency of a merging algorithm is given by two quantitieso be merged into a single sorted sequence. The lengths
the number of pairwise element comparisons and the nugithese subsequences argna, . . . , n;, respectively, with
ber of element moves carried out in the worst case, b%‘f_l n; = n.

expressed as a functionof In merging, these are the only — Assume also that, together with the given arraywe

operations permitted for elements. are also given an extra arrdy of the same size, which
In this paper we study the computational complexity @fill be used as an output zone.

the multiwayblockwisein-place merging problem. More)) i .
precisely, we assume that the entire araig divided into _ DUring the computation, the algorithm uses auxil-
blocks of equal sizes, and thatk extra blocks of sizes 1ary index variablesiy,... i and o., where i;, for
are positioned at the very end of array Moreover, the / € {1:---,k}, points to the smallest element of the se-
lengthsni, . . ., ny, of input sequences are positive integéf/€nNce4; not yet processed. This element will be called
multiples of s, and hence, there is always a block bound€ current input element of thg-th sequenceor simply
ary between the last element df and the first element thej-th input eIgmentThe indexo.. points to the leftmost
of A;,1, for eachi € 1,...,k—1. We shall also assume €MPY position in the arrajs.

that before the merging starts, blocks can be mixed up quite | Nen the straightforward implementation of the merge
routine proceeds as follows. We find the smallest element

! Throughout the papekyg = denotes the binary logarithm of not yet processed, by comparing elements at the positions

1 Introduction

14 Viliam Geffert, Jozef Gajdd

i1,...,1x, and move this element to the output zondsin leftmost elements, the elements at the rightmost positions
After that, we update the necessary index variables andaee used as the second order criterion.

peat the process until all the elements have been merged.

Implemented this way, each element will be moved just
once and the number of comparisons, per each eIem?nt,
will be k—1. This gives ugk—1)-n comparisons and el- ow
ement moves in total.

Now the modified merging algorithm proceeds as fol-
s. First, using the above block ordering, find the small-
estk blocks in the arrayd. These blocks will initially be-
come thek current input blockstheir leftmost elements be-

The number of comparisons can be reduced by impleming thek current input elementd hej-th current input
menting a selection tree of depftog k] above thek cur- block will be denoted byX;, similarly, thej-th current in-
rent input elements. Initially, to build a selection tregut element by:;. The positions of current input elements
k—1 comparisons are required. Then the smallest element kept in index variables, . . ., i;. Above thek current
not yet processed, can be moved to the output zoifut elements, we build a selection tree. All blocks that
After this, the element following the smallest element i@are not input blocks are calledmmon blocks

the same sgbsequence is insertfad in the tree and the sepfier that, the merging process can proceed in the same
lection tree is updated. To do this, onfiog k| compar- way as described in Section 2. That is, using the selec-
isons are needed. To avoid element moves, only pointggs, tree, determine;, the position of the smallest input
to elements are stored in the selection tree. (For more dgsment not yet processed, among kheurrent input el-
tails concerning this data structure, see [1-3].) The NUfents, and move this element to the output zone in the
ber of moves remains unchanged, but now we Havel array 3. Then the element positioned immediately on the
comparisons for the first element and orilyg k] cOm- right of z;, within the same block(;, becomes a neyirth
parisons per each other element. This gives us a total.Qfrent input element, its index pointer is inserted int th
(k=1) + [log k]-(n—1) < [logk]-n + O(1) comparisons. selection tree, and the tree is updated, Wi k] com-
parisons. This can be repeated until one of the current input

. . . . blocks b ty.
3 Comparisons in a blockwise merging ocks becomes emply

When this happens, i.e., each time the elemgnjust

This section describes one of the cardinal tricks used.rﬂ?\/ed o the output zone, was the last (rightmost) element

our algorithm. Again, we are given the arrayconsisting " tgeé::)rreg[iﬁndmg 'Fplit bIOCKJa_thethOCka Ilst' dlst')l K
of the sorted subsequencds, ..., Ak, to be merged to- carded” and the smallest (according to our relative bloc

gether. We still have the extra arrd3; used as an outputordering) common block not yet processed will be used
Jone ' as the newj-th current input block. The leftmost element

However, now the entire array is divided into blocks Ir:etms g:ﬁgz \tAr/:IeI: g?;:krzeaiemr}igétﬁ CL::?:; I;P[/:t elee—
of equal sizes (the exact value ot will be determined ' P YW

. . _need to scan sequentially all blocks (actually, all blocks
later, so that the number of comparisons and moves is min-)) ;

- . not yet processed only) to determine which one of them is
imized) and, before the merging can start, these blocks are

mixed up quite arbitrarily. Because of the permutation € smallest. This search for a new input block consumes

blocks in A, we no longer know the original membershi ((n/s)?) additional comparispns: there are at mogs .
of blocks in, the input sequencesy A, locks and such search is activated only if one of the in-

Still, the relative order of elements inside individu{Ut blocks has been discarded as empty, i.e., at most

! imes. (For the time being, just assume that we can distin-
blocks is preserved. Moreover, we shall also assume tha)
. . uish discarded blocks from those not yet processed, at no
ni,...,nk, the respective lengths of input sequences, are

positive integer multiples of, and hence, before mixingextra cost.)

the blocks up, there was always a block boundary between

the last element ofi; and the first element ofi,,, for However, before merging, the blocks have been mixed
eachiel,... k—1. up quite arbitrarily and hence their origin in the input sub-
sequencesly, . .., A cannot be recovered. The proof that

Ve above algorithm behaves correctly, that is, the elesnent

are transported to the output zone in sorted order, will be
Prlrj]blished in the full version of the paper.

Before passing further, we define the following relati
order of blocks in the arrayl. Let X be a block with the
leftmost and the rightmost elements denoted:pyandzy,
respectively. Such block can be represented in the fo
X = (x,,zy). Similarly, letY = (y.,yr) be an another
block. We say that the block is smaller than or equal The number of element moves remains unchanged, but
toY,if z, < y.,orx, =y, andry < y,. Otherwise X is now we use[logk]-n + O((n/s)?) comparisons, under
greater tharY". In other words, the blocks are ordered a@ssumption that we can distinguish discarded blocks from
cording to their leftmost elements and, in the case of eqtiabse not yet processed at no extra cost.

Multiway blockwise in-place merging 15

4 In-place merging, simplified case Aq,..., Ay is sorted. The smallegt blocks will initially
become the: current input blocksXy, ..., X. For each
Now we shall convert the above merging algorithm intoja= 1, ..., k, the first element; in the blockX; becomes

procedure working “almost” in-place. More precisely, wa j-th current input elementnd its position is kept in the
are again given the array containing the sorted subseindex variablei;. Above thek input elements, we build
quencesdy, ..., A, of respective lengths;, . . ., ni, with a selection tree of depthiog k1. To do thatk—1 < O(1)
S°¥ . n; = n. All these lengths are positive integer multiinitial comparisons are needed.
ples of the given parameter The very first block of the arrayl becomes awoutput
However, we no longer have a separate arBagf blockand a positiorv, = 1 pointing there becomesaar-
size n. Instead, we have some extkas elements posi- rent output position The initial output position may —
tioned at the very end of the array; behindA;. The ele- quite likely— coincide with a position of some current in-
ments in this small additional area are greater than anypeft element. Observe that mod s = o, mod s, which is
the elements iMy, ..., A,. During the computation, theyan invariant we shall keep in the course of the entire com-
can be mixed with other elements, but their original coputation. All other blocks are calledbmmon blocks
tents cannot be destroyed. These elements will be called . N ..
buffer elementsTo let the elements ever move, we have In genera}l, the algonthm maintains current positions
also one extra location where we can put a single elemgﬂlthe_ following special blocks: fre_e blocks, the r_mmber
aside. of which ranges betweelhandk, their Ieftmost positions
The sorted output should be formed within the sanfe’ stored n . freg .bIOCI.(SFaCk; exaoﬂ:lynpgt blocks,
array A, in the locations occupied by the input sequencii current input positions inside the respective blocks ar
Ay, ..., Ag. (As aconsequence, the buffer elements shoﬁ@red in the index varlable;,;, - Uk, ONE 'output block
also end up in their original locations.) Thereforé’f"th the current output position, inside this block; and

the moves are performed in a different way, based on ﬁ%e escape block with the current escape positiom-

idea of internal buffering, used in a two-way in-place mer&l e. The values ch_ ande, are synchronized mOdl_Jk)
Usually, the optional free blocks, the current input

ing [4]. Nevertheless, the comparisons are performed in the)
same way as described in Section 3. blocks, the output block, and the escape block are all dis-

joint, and the merging proceeds as described in Section 4.2.
o However, after the initiation, the output block may overlay
4.1 [Initiation one of the current input blocks, if the leftmost block4n
L : : . . has been selected as an input block. If this happens, the cur-
Divide the entire arrayl into blocks of equal size. Since o o . o
rent output position coincides with a position of one of the

_the lengths .Of allinput sequencm, -+, Ay are positive current input elements, and the computation starts in a very
integer multiples o#, there is always a block boundary be-

tween the last element of; and the first element of; 4, special mode of Section 4.9.
for eachi € 1,...,k—1. Similarly, the buffer elements,

positioned in the small additional area at the very end, folp Standard situation

the lastk blocks.

Initially, the lastk blocks will be used afree blocks The standard situation is illustrated by Fig. 1. During the
their starting positions are stored infree block staclof computation, the-s buffer elements can be found at the
heightk. After that, the position of one free block is pickedollowing locations: to the left of thg-th input element;
out of the stack and this block is used as a so-calmhpe in the j-th input blockX;, for j € {1,...,k}, to the right
block We also maintain aurrent escape position,, which of e in the escape block, with the hole at the positign
is initially the position of the first (leftmost) element ing and also in free blocks, consisting of buffer elements only.
escape block. We create a hole here by putting the buffer The elements merged already, from all the input blocks,
element at this position aside. form a contiguous output zone at the very beginninglpf

Now, find the smallest: blocks in the area occupiedending at positior,—1. Hence, the next element to be
by Ai,..., Ay, according to the relative block ordering degutput will go to the positiom, in the output block.
fined in Section 3. This can be done with{%(*) < O(1) All elements not merged yet are scattered in blocks be-
comparisons, by the use of sorkecursors (index vari- tween the output zone and the end of the artafrhe per-
ables) moving along iri, since each of the sequencegutation of these blocks is allowed, however, elements to
mply the leftmost blocks in the sequence%e merged keep their relat.iv.e positions withip each block.

As, ... Ax would do no harm. In addition, this would not reO" the other hand, the origin of the blocks in t.he subse-
quire any initial element comparisons. However, we are pf@deéncesds, ..., A, cannot be recovered. So optional free
senting the algorithm in a form that is suitable for applicatioRlocks, input blocks, escape block, and common blocks can
in the general case, comparing elements in accordance withfi@gide anywhere between the output zone and the end of the
strategy presented in Section 3. array A.

16 Viliam Geffert, Jozef Gajdd

The subsequent move of the buffer element from the

3 § E . E E g ;é g E § new position ofe. to the place released by the smallest

2§ 385 &3 § 2 8 ¢ input element does not increase the number of moves; it

£ 58 5 =8§ 55 £ ¢ replaces the move in Step C. The selection tree is updated

in the standard way.
It should be pointed out that, at this moment, there does

Sone. exist at least one free block in the stack. Assume, for exam-

i] Tt ' ple, that thej-th input element ; has just been transported

c i j C k

to the output zone. After that, we have € {1,...,s}

buffer elements in the-th input block X ;, including the

Fig. 1. Standard situation. hole, butr;, € {0, ..., s—1} buffer elements in pther input
blocks X},, for eachh € {1,...,k}, h # j, since each
input block, except forX ;, contains at least one input ele-

The output block spans across the current output po¥ient. Moreover, the escape block is full, and hence it does

tion o, so its left part belongs to the output zone. As tHeot contain any buffer elements at all. Assuming there is no

output grows to the right, the elements lying to the rigfiee block available, this gives at mast (k—1)(s—-1) < ks

of o. are moved from the output block to the corresponguffer elements in total. But this is a contradiction, since

ing positions in the escape block, i.e., to the rightepf the number of buffer elements, including the hole, is al-

The positions ob,. ande, are synchronized, i.e., we havévays equal td:-s.

alwayso. mod s = e. mod s. Hence, the relative posi-

tions of escaping elements are preservgd within the block$; current input block becomes empty

Moreover,o. and e, reach their respective block bound-

aries at the same time. We check next whether the smallest elemenjust moved

. . . from the position; to the output zone, was the last element
Now we are ready for merging. Using the selection tregf the corresponding input block;. If so, we have an en-
we determmexj,_the smallest element among 'r/heurren_t tire block consisting of buffer elements only, with hole at
input elements in the blOCkX“‘”’X_’“ and move this the end after Step B. This hole is filled in the standard
element to the output zone as follows: way, described in Step C, but the old input blakk be-
Step A. The element at the positiopin the output block comes a free block and its starting position is saved in the
escapes to the hole at the positign stack. Since we havk- s buffer elements in total, a stack
Step B. The smallest input elemeng not yet processed of heightk is sufficient.

is moved from the positio#); to its final position ab.. Next, we have to find a neyth input block X, and

Step C. A new hole is created at the positient-1 by 55sign a new value tiy. Since the blocks are mixed up,

moving its buffer element to the place released by thg, scan sequentially the remaining common blocks to de-
smalles_t input elgment just moved. After that, all Ne¢armine which common block should become the peth
essary index variables are incremented and the sel§grrent input block. The smallest common block, accord-
tion tree is updated. ing to the block ordering introduced in Section 3, is the
This gives3 moves andlog k] comparisons per each e|next one to be processed. As already shown in Sgction 3,
ement transported to its final location. Now there are vaffi€ €lements are transported to the output zone in sorted
ous special cases that should be detected and handled Qifig" €ven though this strategy does not necessarily pick
care. All exceptions are checked up on after the executidf thes-th input block from thej-th input sequencel;. -
of Step B, in the order of their appearance, unless statedFré€ blocks, as well ‘as all remaining current input
otherwise. Most of the exception handling routines replaBCcks, are ignored in this scanning. Moreover, the ele-
Step C by a different action. ments to the left ok, in the escape b|OCk.(If not empty)
together with the elements to the right®fin the output
block are viewed as a single logical block. In a practical im-
plementation, we can start with the leftmost escape-block
If the rightmost element of the output block is moved t%Iement and the rightmost output-block element as a start-
the last position of the escape block, the new hole can key and search the rest OT the array for a common block
be created at the positien+1 in Step C. Instead, one freeWlth a smaller key. If the logical block composed of the
block at the top of the stack becomes the new escape b&?gkpart of the escape block and the right part of the output

and a new hole is created at the beginning of this block.t is quite straightforward to detect whether a block beginning
This is accomplished by removing its starting position from at a given positior? is common: the value of must not be
the free block stack and assigning itdo saved in the free block stack, ah€)/ s| must be different from

4.3 Escape block becomes full

Multiway blockwise in-place merging 17

block should be processed next, the program control wilbtep C'. A new hole is created at the position+1 =

be switched to the mode described in Section 4.5. e.+1 by moving its buffer element to the place re-
If the escape block is empty, then bathando, point leased byz;. Then all necessary index variables are

to the beginning of their respective blocks. Then the escape incremented and the selection tree is updated.

block is skipped and the output block is handled as a com-

mon block, so we may even find out that the new inpt€P A is eliminated, since. = e.. This mode is termi-

block should be located at the same position as the outpgted as soon ag ande. reach a block boundary. We also

block. This special mode is explained in Section 4.9. need a slightly modified version of the routine described
The search for new input blocks cosié(n/s)?) ad- ?n Section 4.4. If one of the input blockg becomes empty,

ditional comparisons: there a@n/s) blocks in total and it becomes free as usual, but the combined output/escape

such search is activated only if one of the input blocks is éXOCK is skipped in the search for the next input block.

hausted, i.e., at mo8l(n/s) times. The same upper bound

holds for arithmetic operations with indexes as well. 4.7 Output block overlays a free block

If the output zone crosses a block boundary and the value
of o, is equal to somgf,, the leftmost position of a block

If the common block that should be processed next is tﬁt@red in the free block stack, the nNew output block anc_j _the
logical block composed of the left part of the escape blogereSpondmg free block are overlaid. This can be verified

and the right part of the output block, then both the new ngké = Oh(l) tilpe. By the same ar:gut:ne_nt as infSec—
current input blockX; and the escape block are locate n 4.6, we have that. must point to the beginning of an

within the same physical block. Herg is always posi- empty escape block.

tioned to the left ok, and the buffer elements are both to | erefore, we can easily swap the free block with the
the left of z; and to the right of.,. escape block by swapping the pointers storefliande.,
Once trie position of is properly initiated, all actions since both these blocks contain buffer elements only. Sec-

are performed in the standard way described in Section ZP.EQ’ O?ﬁ moN\/etSLil;]flctetsr]Fo trlanspotrt the hqleffrofm one block
That is, the elements are transported from the output blciekal‘lno er. Note tha |sbe ementr:nov:Wlls or rtee;, Vtvﬁ ac-
to the position of.., from the input blocks to the position ually save some moves because the Rexnsports to the

of o., and buffer elements from. +1 to locations released?hmpl:t zgnedwnl req_?;]re o?rllys moves, msttiadl Fﬁs a_st '?‘ dt
in the input blocks. Since. moves to the right “faster” than € standard case. Thus, the program controt 1S switched to

doesi;, this special case returns automatically to the statltf-e mode described in Section 4.6.
dard mode as soon ags reaches a block boundary. Then

the escape block separates from the current input biock 4 g Output block overlays a current input block
as described in Section 4.3.

4.5 One of the input blocks overlays the escape block

If the output positiorv. points to someX; after crossing
a block boundary, the output block overlays tf#h in-
put block X;. Again, by the argument presented in Sec-

Next we check whether the output zone, crossing a blotcl:?<n 4.6, o. can point to the beginning of an input block

boundary, does not bump into any “special” block. It l%ﬂgrg Zcrszlg\:\?tt\/?/éhceazzgl?on::r;gng daenrempty escape block.

easy o see that this may happen only.dfpoints to the First, if thej-th current input elemémt- is the leftmost
- . : , ,

beginning of the escape block that is empty, using the fae ément ofX;, the program control is switched immedi-

that t_he posm_ons Qb an(jec are s_,ynchromzed gnd that th%\tely to the special mode to be described in Section 4.9.
special handling of Section 4.3 is performed first.

. Second, ifr; is not the leftmost element of ;, we dis-
Now consider that the output block overlays the esceggese of the empty escape block as free by storing its start-
block, i.e., they are both located within the same physi N bty P y 9

block. In this mode, we always have = e.. The element mg. positione, in the stack, create a. hole@t by moving
- asingle buffer element from the positiopto e, and over-
movement corresponds now to a more efficient scheme -
lay the output block by a new escape block, by assigning
the value ofo. to e.. The additional transportation of the
hole is for free, not increasing the total number of moves,
because we can charge it as (nonexistent) Step A for the
lin/s), ..., lir/s] (excluding|i;/s]), and also frome./s|. N€Xt element that will be transpo.rteq to the output zone.
For each given block, this can be verified@n(k) < O(1) Sincez; is not placed at the beginning of the block, we
time, performing auxiliary arithmetic operations with indexegan guarantee that at least one transport to the output will
only, but no element comparisons or moves. use only two moves in the next future.

4.6 Output block overlays the escape block

Step B’. The smallest input element not yet processed
is moved to the hole at the positiop = ..

18 Viliam Geffert, Jozef Gajdd

This special mode can be viewed athifee blocksvere by Section 4.4). Thus, unless something “exceptional”
overlaid, namely, the output, escape, and the current in- happens, the program control returns to the standard
put block X;. The buffer elements are between the hole mode. (The possible exceptions are those discussed in
ate. = o. and the current input elemenj. The elements Sections 4.6-4.8, and 4.10.) The single move required
are moved according to Step B’ and Step C’ of Section 4.6. to place the hole back to the beginning of the escape
However, there is a different exception handling here. block is for free, it substitutes Step C for the last ele-

ment merged.

@) :thel:)nghtmost mpu;elenr’]lent of this comlar:nedhblchzlj) If the element to be transported to the output zone is
as been transported to the output zone, then the Input ., element;, from another input block;,, for some

block X; separates from the output/escape block, since h # j, some rearrangements are necessary. Recall that
\r/]ve searcr:.;orthe next input bIocI;to be pgpcedssed. Btl;t the hole positiore.. in the escape block is synchro-
ere, uniie i Secyon 4.4, the combine outpg - nized witho,, i.e., we havee, mod s = o, mod s.
escape block is not disposed of as free, moreover, it is First, the input element; is moved from position
il] C

skl_ppﬁddout (;I]urlng (tjhe sfesarch. TZGGprogLam control 'Z to positione.. Now we can transport, to the output
switched to the mode of Section 4.6 as the output and . sition .. Finally, a new hole is creatédit the po-

escape blocks are still overlaid. sition A
. . . «+1 by moving its buffer element to the place
(2) Letus now consider that this combined block becomes releaseed by;hy 9 P
full. This may happen only if, for som 7 j, an ele- The result is that the current input blodk;, overlaid

mentz;, from ar:joth;atr mgut b:;Cthh is moved tq Fhe by the output block, jumps and overlays the escape
?utput z”o_ne and, atter tep B', the output position block. Thus, the control is switched to the mode of
bumps” into z;. In this case, we take one free block ¢, 4ion 45

from the top of the .Stf%k and change it into a new es- Clearly, this rearrangement needs only three moves.
cape block. We definitely have at least one free block Since one more element has been transported to the

avallable_, since we _dlsposed one block as free at the output zone, the number of moves is the same as in the
very beginning of this mode. The hole, locatedXn standard case

at the position of the last element transported to the

output, jumps to a positios. in the new escape block,

so thate. mod s = o, mod s. This move replaces4.10 Common blocks are exhausted

Step C’ for the last element just merged. Hence, it does

not increase the total number of moves. Then we fdf-one of the current input blocks becomes empty, but there
low the instructions of Section 4.9. is no common block to become a new input block, the

above procedure is stopped. At this point, the output zone,
consisting of the elements merged already in their final lo-
cations, is followed by a residual zone of siZestarting at

The program control can jump to this special mode frolRe positiono.. This zone con_sists of the right part of the
several different places (Sections 4.1, 4.4, and two diff@utput block,k—1 unmerged input blocks, at moktfree
ent places in Section 4.8). In any case, we have an eml@l@pks, and one escape block. Thus, the total length of this
1 i

escape block, containing the hole and buffer elements offgidual zone i’ < s 4 (k—1)-s + k-s + 5 = (2k+1)-s.
The output block and a block ;, which is one of the in- The residual zone can be sorted by the use of Heapsort
put blocks, are overlaid. Moreover, there is no room in becluding also the buffer element put aside at the very be-
tween, the output position. is pointing to the current in- 9INNING of the computation, to create a hole_). This will cost
put elementz;. The position of hole in the escape block i8Ny O(k-s-log(k-s)) < O(s-log s) comparisons and the
synchronized with,, i.e., we have, mod s = o, mod s. Same number of moves [5-9]. Alternatively, we could also

As long as the elements to be output are selected!U# an algorithm sorting in-place with(s-log s) compar-
the input blockX ;, they can be moved to the output zondSOns but onlyO(s) moves [10].
;2:157'hZergsnr]‘gvicc;jti?;::i?gﬁgg;gotg Jtl;set :::;fo_?:lsg; # Unless the positior.+1 itself is across the block boundary.

i .

. i If ; is moved to the rightmost position in the escape block,
synchronized with., we move the hole along the escape the escape block jumps immediately and one free block be-

block in parallel, which gives us one move per element.comes a new escape block. This nested exception thus returns
There are two ways out of this loop. the algorithm to the standard mode; all “special” blocks now

) . reside in pairwise disjoint regions. However, we jump to the
(1) Ifo. andi; reach the block boundary, we simply search point where the standard routine checks the exceptions of Sec-

for the next input block to be processed; the currentiions 4.4-4.10. Among others, we have to check whether the
Configuration is the same as if, in the standard mOde,input block X}, has not become empty, or if the output zone,
oc, e, andi; reached the block boundaries at the samejust crossing a block boundary, has not bumped into any other
time (with the old input blockX; disposed of as free, “special” block again.

4.9 Output zone bumps into a current input element

Now we are done: the buffer elements are greater than
any other element, and hence the array now consists of the
subsequenced,, ..., A; merged into a single sorted se-
quence, followed by a sorted sequence of buffer elements.

4.11 Summary

Summing up the costs paid for maintaining the selection
tree, transporting the elements to the output zone, search-
ing for smallest input blocks, and for sorting the resid-
ual zone, it is easy to see that the above algorithm uses
[og k]-n+ O((n/s)?)+ O(s-log s) element comparisons
and3-n + O(s-log s) moves. Fors = [n?/3/(logn)'/?],

this gives an algorithm witfilog k] -n + O((n-logn)?/3)
comparisons and-n + O((n-logn)?/?) moves.

5 Conclusion

In this paper we have shown thiatvay blockwise in-place
merging can be accomplished efficiently with almost op-
timal number of element comparisons and moves. More-
over, the number of element moves is independent.,on
the number of input sequences. Note that this algorithm
does not merge stably, that is, the relative order of equal el
ements may not be preserved. Whether there exist a stable
multiway blockwise in-place merging algorithm is left as
an open problem.

We conjecture that, using the algorithm described here
as a subroutine, it is possible to devise an asymptotically
efficient multiway in-place merging algorithm. We dare to
formulate this conjecture since the work on such algorithm
is currently in progress.

References

1. Katajainen, J., Pasanen, T.: In-Place Sorting with Fewer
Moves. Inform. Process. Leff0(1999) 31-37

2. Katajainen, J., Pasanen, T., Teuhola, J.: Practical In-Place
Mergesort. Nordic J. Compus.(1996) 27-40

3. Katajainen, J., Bff, J. L.: A Meticulous Analysis of Merge-
sort Programs. Lect. Notes Comput. S@03(1997) 217-28

4. Geffert, V., Katajainen, J., Pasanen, T.: Asymptotically Ef-
ficient In-Place Merging. Theoret. Comput. S2B7 (2000)
159-81

5. Carlsson, S.: A Note on Heapsort. CompuB%J(1992) 410—
11

6. Knuth, D. E.: The Art of Computer Programming, Vol. 3: Sort-
ing and Searching. Addison-Wesley, Second edition (1998)

7. Schaffer, R., Sedgewick, R.: The Analysis of Heapsort. J. Al-
gorithms15(1993) 76—100

8. Wegener, |.: Bottom-Up-Heapsort, a New Variant of Heapsort
Beating, on an Average, Quicksort (ifls Not Very Small).
Theoret. Comput. Scll18(1993) 81-98

9. Williams, J. W. J.: Heapsort (Algorithm 232). Comm. Assoc.
Comput. Mach?7 (1964) 347-48

10. Franceschini, G., Geffert, V.: An In-Place Sorting with
O(n-logn) Comparisons and(n) Moves. J. Assoc. Com-
put. Mach.52 (2005) 515-37

Multiway blockwise in-place merging

19

Searching all approximate covers and their distance using finite automat

Ond‘ej Guth, Bdivoj Melichar, and Miroslav Bak

Czech Technical University in Prague, Prague, Czech Republic
{gut hol, nel i char, bali km@el . cvut.cz

Abstract. Cover is a type of a regularity of strings. A restrictedols of the alphabet. Empty string is an empty sequence of
approximate covet of stringT" is a factor of7" such that every symbols, denoted by. An effective alphabedf a stringT
position of!" lies within some approximate occurrencein 7. s a set of symbols that really occur i Only effective

In this paper, the problem oéll restricted smallest distance apg|phabet is considered in this paperlahguageis a set
proximate covers of a strinig studied and a polynomial time andof strings. A set of all strings over alphahétis denoted
space algorithm for solving the problem is presented. It searc

. .) o _ A*. The length of a string is denoted byw|, thei—th
for all restricted approximate covers of a string with given lim- . . .
ited approximation using Hamming distance and it computes tﬁgmpd Of.w IS Qenqted bywli]. An i)peratloncon(_:atena-
smallest distance for each found cover. The solution is basedtkﬂr| 'S_ defined in this wayz,y € A", concat.enatlon of
a finite automata approach, that provides a straightforward waindy iS 2y, may be denoted hy.y. An operatiorsuperpo-
to design algorithms to many problems in stringology. Therefopdionis defined in this wayz = pu, y = us, superposition
itis shown that the set of problems solvable using finite autom&thz andy is pus. Supposes, w,z,T € A*. w is aprefix
includes the one studied in this paper. of Tif T = wu, wis asuffixof T if T" = ww, andw is
afactor (also called a substring) @f if T = uwzx. A set of
all prefixes ofT" is denoted byPref (T'), a set of all suffixes
of T is denoted bySuff (T'), and a set of all factors df is

: " denoted byFact(T).
Searching regularities of strings is used in a wide area 0 AP
o . . ; A deterministic finite automato(also called a deter-
applications like molecular biology and computer—asdiste . . .~ " .~ . . .
: . . o ministic finite state machine, denoted by DFA) is a quin-
music analysis. One of typical regularities is cover. : i
- ! S . tuple(Q, A, 0, qo, F'), whereQ is a nonempty finite set of
Finding exact covers is not sufficient in some applica; . . . " .
tions, thus approximate covers have to be computed. In t l‘i%tes,A is an input alphabey is a transition function,
' . ; : . ' TR XA Q, is an initial state and” C @ is
paper, the Hamming distance is considered. @ @ g € Q cQ

Exact covers were introduced in [1], an algorithm foa} setoffinal states.
’ 9 A nondeterministic finite automatomvithout e—tran-

computation of all exact covers in linear time was pre-,. ; : .
) . T itions is a quintupld@, A, ¢, qo, F'), where(@ is a non-
sented in [4]. An algorithm using finite automata approac o . . .
. .) empty finite set of stated! is an input alphabeb, is a tran-
to computation of all exact covers was introduced in [5].Sition function, where : Q x A — P(Q), g € Q is an
The algorithm presented in [2] searches for one ' i » 40

. . : . nitial state andr” C @ is a set of final states. It is denoted
restricted smallest approximate cover (i.e. cover with the NFA

smallest distance), using dynamic programming. An al oy . N
) gay brog 9 g A stateq is a successonf statep of a deterministic

rithm using finite automata approach to computation TII. .
restricted approximate covers for Hamming, Levenshtelli! € automaton(Q, 4,9, g0, F) if ¢ = 4(p, a) for some

and Damerau distance was introduced in [3]. '€ A Astateqy is a successor of a stape, of a NFA
This paper is organized as follows. In Section 2, som@ N> 4, 0n- gon, Fiv) if q € O (pwv, @).

notations and definitions used in this paper are describe%Strlng IZ = 102 . ~h“|w\ is said to beaccepted by

In Section 3, the algorithm for the problem is presented. o (@> 4.9, qo.) if there exists a sequence

Section 4, the complexities of the algorithm are proven, §420:@1) = 41:0(q1,02) = a2, -, 0(qju| -1, aju|) € F.

Section 5, experimental results are shown. ringw = aaz ... ajy| s Said to beaccepted by a NFA
(Q, A, 0, qo, F) if there exists a sequence

L. . 5((]0,@1) = Q175(Q17a2) = Q27"‘75(Q\w|—17a|w\) CF
2 Preliminaries for someq: € Q1,...,qu-1 € Qu-1. A language ac-
cepted by a finite automata¥ is denoted by.(M).
An alphabetis a nonempty finite set of symbols, denoted A left |anguage of a state of a nondeterministic fi-
by A. A stringover an alphabet is a finite sequence of syrite automaton(Q, A4, 8, o, F) is a set of stringsy =

* This research was partially supported by the Ministry of Ed#192 - - - 4| where for eachw exists a sequence
cation, Youth, and Sport of the Czech Republic under reseaéﬁ‘loaal) = Q175(Q1,G2) = Q27-~-a5(q\w\717alwl) =
program MSM 6840770014, by the Czech Science Foundatighw|> ¢ € Q|w| for someg; € Q1, ..., quj-1 € Qpu|-1-
as project No. 201/06/1039, and by the Czech Technical UAi-left language of a statey of a DFA(Q, A, 9, o, F)
versity in Prague as project No. CTU0803113. is a set of strings w = ajaz...a,, where for

1 Introduction

22 Ondej Guth et al.

eachw exists a sequenced(qo,a1) = qi, 6(q1,a2) = (c) define the last statg)ﬂ final (note that until now
q2; -+ 0(Qu|—1, Aw)) = ¢ such automaton accepts exadtly.

A maxfactor of a state of a DFA (Q, 4,6,q0, F) is 2. Similarly, create a layer for each “number of errats”
the longest string of left language of denoted by 1 <1 < k (only exception: we do not need any state
mazfactor(q). A depth of a statg of a DFA is the length g, for i > i).

of mazfactor(q), denoted bylepth(q). 3. For each state! (but the lastgr| in each layer and
ADFA Mp = (Q, A, 4, qo, F) is equivalentto a NFA but the last layer) and for each symhole A,a #
My = (Qn, A, x5, qon, Fn) if L(My) = L(Mp). Sub- T'[¢] (not occurring inI” at position:), define transition
set construction may be used: 3(qh, T[i]) = g1
))) 4. Create “long” transitions fromo: d(qo,a) = {¢ :
1. SetQ = {{qo}} will be defined, state, = {qon } will a=T[i],a<i<|T}U{q}:a+T[i],1<i<|T|

be treated as unmarked. " . N
2. If each state i) is marked then continue with step 4For example of a transition diagram of a nondeterministic

3. Unmarked state will be chosen fromp and the fol- Hamming suffix automaton see Fig. 1.

lowing operations will be executed: A levelof a state of a nondeterministic Hamming suf-
(@) 6(g,a) = Udn(pn,a) for py € ¢ and for all fix automaton corresponds to the number of errodgth

a € A, of a state of this automaton is equal to the corresponding
(b) Q =QUd(q,a)foralla e A, position inT".

©) state_q €Q W'" be marked, Definition 1 (Restricted approximate cover). Let T

4 g’)_CO“F'”Ue with ste%z. 0 andw be strings. We say, that is arestricted approximate

F={0:q€Qpn N Fy #0,py € g coverof 7' with Hamming distancé if w is a factor of T’
Using subset construction af , equivalent tal/, every and there exist stringsy, sz, ..., s, (all some substrings
stategp € @ corresponds to some subset®f;. This sub- of T') such that:
set is called al-subsetdenoted byi(qp). Each element 1 Dy (w, s;) < k for all i wherel < i < r,
of the d—subset corresponds to some staté&af. Where 2 7 can be constructed by superpositions and concate-
no confusion arises, depth of a state corresponding to an pations of copies of the strings, s, ..., 5.
elementr; € d(gp) of d—subseti(¢p) is simply denoted _))
by r;, as numeric representation of corresponds to the Note 1. An approximate cover is more general regulgnty
depth. In the algorithms belowi-subset is supposed to péhan restricted approximate cover, because (unrestyicted

implemented as a list, preserving order of its elements. ARProximate cover df’ needs not be a factor @f. In this
element of thei—subset is denoted by, where the sub- PaPer, only restricted approximate cover is considered.

scripti means an index (order) of the elemenwithin the pDefinition 2 (Restricted smallest distance approximate
d-subset. cover). Let T and w be strings. We say, that is a re-
A distanceis the minimum number of editing operastricted smallest distance approximate caeF with dis-
tions that are necessary to convert a stririgto a stringy. tancek if w is a restricted approximate cover @f with
The maximum allowed distance is denotediby the distance: and there exists né < & such thatw is

The Hamming distancebetween stringsz and y 3 restricted approximate cover @fwith the distance.
is equal to the minimum number of editing operations re-

place that are necessary to convemto y. The Hamming Problem 1 (All restricted smallest distance approxi-
distance function is denoted ky;,. mate covers of a string{siven stringT” over alphabet4,

Stringw € A* is anapproximate prefiof a stringT’ & Ham_ming distan(_:e functioy and dista_ncdc, find aI_I
A* with the maximum Hamming distandeif there exists restricted approximate covers Bfand thelr smallest d|§—
stringp € Pref(T) such thatDy (w, p) < k. Stringuw is tances. A set of all restricted smallest distance appraxima
an approximate suffiof the stringT if there exists string COVers of string” under Hamming distandeis denoted by
s € Suff (T) such thatDy (w, s) < k. coversg(T).

A nondeterministic Hamming suffix automath for As any approximate cover of a striffj under Ham-
astring T and distancek is such nondeterministic ming distance is an approximate prefix and an approximate
finite automaton withoute—transitions, that.(M) = suffix of 7' (proven in [3]), an automaton accepting only
{w: Du(w,s) < k,s € Suff(T)}. Such an automatonsuch strings can be used.

M = (Q, A, 4, qo, F') may be constructed in this way: _ . .
(@ G0, ") may y Definition 3 (Approximate cover candidate automa-

1. Create alayer dfl'| + 1 states: ton). An approximate cover candidate automa-
(@) each state? corresponds to a positiarin 7' (plus ton (Q,A,6,q,F) for string T e A*, Hamming dis-
initial stateqo, thus0 < i < [T7), tance functionDy and the maximum distande accepts
(b) for each state? (but the lasy,) define transition setW = {w;,w,, . ..,w;} of factors ofT’, where for each
6(¢2,T[i]) = ¢4, w; € W holds:

All approximate covers 23

1. there exist® € Pref(T) such thatDg(p,w;) < k, Algorithm 1 Smallest distance of a cover Bt

and Input: d—subseti(q) representing a cover of T'.
2. there exists € Suff (T") such thatDy (s, w;) < k. Output: The smallest distandeof w.

In [3], a construction of an automaton accepting inters: (min ~ max{level(r1), level (ria(q))}
lmax — maXred(q){level(T)}

section of approximate prefixes and approximate suffixesgé .

used for construction of a deterministic approximate covey. repeat

candidate automaton. Although this is a straightforwarg: for all r € d(q) \ {r1, 7))} : level(r) = L do
idea, specialized method (more effective) is presented fgr remover from d(q)

Hamming distance in the following section. 7: endfor
8 Il—I1-1
. 9: until I > Imin and foralli = 2,3,...,|d(g)| : 7s — 1i—1 <
3 Problem solution depth(q)
10: 1 — 1+ 1.

The principle of the solution is following: first, we perform
a subset construction of a deterministic cover candidate au
tomaton from a nondeterministic Hamming suffix automalgorithm 2 Process state of a deterministic approximate
ton for stringT” andk, as everyl(q) represents a set of posicover candidate automatohl/ = (Q, 4,4, o, F') con-
tions ofw = maafactor(q) within T If we treat withd(q) structed for stringl” and the maximum distancde from
as with a sorted list (ordered by depths of its elementg),nondeterministic Hamming suffix automatdds =
each pair of subsequent elements represents position§(d, 4,0s, qos, Fs).
subsequent occurrenceswiwithin 7. When for such po- Input: Stateq; having depth and thed—subseti(q;).
sitionsi, j,4 < j holdsj — ¢ > |w|, we know thatv cannot Output: The temporary set of restricted smallest distance approx-
be a cover off'. The distance ofv is the minimum] such imate covers.
that it is possible to remove all elements d(q) having 1:c <@
level(r) > [and the previous condition holds. 2: forall a € Ado

In fact, it is not necessary to save complete determinis: ~ create new staig definedepth(q) = depth(qi) +1
tic automaton. Unlike in [3], we do not make constructiorft: ~ forall 7« in d(g;) (in order as stored ir(¢;)) do
of the deterministic cover candidate automaton and suB: ~ aPpendalt: € ds(rs, a) tod(q) in ascending order by

sequent computation of covering. A depth—first search enilef% trh(”)
gorithm is used to perform subset construction and com= i ¢o: the firstr, € d(q) holdsr: < depth(g:) then
putation of covering and of the distance of each cover: ig. if existsr € d(q) whereleuel(ﬁ — 0 within Ms then
Algorithm 2, for each state and symbol, a success® o definew = mazfactor(q) = mazfactor(q:).a
generated, it is determined whether it represents a coyver if 714(q)| € Fs then
and the distance is computed. Whemepresents an ap-11: if forall s = 2,3,...,|d(q)| : depth(r;) —
proximate prefix, its successors are recursively generated depth(ri;—1) < depth(q) then
and processed. Note that the set of final states of the dé- definel the smallest distance af (Alg. 1)
terministic approximate cover candidate automaton is ot if [w] > korl < [w|then
needed (it would contain all states havitgsubsets con- 14f c—cU (w, 1)
taining element corresponding to some final state of th enfini? i
nondeterministic Hamming suffix automaton). 17 end if

Distance/ of each covew = masfactor(q) may vary 1. process statg(this algorithm) ¢’ is result
between0 and k. Moreover, it cannot be less than leve|g. c—cud

of the first or the last element @fq), because each coveng. end if
must be an approximate prefix and suffix. Of course, it cast: end if
not be more than the maximum level of elementg@f). 22: end for
The Algorithm 1 removes all the elements having the max-

imum level but the first and the last elementdgf;), and
tries whethemw coversT’ without those removed positions

(see Fig. 1), then an approximate cover candidate automa-

Example 1.Let us have a strin§’ = aabcceeb over alpha- ton M is analysed (see Fig. 2).

betA = {a,b,c} and let us compute a set of all restricted Looking at thed—subset{3,4”,8"}, it represents an

smallest distance approximate cover§afnder Hamming approximate prefix and suffixad of length 3, but for its

distancek = 2 using Algorithm 3. positions holds — 4 £ 3, thus the factonab is not an ap-
Because of the distance 2, we are interested in covpreximate cover off” with Hamming distance 2. Looking

of length at least 3 or having distance less than 2. We centhe other—subsef3"”,5"”,6',7', 8}, it represents factor

struct a nondeterministic Hamming suffix automataiy ccb, that coversl” with Hamming distance 2. It is checked

24 Ondej Guth et al.

Algorithm 3 Computation of a set of all restricted smallegtvel(¢")) = 1. ThusinMg there ardQ|-|A|+|T)|-|A|—
distance approximate covers for striigand the Hamming (k+1)-|A-(|T|—k+1)-(JA]-1) = |A]-(|Q|—2)+|T|—k+1
distancek. transitions.

Input: StringT = aias . .. a,, the Hamming distance.

Output: Set of all restricted smallest distance approximate covéM®te 2. As restricted approximate covers of strifigare
coversyx (T) of string T" using the Hamming distance functiorexact factors off’, it is meaningful to consider effective

Dy and the distancé. alphabetA only, thus|A| < |T'| always holds. It is also
1: coversyr(T) « {(T,0)}. meaningless to consider largebecause every factor @f
2: Construct nondeterministic Hamming suffix automatqﬁlaving length less or equal tb is always approximate

Ms = (Qs, A, ds, qos, Fs) for T'andk. cover of T. Thusk < |T'| always holds.

3: Create statgy of the deterministic approximate cover candi-
date automatoM (T') = (Q, A, 6, qo, F).

4: Definemazfactor(qo) = e.

. Process staig using Algorithm 2.

6: coversy(T) is the resulting set from the previous step.

Usually,k < |T| and|A| < |T| (e.g. in DNA analysis,
A = {a,c,g,t}). Thereforek and|A| may be considered
as small constants independent’By.

(62

Lemma 2. The deterministic approximate cover candi-
date automatord/ for stringT and the Hamming distance

2
contains at mosw + 1 states.

whether it coversd” with distance 1 (Alg. 1). As the first

element of thel-subset has level equal to 2, is equal proof. Eachd-subsetd(q) of M contains at least one

to 2. The resulting set of the coversisvers,qpececs (2) = such thatlevel(r) = 0, thus mazfactor(q) € Fact(T).
{(ccb,2), (aabececb, 0)}. The number of possible factors of lengtlapth(q) is at
most|T'| — depth(q) + 1, thus the maximum number of
states ofd/ having equal depth is al§@'| — depth(q) + 1.
The automatord/ also contains an initial state. Therefore,
the number of states 81 is at most/ =1+ ITIZ[TIED).

IT| + 1.

Lemma 3. During the construction of the deterministic
cover candidate automataw for string7’, Algorithms 2, 3
need to hold at most’| + 2 states at a time.

Fig. 1. Transition diagram of nondeterministic Hamming suffi¥ "0Of- Algorithm 2 works as a dgpth—first search algo-
automaton for stringabeceeb and the distance 2. rithm. For each state and symbol it generates at most one

state — possible successor. Thus it holds at fibst- 1
states ofM (|T| states havingl-subsets representing ex-
act prefixes of” plus initial state) and a state generated for
a final state, having empt{~subset.

4 Complexities Lemma 4. During the construction of the deterministic
cover candidate automata¥ for stringT’, Algorithms 2, 3

Lemma 1. The nondeterministic Hamming suffix automayeed to hold at most 71 + 1 elements of—subsets at
ton M5 = (Q, A, 0, qo, I) for string T" and the distancé 4 {ime. 2

contains(|T| + 1) - (k + 1) — £2* states andA| - (|T| -
(k+1)—1+ k—QkQ) +|T| - k + 1 transitions. Proof. Alg. 2 needs at mosfI’| + 2 states in a memory
at a time (Lemma 3). The deterministic cover candidate
Proof. The automaton consists of layers of stagés for automatonV = (Q, A, 4, qo, I!) is constructed by subset
each level. The layer of stateg” contains|T| + 1 states. construction from a nondeterministic Hamming suffix au-
Each layer of stateg?) contains one state less in comparfomatoniMs = (Qs, 4, s, qos, Fs). In Mg, each state
son with layer of stateg(i~1), thus it containgZ’] —i + 1 but gos has at most one successor for each symig,
and layer of stateg*) containgT'| — k + 1 states. has|T'| successors for each symbol. For each stgtand
The automaton containi | transitions from each state/ts successoys in Mg holds: depth(qs) > depth(ps).
with some exceptions. There aker 1 final states having The longest possiblé-subsetd(p) containsr|r having
no successor. In the layer of staté®, each state has onlydepth(rir|) = |T'|, andry having depth(r1) = 1. As
one successor. From the initial state, there [dfetran- [9s(r1,a)| < 1 andds(rir|,a) = 0 for everya € A, for
sitions defined to the state$” having level(¢(?)) = o Statep and its successarin M holds:|d(q)| < |d(p)] for
and|T| - (JA] — 1) transitions to the stateg')) having P 7# 9o and|d(q)| < |T'| for p = go.

All approximate covers 25

@23’4/5/6/7/89 ab @3/4//5//6//7//8/) b /(34//8//>\ c @ c 56/ ¢ @ ¢ a b
@,2,34/5/6’7/8)—6’@”3/45’6,7,8,9

¢ b

('2'3'45678)) € @”3”4’5678)%

Fig. 2. Transition diagram of complete deterministic approximate cover candidadenaton for strind” = aabcccch and the maxi-
mum Hamming distance 2.

Theorem 1. Space complexity of Alg. 3@(|T|?). Proof. Algorithm 2 constructs for all statesand alla € A
thed—subsets of all possible successorg.dthe number of

Proof. It clearly holds that for construction of thestatesi)(|T|?) (Lemma 2)and the number of elements of

nondeterministic Hamming suffix automaton/s = eachd—subsetig)(|T|). For each state, the computation of

(@Qs,A4,ds,q0s, Fs), there is no need for any additionatovering is performed (it take§(|T|)), and for each cover

data structures. For the purpose of the construction of {ieeir number isO(72)), the computation of the smallest

deterministic cover candidate automatbf only the set distance is performed (it tak&€3(% - |T'|) for each cover —

of states and transitions fromys need to be preservedlLemma 6).

because the rest may be computed lataP{i1) time and) ; .

space using knowledge of a depth and a I(ev)el of a skateTheorem 2. Time complexity of Alg. 3 ©((k-+[A[}T'?).

andT. Thus the space complexity of this construction Rroof. It clearly holds that construction of the nondeter-

O((k + |A|) - |T)). ministic Hamming suffix automaton také&X (k+|A|)} T|).

During the computation of the smallest distance (Af-onstruction of the deterministic cover candidate automa-

gorithm 1), onlyO(1) additional data is needed. Duringon takesO((k + |A|) - |T|*) (Lemma 7).

the processing of states aff (Algorithm 2), the needed

space is limited by the number of elements otiaubsets g Experimental results

(Lemma 4) preserved in a memory and by the number of

all approximate covers (the result, limited by the numb@&he algorithm was implemented in C++ using STL, the

of all factors of " — at mostO(|T'|?)). program was compiled using the GNU C++ com-
piler with O3 optimizations level. The dataset used to test

Lemma 5. Using Algorithms 2, and 3 for construction othe algorithm is the nucleotide sequence of Saccharomyces

a deterministic cover candidate automaton)/ = cerevisiae chromosome #VThe stringT" consists of the

(Q, A, 0,q0, F) from a nondeterministic Hamming suffifirst | T'| characters of the chromosome.

automatonMs = (Qs, A, ds, qus, Fs), all d—subsets are The first set of tests was run on a AMD Athlon 64

sorted in ascending order by depths withify;. 3200+ (2200 MHz) system, with 2.5 GB of RAM, under
Fedora Linux operating system (see Figs. 3, 4).

Proof. Havingp,q € @ \ {qo} such thatg is a succes- The second set of tests was run onaAMD Athlon

sor of p, suppose thatl(p) is sorted in order by depths(1400 MHz) system, with 1.2 GB of RAM, under Gentoo

within M. It holds that for anys, gs € Qs suchthags Linux operating system (see Figs. 5, 6).

is a successor agbg, depth(qs) > depth(ps). Therefore

d(q) constructed from already sorté(p) is also sorted.

Forp = qo, itis supposed thals (qos, a) is constructed
as sorted in order by depths withids.

Note 3. In comparison with experimental results presented
in [2], the algorithm presented in this paper runs a bit faste
for the same data, even on a slightly slower com-
puter (1.3 seconds in [2] for text length 100 vs. maximum

Lemma 6. Time complexity of Algorithm 1 i©(k - |T|) 1.0 second for text length 114 — see Fig. 6).

for each state.
6 Conclusion and future work
Proof. Algorithm 1 may remove some elements of
ad—subset in each iteration, thus the iteration may takethis paper, we have shown that an algorithm design

O(‘TD time. The number of iterations may be at mbst based on a determinisation of a suffix automaton is ap-
propriate for all restricted smallest distance approxenat

L.emma 7'. Time CompleXity?)Of Algorithm 2 (from the ini- 1 e Saccharomyces cerevisiae chromosome 1V dataset could
tial state) isO((k + |A) - |T]°). be downloaded from http://www.genome.jp/.

26 Ondej Guth et al.

Athlon64, for k=11 and k=31
12 T T T T T T

10} R

Time [sec]
=
T
L

deais 1 1 1 1
0 100 200 300 400 500 600 700
Text length

Time [sec]

N
o

n
o
T

=
o
T

=
=)
T

o
o
T

Athlon, for [T|=114 and |T|=153

T T T

0.0
)

"
20

"
40

L L L
60 80 100
Maximum distance

"
120

"
140

160

Fig. 3. Time consumption with respect to the text size (solid linkig. 6. Time consumption with respect to the maximum distance

for k = 11, dotted one fok = 31).

Athlon64, for [T|=1162 and |T|=1550

1400 : ‘ : ‘ : : ‘ References

1200 I) B
1000} g

800 o |

Time [sec]

6001 - E

s0f]
2000 - i
‘ ‘ ‘ ‘

0 L L L
0 200 400 600 800 1000 1200 1400 1600

(solid line for|T'| = 114, dotted one forT’| = 153).

1. Apostolico, A., Farach, M., and lliopoulos, C. S.: Optimal
superprimitivity testing for strings.Inf. Process. Lett. 391
(1991), 17-20.

2. Christodoulakis, M., lliopoulos, C. S., Park, K., and Sim, J. S.:
Implementing approximate regularitiesMathematical and
Computer Modelling 420ctober 2005), 855-866.

3. Guth, O.: Searching approximate covers of strings using fi-

Maximum distance nite automata. IfProceedings of POSTERO008), Faculty of
Electrical Engineering, Czech Technical University in Prague.
Fig. 4. Time consumption with respect to the distance (solid lirk Smyth, W. F.: Approximate periodicity in stringdUtilitas

for |T'| = 1162, dotted one fofT'| = 1550).

Mathematica 511997), 125-135.

5. Voratek, M., and Melichar, B.: Searchig for regularities in
generalized strings using finite automata. Pmceedings of

Athlon, for k=101 and k=201
80 T T T T T

60+

20+

0 L L L L L
100 200 300 400 500 600 700
Text length

Fig. 5. Time consumption with respect to the text size (solid line
for k = 101, dotted one fok = 201).

covers of a string problem for Hamming distance. The pre-
sented algorithm is straightforward, easy to understadd an
to implement and its theoretical and experimental time re-
quirements are comparable to the existing approach ([2]).

The algorithm may be extended to work with other dis-
tance functions, possibly using the idea presented in [3].
Theoretical and experimental analysis similar to one pre-
sented here may be accomplished. The algorithm may be
also extended to use parallelism.

the International Conference on Numerical Analysis and Ap-
plied Mathematicg2005), WILEY — VCH Verlag, pp. 809—
812.

Measures of quality of rulesets extracted from data

Martin Holena

Institute of Computer Science, Academy of Sciences of the Czech Repub
Pod Vodarenskou & 2, 18207 Praha 8, Czech Republic
martin@cs.cas.cz , webrs.cas.cz/"martin

Abstract. The paper deals with quality measures of whole sets The research reporeted in this paper has been moti-
of rules extracted from data, as a counterpart to more commonigted by increasingly frequent extraction of non-clasaific
used measures of individual rules. This research has been men rules in real-world data mining tasks. The paper dis-
tivated by increasingly frequent extraction of non-classificatiqf;sses three possible ways of extending existing ruleset
rules, such as association rules and rules of observational 'ngfuality measures from classification to general rulesets.

in real-world data mining tasks. The paer sketches the typolog}(le proposed extensions are introduced in Section 4, af-
of rules extraction methods and of their rulesets, and recalls tla%t '

quality measures for whole sets of rules have been so far u [jthe basic typology of rules extraction methods and ex-

d e
only in the case of classification rulesets. It then proposes thr_%g]ples of measures for_CIaSS'f'Cat'on rulesets are _recglled
possible ways how such measures can be extended to gerlgr&ne following two sections, and before a generalization
rulesets. The paper also recalls the possibility to measure the §-ROC curves is proposed in Section 5. The paper con-
pendence of classification ruleset on parameters of the classificiddes with a brief illustration on rulesets extracted with
tion method by means of ROC curves, and proposes a generalthe method GUHA.
tion of ROC curves to general rulesets. Finally, a brief illustration

on rulesets extracted by means of the method GUHA is given. .
2 Typology of rules extraction methods

The most natural base for differentiating between existing
rules extraction methods is tisgntax and semantics of the
extracted rulesSyntactical differences between them are,

Logical formulas of specific kinds, usually calledles however, not very deep since principally, any ruldias
are a traditional way of formally representing knowledggne of the formsS.. ~ S’ or A.. — C... whereS... S’ A

Therefore, it is not surprising that they are also the m dC, are formulas of the considered logic, and —

frequent representation of the knowledge discoverg symbols of the language of that logic. The difference

in data mining. Existing methods for rules extraction A tween both forms concerns semantic properties of the
based on a broad variety of paradigms and theoretical P bols~ and—: S.. ~ S’ is symmetric with respect to

ciples. H_owever, rlnet:odshrelymg on d'ﬁ]?:je_fr;t underlyin -, S..in the sense that its validity always coincides with
assumptions can lead to the extraction of different or ev&‘ét 0fS, ~ S’ whereasd, — C, is not symmetric with

contradictory rulesets from the same data. Moreover, Spect tod,, C, in that sense. In the case of a proposi-

set of rules extracted with a particular method can SUbStﬂBEaI logic,~ and— are the connectives equivalence and

tially depend on some tunable parameter or parameters.o lication, respectively, whereas in the case of a predi-

the method, (sjuchﬁas S|?rn|f|cance Ie;el, t:resholds, SIZ€ Pie logic, they are generalized quantifiers. To distifguis
rameters, trade-off coeflicients etc. For that reasongiéis the formulas involved in the asymmetric cage,is called

sirable to have measures of various qualitative aSpeCtsaﬁFecedenandC consequenof -

the extracted rulesets. So far, such measures are availa &he more i;nportant is the semantic of the rules
only for sets of classification rules, and their depende e [6]), especially the difference betweenules of
on _tunqble parameters can be described only for clas§ ié Boc;lean logicand rules of a fuzzy logicDue to the
cfat|on into two classes [10, 15]. As far as more geneimantics of Boolean and fuzzy formulas, the former are
Kinds of rules are C,O”_C‘?f“ed' measures of quality have b@ﬁﬁ‘d for crisp sets of objects, whereas the validity of the
proposed only for individual rules [6, 11, 24, 26, 29], or f0|

£ rul hich finall b laced tter is a fuzzy set on the universe of all considered ob-
cor)trast sets of ru es, which finally can be replaced Wiliis poolean rulesets are extracted more frequentlg-esp
a single rule [2, 16]; if a whole ruleset is taken into consi]

. . . lly some specific types of them, such @assification
era_t|or_1,_then only as a context for measuring the quality lesets[11, 15]. Those are sets of implications such that
an individual rule [27, 28]. (A,)rer and{C,}.cr partition the setD of considered

* The research reported in this paper has been supported bydRiECts, whereR is the considered ruleset, afd’ },cr
grant No. 201/08/1744 of the Grant Agency of the Czech R&tands for the set of distinct formulas (0’)<= . Aban-
public and partially supported by the Institutional Researéloning the requirement that,.),.cr partitionsO (at least
Plan AV0Z10300504. in the sense of a crisp partitioning) allows to generalize

1 Introduction

28 Martin Holgha

those rulesets also to fuzzy antecedents. For Boolean ante-Methods that extract logical rules from dataectly,
cedents, however, this requirement entails a natural defin- without any intermediate formal representation of the

ition of the validity of a whole classification rulesgt for

an objectz. Assuming that all information about con-
veyed byR is conveyed by the single rule coveringx

(i.e., with A,. valid for x), the validity of R for = can be
defined to coincide with the validity od,. — C.. for thatr,

which in turn equals the validity af’,. for x.

discovered knowledge. Such methods have always
formed the mainstream of the extraction of Boolean
rules: from the observational logic methods [13] and
the methodAQ [30, 31] in the late 1970s, through the
extraction of association rules [1, 40] and the method
CNZ2[4], relying on a paradigm similar to that of AQ,

As far as the Boolean predicate logic is concerned, gen- to recent methods based orductive logic program-
eralized quantifiers both for symmetric and for asymmetric ming[5, 33] andgenetic algorithmg¢9]. They include
rules were studied in the 1970s within the framework of also important methods for fuzzy rules, in particular

the observational logid13], which is a Boolean predicate

logic with generalized quantifiers. For a set of data about

n objects, the truth evaluation of the Boolean predicate
on those objects is a vectfip|| € {0,1}", whereas the
truth evaluation of a senten¢®x)(p1(x),...,om(x))
consisting ofm Boolean predicatesy, ..., ¢, and an

ANFIS[22, 23] andNEFCLASY34, 35], fuzzy gener-
alizationsof observational logid18, 19] and a recent
method based ofuzzy transfornfi36].

Methods that employ somiatermediate representa-
tion of the extracted knowledge, useful by itself. This
group includes two important kinds of methodtas-

me-ary generalized quantifigp is the function value

[(Qz)(p1(2),. ..

sification treeq43, 37] and methods based antificial
neural networks (ANN)The latter are used both for
Boolean and for fuzzy rules [7, 21, 39] (cf. also the sur-
vey papers [32, 38]).

7@m(l‘))” = TfQ(lenv SRR ||<pm||)a
1)

of a {0, 1}-valued functionTf, on the set ofim-column
binary matrices, which is calleduth functionof the quan-
tifier Q. Observational logic underlies one of the earlie
methods for the extraction of general rules from data,
called General Unary Hypotheses Automaton (GUHA). In
GUHA, the truth functionTf,, of a generalized quanti-A survey of measures of quality for classification rulesets

fier Q is always a function of the 4-fold table (with possibly fuzzy antecedents) has been given in the
monograph [15]. All measures have been divided there into

g Existing measures for classification
rulesets

S 25; four groups: inaccuracy, imprecision, inseparability asd

Cr ﬁcr. 2) semblance. Space limitation allows to recall here only the
S| Arla b main representatives of the more important groups:
—Se|mA ¢ d Inaccuracymeasures the discrepancy between the true

Hence,Tf, is a {0, 1}-valued function on quadruples ofclass of the considered objects and the class predicted by

nonnegative integers. For symmetric rules, GUHA usH ruleset. Its most frequently encountered represeatati
quantifiers fulfilling is thequadratic scorgalso called Brier score):

1 . 2
mace=15 3 Y (Sl ~do) . ©

€0 Ce{C}}rer

a>a&t <b&d<c&d>d&
& Tfg(a,b,e,d) =1— Tig(d b, d,d)=1. (3)

They are calledissociational quantifiers=or asymmetric where| | denotes cardinality) is the considered set of ob-
rules, it uses quantifiers fulfilling the stronger condition jects, 6 () € {0,1} is the validity of the propositior”

, , for z € O, andéc(z) is the agreement betweéhand the
a>a&b <b& ;
Lo class predicted for by R. In the general case of a fuzzy
& Tig(a,b,c,d) =1 — Tio(a',V', ¢, d') = 1. (4) |ogic, dc(x) = maxc, —c||Ar|ls, ith | A, ||, € (0,1) de-

which are calledmplicational quantifiers This condition N°ting the truth grade of,. for .

- Imprecision measures the discrepancy between the
vers al he fr ntly encounteraskociation rul i, oS o
covers aiso the frequently encountemssociation rules obability distribution of the classes, conditioned oe th

. pr
[1,6,40] (since methods for the extraction of assoc'at'@ames of attributes occurring in antecedents, and the clas

rules have been developed outside the framework of oz jicted by the ruleset. Its most common representative is
servational logic, the terminology is a bit confus-

ing here: although associational rules are asymmetrig, the ,,, , _

name evokes the quantifier for the symmetric ones). 1 A A)
Orthogonally to the typology according to the seman-= o] >y (50 (z) - 50(96)) (1 - 5C(w)) :

tics of the extracted rules, all extraction methods can be T€O CE{Crlrer

divided into two large groups: (6)

Measures of quality of rulesets extracted from data 29

As was already mentioned in the introduction, the ex- For sets of asymmetric rules, also the notion of cover-
tracted ruleset can substantially depend on tunable pang- an object by a rule, which was recalled in Section 2,
meters of the employed method. This was so far systecan be generalized. Notice, however, that for fuzzy antece-
atically studied only for dichotomous classification witllents, the validity ofd,., » € R is a fuzzy set or©. Con-

R ={A— C,—A — —C}. Inthat case, puttingl, = A, sequently, the se&D% of objects covered b is a fuzzy

C, = C allows the information about the validity of set onO with the membership function

andC for O to be again summarized by means of the 4-fold
table (2), which also depends on the parameter values. The pr(@) = [|Gr € R) Arlls = max 4]z (9)
influence of the parameter values on the result of dicho?—

mous classification is usually investigated by means of t gserve that gccordlng to (W = O for cIaSS|f|ca-_
measuresensitivity— - and specificity— bdd [15] ion rulesets with Boolean antecedents. Therefore, variou
a+c -+)

. . e o 3 generalizations of classification measures to general rule
Connecting points (1-specificity,sensitivity) (4

for th dered I ¢ b+d’ a+c’/ sets of asymmetric rules are possible: wher&Yesccurs
or the considered parameter values forms a curve Wit\y,e gefinition of a measure for classification rulesets,

graph in the unit square, calleelceiver operating charac- qither 0 or O can occur in its general definition, pro-
teristic (ROC), due to the area where such curves have fir ed O + . To allow unified treatment of symmetric

been |fnhrout|ne use.hln rgachlne 'eaf”g‘g’ a moﬁ'fr']ed VeId asymmetric rules, the concept of covering an object
sion of those curves has been proposed, in which the poys, e will be extended also to symmetric rules, in such
connected for considered parameter valueq@re) [10]. way that an object is covered byS, ~ S if either S,

The graph of such a curve then lies in the rectangle w'g s'iis valid for . Hence, a counterpart of (9) for a et
verti%es(o,o) and (b + d,a + ¢), and is calleccoverage ;g a?uzzy set with the me,mbership function
grap

The graphs of ROC curves and coverage graphs can, . ;) = ||(3r € R)(S, V S.)
provide information about the influence of parameter val-
ues not only on the sensitivity and specificity, but also on
other measures. It is sufficient to complement the graph
with isolines of the measure and to investigate their intesrl—Jr
sections with the original curve [10].

”:r =

— !
= max max(||Sy[|z, [Sy[lz). (10)

According to (8), the proposed way of extending mea-
es of quality from classification rulesets with Boolean
antecedents to general rulesets requires to generalize the
concept of validity of a general ruleset for an object. How-
4 Three extensions to more general kinds ~ ever, there are multiple possibilities for such a geneaaliz
of rules tion. Indeed, at least any of the following points of view is
possible:
Boolean validity of the ruleset based on simultane-
ous validity of all covering rules. According to this point
) 5?view, the validity of a ruleseR for a covered object is
plify (5)—(6): a Boolean property expressing the simultaneous validity of
n h
20| . 0+ — |0 all rules that cover:. Consequently, the se@@* and O

In the particular case of classification rulesets with Banle
antecedents, some algebra allows to substantially s

Inacc = —— = - defined in (8) are crisp sets
0] 0] @
[07| O ={z€0:ur(z) >0&

Tmpr = |O| - O]’ (VreR) ||r coversz & r is valid forz|| = ||r coversz||},

(11)
where

Ot ={z € O: Risvalid forz}, O ={re0:ur(z)>0&

O~ = {z € O : Risnotvalid forz}. ®) (IreR) ||r coversz & r is valid forz|| < ||~ coversz||},
12)

This not only shows that, in the case of Boolean anteGgr . e
dents, the quadratic score is sufficient to describe also the
imprecision, but also suggests an approach how to extend coers, | — {H(Sr V. Sp)|le for symmetric rules 13)
those measures to general rulesets: to use (7)—(8) as the de- | Ar 2 for asymmetric rules
finition of measures (5)—(6). More generally, any measuyg
of quality of classification rulesets with Boolean antece-
dents (e.g., any measure surveyed in [15]) that can be rej, coverse & r is valid for z| =
formulated by means aP™ and©—, can be extended in {

d similarly

ISy Vv S:)&r||. for symmetric rules

such a way that the reformulation is used as the definition = i
|| Ar&r|| 2 for asymmetric rules

of that measure for general rulesets.

(14)

30 Martin Holgha

The following consequences of this point of view arEurther, the fact thaO* and O~ are now fuzzy sets im-
worth noticing: plies that wheneve©*| or|O~| occur in the definitions of
(i) Itis immaterial how the truth gradgr||, of a ruler quality measures for Boolean classification rulesets,yfuzz

being valid for an object is evaluated (thus also howcardinalities have to be used in their generalizations te ge

|=7||. is evaluated). eral rulesets according to this point of view. Hence,
(i) If pr(z) =0,thenz ¢ Ot UO™.
(iii) For classification rulesets with Boolean antecedents, 0% =) py(@), 07]=> p(z). (19
the validity of R according to this point of view coin- z€0 zcO

cides with the definition in Section 2 because in thﬁbr example, the measure
case, there is exactly one rule that covers ’

Boolean validity of the ruleset based on the validity _
of the majority of covering rules. According to this point z@;f”* (@) = p-(x))
of view, the validity of a ruleseR for a covered object Inacc =1 — = (20)

is a Boolean property expressing the validity of most of 0

the rules that cover. Consequently, the se€@™ andO~

. ; is a generalization of (5), whereas the measures
in (8) are crisp sets

OFT={zec0:pur(x)>0& 3;9”4_(9:)
& > |Ir coversz & ris valid for z|| > Impr, =1- o] (21)
TER
U4 (T 4 (T
> Z ||r coverse & —r is valid forz||}, (15) a;o/ +(2) g;)l +(x)
rer Impr2 P e (22)
|O%]| Z pir (2)
z€O
o = 0: 0& o
freQ > are generalizations of (6).
& Y ||r coversz & ris valid for z||
reR
<Y |Ir coverse & —ris valid forz |}, (16) 5 E_xtensmns of ROC curves to more general
reR kinds of rules

Whe_re the truth gradér covers & —ris val_id fo_rxll IS Observe that in the case of Boolean classification Witk
again evaluated according to (14), replacingvith —r. {A — C,~A — —C7}, the information about the valid-
Observe that also this point of view has the above CONHGof R for objectsz € O can be also viewed as infor-
quences (i)—(iii), the last one again due to the fact thaethe, +ion about the validity of a rules®’ = {4 — C}.

is exactly one rule covering. . However, R’ is not any more a classification ruleset, but
Fuzzy validity of the ruleset based on the relative va- only a general one, which can be described only by means
lidity of covering rules. In this case, the validity of a rule-4¢ the above introduced se®@r, O+, O—. In particular
_setR for a covered obje_ci: is a fuzzy property eXpress-|0+| = 4 and|0~| = b, which suggests the possibil-
ing the ratio of the validity of rules fromk for x to the i 1o generalize coverage graphs introduced in Section 3
covering ofz with those rules. Consequently, the S&XS 15 general rulesets by means of a curve connecting points
andO are fuzzy sets qﬁ) with membershipg. andp_, (|0~ |,|O0*]) for each of the values of the considered pa-
respectively, such that jiz (x) > 0, rameters. For a generalization of ROC curves to general
. . rulesets, those points have to be scaled to the unit square.
> rer |lr coverse & r is valid for z|| : . . . _
py () = Since the resulting curve will be used to investigate the de-
>_rer |l coversz|| pendence on parameter values, the scaling factor itsetf mus
(17) be independent of those values. The only available factor
> e |7 coversz & —r is valid for z fulfilling this condition is the number of objectf)| (the
5 I other available factor§Ox|, |O*| and|O~| depend on
rer |l coversz||| i ! !
the evaluationgS,.|| and|S.||, or ||A.|| and||C,||, which
in turn depend on the parameter values). Consequently, the

where the involved truth grades are again evaluated accd¥fPosed generalization of ROC curves will connect points

p-(z) =
(18)

ing to (13) and (14). Moreover, (17)—(18) will be com(%, %)-
plemented with the definitiop;(z) = p_(z) = 0 if For practical construction of the proposed generaliza-

ur(z) = 0, to get again the validity of (ii) above, whereation of ROC curves, the following proposition, proven
(i) and (iii) are consequences also of this point of viewn [17], can be quite useful:

Measures of quality of rulesets extracted from data 31

Proposition 1. Let the covering of individual objects with 100 |
individual rules be a Boolean property (i.e., the set of sule) /‘ (8) Inace
covering a particular objectr be a crisp subset oR). %] s
Then irrespectively of which of the above points of view of N
ruleset validity is adopted, there always exists a constant 50 R
¢ € (0,1) and an increasing bijectiog : (0,c¢) — (0,1) .
such that /
AN
|OF| 407 | < max(1, ren(%x>x+g_1(1 — g(x)))|0). % 50 2 [%] 100
x ,C
100
Moreover, in the particular cases of Boolean logic and of Bell >
all three fundamental fuzzy logics (LukasiewicZ)del, N
product), (23) holds witlr = 1 and ¢ equal to identity, oL N
0T +]07] < 0. (24)
_ 0 = s
Thus in those cases, the poirf Oll , %), forming the 0 50 5 [%] 100
generalization of ROC curves, lie below the diagonal 100
((0,1),(1,0)). oty (@ lmer,
(%] N for Lukasiewicz
The proposition is illustrated in Figure 1, together with
isolines of the three example measures introduced
in (20)—(22). Observe that the isolineslaipr, depend on
the relationship between the three cardinalit®s| =
Yo bt (), [O7] = 3 con-(z) and [Og| =
> wco #r(x). The isolines depicted in Figure 1(c) corre- 0 50 % [%] 100

spond to the relationshif¥z | = |O*| + |0~ |, which is
true in Lukasiewicz logic (thus in particular also in Boate

logic) aFig.l. Isolines of the three measures introduced in (20)—(22),

drawn with respect to the coordinatéﬁ%‘, ‘%') of points
forming the proposed generalization of R(SC curves.

6 Experimentally testing the approach

The propo;ed approach .has been so far expenment%lyand C, are simultaneously valid in at least the pro-
tested for six rules extraction methods on three benchmark .. e G
ortion s of the data [13]. Hencelf ., , = 1iff 4 >
data sets, as well as on data from one real-world knowle a . 5,6 atb =
. —42— > s. As was pointed out in [14], rules with
discovery task [20]. For each method, 1-3 parameters were a+btctd . .
. IS quantifier are actually association rules with support
tuned, the values of them being chosen among 2—-10 pos- ' .
L L and confidencé@. Each curve corresponds to changing only
sibilities. For some data sets, some combinations of para- S
) -one of the parameteks 6, the value of the other is fixed.
meter values did not extract any rules. Whenever a particu-
lar combination of parameter vaules extracted a nonempty
ruleset from the considered data, it was tested on those data Conclusions
by means of a 10-fold crossvalidation. Consequently, the
number of rulesets extracted from each data set varied bee paper has dealt with quality measures of rules
tween 1000 and 1500. extracted from data, though not in the usual context of in-
As a very brief illustration, Figure 2 shows the prodividual rules, but in the context of whole rulesets. Three
posed generalization of ROC curves for two rulesets einds of extensions of measures already in use for classi-
tracted from the best known benchmark set, the iris dafi@ation rulesets have been proposed. In addition, the con-
originally used in 1930s by R.A. Fisher [8], by means afept of ROC-curves has been generalized, to enable inves-
the GUHA quantifiefounded implicationThis quantifier, tigating the dependence of general rulesets on the values of
denoted— g, 5,0 € (0,1) has its truth functioril'f ., parameters of the extraction method.
defined in such a way that the rule. —, C, is valid The paper actuallly discusses some general aspects re-
exactly for those data for which the conditional probabilated to an ongoing investigation into the possibility te re
ity p(C,|A,.) of the validity of C,. conditioned orA,., esti- flect uncertain validity of rulesets extracted from datawhe

mated with the unbiased estimaté;, is at least, whereas measuring their quality. The outcomes of that investigatio

32 Martin Holgha

(a) Changing s, 6= 0.9 6. D. Dubois, Hillermeier, and H. Prade. A systematic ap-
™ proach to the assessment of fuzzy association rulesta
i ’ Mining and Knowledge Discover$3:167-192, 2006.
H 7. W. Duch, R. Adamczak, and K. Grabczewski. A new
.5 methodology of extraction, optimization and application of

100

%l

50 crisp and fuzzy logical ruleslEEE Transactions on Neural
Networks 11:277-306, 2000.

8. R.A.Fisher. The use of multiple measurements in taxonomic
problems.Annals of Eugenics7:179-188, 1936.

‘ 9. A.A. Freitas. Data Mining and Knowledge Discovery with

0 50 o 1% 100 Evolutionary Algorithms Springer Verlag, Berlin, 2002.

J. kirnkranz and P.A. Flach. ROC 'n’ rule learning — to-

wards a better understanding of covering algorithnva-

- chine Learning58:39-77, 2005.
: 11. L. Geng and H.J. Hamilton. Choosing the right lens: Finding
what is interesting in data mining. In F. Guillet and H.J.

50/ Hamilton, editorsQuality Measures in Data Miningpages

(b) Changing 6, s = 0.15 10.

3-24. Springer Verlag, Berlin, 2007.
12. P. Hhjek. Metamathematics of Fuzzy Logi&luwer Acad-
emic Publishers, Dordrecht, 1998.
13. P. Hajek and T. Havanek. Mechanizing Hypothesis Forma-
% 50 & %] 100 tion. Springer Verlag, Berlin, 1978.
14. P. Hajek and M. Hol@a. Formal logics of discovery and hy-

Fig. 2. Example of generalized ROC curves for rulesets extracted POthesis formation by machinelheoretical Computer Sci-

from the iris data by means of the GUHA quantifier founded im-_€NC& 292:345-357, 2003. -
plication. 15. D.J. Hand. Construction and Assessment of Classification

Rules John Wiley and Sons, New York, 1997.
16. R.J. Hilderman and T. Peckham. Statistical methodologies
for mining potentially interesting contrast sets. In F. Guillet

are intended to be published elsewhere [17]. They com- &nd H.J. Hamilton, editorQuality Measures in Data Min-
ng, pages 153-177. Springer Verlag, Berlin, 2007.

prise theoretical elaboration of the last proposed kind of i 5 ,

extensions of ruleset quality measures, as well as resdits M. Holeha. Measures of ruleset quality capable to represent
. . ' ncertain validity. Submitted timternational Journal of Ap-

of extensive experimental tests on rulesets extracted from ;roximaltevRelag)ninug ! ' . P

benchmark and real-world data sets by means of six mef§- \ Holgia. Fuzzy hypotheses for Guha implicatiofsizzy

ods attempting to cover a possibly bro_ad spectrum of rules sets and Systen®8:101-125, 1998.

extraction methods. Those results indicate that the ag- M. Holéa. Fuzzy hypotheses testing in the framework of

proach is feasible and can contribute to the ultimate objec- fuzzy logic. Fuzzy Sets and Systeriig5:229-252, 2004.

tive of quality measures: to allow comparing the knowk0. M. Holea. Neural networks for extraction of fuzzy logic

edge extracted with different data mining methods and in- rules with application to EEG data. In B. Ribeiro, R.F. Al-

vestigating how the extracted knowledge depends on the Precht, and A. Dobnikar, editorédaptive and Natural Com-
values of their parameters. puting Algorithms pages 369-372. Springer Verlag, Wien,

2005.
21. M. Holala. Piecewise-linear neural networks and their rela-

References tionship to rule extraction from dataNeural Computation
18:2813-2853, 2006.
1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I22. J.S.R. Jang. ANFIS: Adaptive-network-based fuzzy infer-

Verkamo. Fast discovery of association rules.Aivances ence systemlEEE Transactions on Systems, Man, and Cy-
in Knowledge Discovery and Data Miningages 307—-328. bernetics 23:665-685, 1993.
AAAI Press, Menlo Park, 1996. 23. J.S.R.Jang and C.T. Sun. Neuro-fuzzy modeling and control.

2. S.D. Bay and M.J. Pazzani. Detecting group differences. The Proceedings of the IEEB3:378-406, 1995.
mining contrast setsData Mining and Knowledge Discov-24. K.A. Kaufman and R.S. Michalski. An adjustable description
ery, 5:213-246, 2001. quality measure for pattern discovery using the AQ method-
3. L.Breiman, J.H.Friedman, R.A.Olshen, and C.J. Stone. ology. Journal of Intelligent Information System&4:199—

Classification and Regression Tre@¥adsworth, Belmont, 216, 2000.
1984. 25. E.P. Klement, R. Mesiar, and E. Pagriangular Norms

4. P.Clark and R. Boswell. Rule induction with CN2: Some re- Kluwer Academic Publishers, Dordrecht, 2000.
cent improvements. IMachine Learning — EWSL-9pages 26. S. Lallich, O. Teytaud, and E. Prudhomme. Association rule
151-163. Springer Verlag, New York, 1991. interestingness: Measure and statistical validation. In F. Guil-
5. L. De RaedtInteractive Theory Revision: An Inductive Logic let and H.J. Hamilton, editorQQuality Measures in Data
Programming ApproachAcademic Press, London, 1992. Mining, pages 251-275. Springer Verlag, Berlin, 2007.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

P. Lenca, B. Vaiilant, P. Meyer, and S. Lalich. Associa-
tion rule interestingness meaures: Experimental and theoret-
ical studies. In F. Guillet and H.J. Hamilton, edito@ual-

ity Measures in Data Miningpages 51—76. Springer Verlag,
Berlin, 2007.

L. Lerman and J. A&z Une mesure probabiliste con-
textuelle discriminante de qualite dégtes d’association. In
EGC 2003: Extraction et Gestion des Connaissanpages
247-263. Hermes Science Publications, Lavoisier, 2003.

K. McGarry. A survey of interestingness measures for
knowledge discovery. Knowledge Engineering Review
20:39-61, 2005.

R.S. Michalski. Knowledge acquisition through conceptual
clustering: A theoretical framework and algorithm for parti-
tioning data into conjunctive concepts$nternational Jour-
nal of Policy Analysis and Information System$219-243,
1980.

R.S. Michalski and K.A. Kaufman. Learning patterns in
noisy data. IlMachine Learning and Its Applicationpages
22-38. Springer Verlag, New York, 2001.

S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: Sur-
vey in soft computing framework.IEEE Transactions on
Neural Networks11:748-768, 2000.

S. Muggleton. Inductive Logic Programming Academic
Press, London, 1992.

D. Nauck. Fuzzy data analysis with NEFCLAS $ter-
national Journal of Approximate Reasonjri2R:103-130,
2002.

D. Nauck and R. Kruse. NEFCLASS-X: A neuro-fuzzy tool
to build readable fuzzy classifier8T Technology Journal
3:180-192, 1998.

V. Nowak, I. Perfilieva, A. Dvedak, C.Q. Chen, Q. Wei, and
P. Yan. Mining pure linguistic associations from numerical
data. To appear in International Journal of Approximate Rea-
soning.

J. Quinlan.C4.5: Programs for Machine Learningviorgan
Kaufmann Publishers, San Francisco, 1992.

A.B. Tickle, R. Andrews, M. Golea, and J. Diederich. The
truth will come to light: Directions and challenges in extract-
ing rules from trained artificial neural networkEEE Trans-
actions on Neural Network®:1057-1068, 1998.

H. Tsukimoto. Extracting rules from trained neural networks.
|IEEE Transactions on Neural Networkkl:333—-389, 2000.
M.J. Zaki, S. Parathasarathy, M. Ogihara, and W. Li. New
parallel algorithms for fast discovery of association rules.
Data Mining and Knowledge Discovery:343-373, 1997.

Measures of quality of rulesets extracted from data

33

The coin flipping selector for selective encryptiof

Richard Osteég

Department of Computer Science,
Faculty of Mathematics, Physics and Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovak Republic
ostertag@lcs. f nph. uni ba. sk, http://ww. dcs. f nph. uni ba. sk

Abstract. Some applications require high-speed encryption evelh. One-time pad is used as the encrypting algorithm.

at the expense of reduced security. With a fixed secure, but slow One-time pad is the first and only encryption algorithm

cryptographic algorithm, there still is an appealing possibility for for which there is a proof of perfect secrecy if the key is

encryption speedup by encrypting only some portion of data. In - tryly random, never reused, and kept secret. We choose

this paper we analyze the ciphertext security obtained this way. ths cipher to abstract from eventual weaknesses of the

We show that it is not possible to exclude from encryption even . o1 cinher which can be exploited by attacker. The-

a small constant fraction of data without significantly compro-

mising security. o_retical results obtained this way can be used in prac-

tice as upper bounds for security of any other selected

encryption algorithm.

2. Attacker can manage no more than ciphertext-only at-
tack.

The attacker is assumed to have access only to a ci-
Volume of data is nowadays bigger than ever. Multimedia phertext and full description of selective encryption al-
are atypical example. Fast real-time on-demand encryption gorithm. This means that the attacker knows the enci-
of multiple multimedia streams requires specialized pow- phering algorithm and also the method of bit selection
erful hardware. for enciphering.

It is sometimes not possible (or economical) to us8. Attack is peformed using brute force.
powerful enough hardware solution. Then we can replace Key space is searched from the most probable key to
the encryption algorithm with a faster — although maybe the least probable key omitting impossible keys to min-
less secure one. Another possibility is to use selective en- imize the attacker’s work. We assume that the selection
cryption with the original secure algorithm. In this case we algorithm chooses bits for encrypting independently

1 Motivation, assumptions, goals

encrypt only some fraction of plaintext. Lgtdenote the
fraction of encrypted plaintext. The parameteanges be-
tween0 (no encryption) and (full encryption) and is used

from plaintext content (besides its length). In general
it cannot be expected that a better attack is possible.
However in actual situation specific properties

to control the balance between the encryption speedup and plaintext can lead to a more efficient attack.
the security. 4. Attack complexity measure is defined as a fraction of
For example, selective encryption is used for on-line key space that attacker has to search in average to find
encryption of MPEG video [1]. In this case, the knowledge the key.
of the internal data structure is exploited in order to eptry ~ Attacker tries every possible key until he finds one that
only DC coefficients and sign bits of motion vectors. Sim- deciphers to the desired plaintext. We ignore the com-
ilar techniques are also used for pictures [2]. For overview Plexity of verifying whether deciphered plaintext is the
of selective encryption methods see [3]. Security of these Original one. For selective encryption with= 1 (one-
algorithms is not formally proved. time p_ad), the ex_pecte_d attack complexityl j&. Fo_r
We formally analyze security of selective encryption S€lective encryption witlp = 0 expected complexity
in this paper. As we are interested in a general case, we IS 0- We consider every cipher for which attack com-
make no assumptions on the internal data structure or on PI€Xity approaches as plaintext length goes teoo
statistical properties of the plaintext. Insecure.

We originally hoped that it could be possible to selec- \y\a 35sume that encryptingpercent of plaintext bits

tively encrypt pprtion of plaintext while maintaining rédyiith selective encryption reduces sender's work toer-
sonable security. However, we show that this doggnt omitting overhead necessary for selecting those bits.

not work. Since we prove a negative result, itis only bettgy w,is sityation we will be satisfied with (and accept this

if assumptions are more disadvantageous for the attackeleasonable degradation of security) reduction of attack
than in practical usage:

! E.g. high redundancy of plaintext poses an even greater risk for

* Supported by VEGA grant No. 1/3106/06. selective encryption then for full text encryption.

36 Richard Oste#y

complexity from1/2 to p/2, because this means that a3.1 Average fraction of key space equation

tacker’s work is in average also reducegbioercent but no

more. Firstly we need to determine the probability of the key of
lengthn with exactly & ones on fixedly chosen positions
if in the selective encryption the coin flipping selector is

2 Selectors used. Let denote this probability B¥ (n, k, p), wherep is

. ,) i) probability of encrypting.
In this paper we will assume that plaintext is a bit sequence

— sequence of zeros and ones. het 0 denote plaintext Theorem 1.

sequence length. If we want to selectively encrypt . i
p € (0,1) percent of plaintext, then we have to choose PK(n, k,p) = (E) (1 _ B)

k = np bits of plaintext for encryption. In [4] we analyzed
different ways of bit selection for selective encryptione Wp 0.
introduced the notion of selector — algorithm which per-
forms selection of the: bits for encryption based on n=k o 1
and p. The output of selector on input and p is a bit ~ PK(n,k,p) = » (,)pk”(l —p) T ——,
sequence of length with & = np ones — indicating po- i=0 L 2
sitions of bits chosen for encryption. Selective encryptio

algorithm proceeds in the following way: because we can get the key with exadtlgnes on fixedly
chosen positions from any selection with exaéthyi ones

1. The selector selects= np bits for encryption. with k& ones on those fixedly chosen positions a@rahes
2. Encrypt only selected bits with one-time gad arbitrarily chosen from remaining — & positions. Also

Asit b del limited to select h_gﬁe—time pad has to select for thasgositions bitl and
s it can be seen our model was limited to selections whi remainingi positions bit0 (thus we gep~(+9). We

have exactlyk = np bits selected. In [4] we proved tha_'i:an simplify the last equation as follows:
among the analyzed selectors only fully random selection
of exactlyp percents of bits provides reasonable security L n—k _
for p > 1/2. In this place it is necessary to mention that (B) 3 (” - k) (E)Z (1= p)nh—i —
in [4] we measured the attack complexity by the number of 2 i—0 ¢ 2
possible plaintexts

Because we are interested in the valuep ef 1/2 we D\NF /P n—k P\ F p\"—k
relax the assumption that exackly= np bits have to be se- (2) (’ +(1-)) = () (1 - ’) :
lected, and we only require that in averdgleits have to be
selected. This relaxation allows for using a selector which
for every bit flips a biased coin — one falls with probabil- 4 2ve of the functiolPK (n, k, p) with respect to
ity p, zero with probabilityl — p. Lets call this selector , ._.
coin flipping selector. We hope that this step allow usto go
with p below1/2 because it introduce more uncertainty to PK(n,k,p)In (2p> .
attacker as all plaintext are now possible. For that reason —p
we have to also change our attack complexity measure &@idce for all studied» > 0 and0 < p < 1 expression
we choose one mentioned in previous section. ln(ﬁ) is negative and®K(n, k, p) is positive we know,
thatPK(n, k, p) is strictly decreasing function with respect
to k € (0,n). Thus effective attacker will start searching
key space from the most probaloié key to the least prob-

. . able 1™ key in direction of increasing number of ones in
In the rest of the paper we will show the behavior of tr}%e key. S())/rt alb” keys in this ordéhgn an array with in-

attack complexity for the coin flipping'sglgctor for Iarg%exes froml to 2. Then denotd.(n, k) index of first key

messages (we will assume thagoes to infinity). of lengthn with k& ones and/(n, k) will denote index of
the last key of lengtm with & ones. It can easily be seen
that:

3 The coin flipping selector analysis

k—1 k
Z Xor them with truly random noise. L(n,k)=1+ Z (n> yU(n, k) = Z <n)
3 For example, lep = 1/2. For a random bit selector there are i—o \! i—o \!
2"~1 possible plaintexts for every ciphertext. If the selector do
not use randomness and deterministically selects every evé®rdering of keys with equal number of ones is irrelevant since
bit, there are onlp™/? possible plaintexts. all have the same probability. It can be arbitrary but fixed.

The coin flipping selector for selective encryption 37

Theorem 2. Let I(n,p) be a position in the above men- Let us denote average fraction of key space which at-
tioned array where attacker finds the key in average casacker has to search before he finds the keyés, p).
ThenI(n,p) equals to: Now, when we havé (n, p), equation forF' is obvious:

1 1 /2—p\7 n k k 1
L) S () 02)
k=0 =0)

(50 () G

F(n,p) =

2n +1

Proof. LetPr(n, p,) be probability that attacker finds keyalthough we have assumed that 1 we can verify, that

in positioni. Then: F(n,1) = 1/2 as expected. We can not us&n,0) be-
gn causePr(n, 0, k) is not a valid probability distribution over

n,p) = Z iPr(n, p,i). keys of lengthn.
SincePr(n, p, i) is constant for all betweenL(n, k) and 3.2 Asymptotics

U(n, k) we can write: Based on Figure 1 we will now try to show that for

all p < 1 holdslim,, ., F'(n,p) = 0. This will be unwel-

no| VR ‘ come result. It means that even if we encrypt nearly the en-

I(n,p) Z Z iPK(n, k,p) tire plaintext up to some small fraction, this small fraotio

k=0 |i=L(n.k) is still sufficient to reduce attack complexity to a negligib

SincePK(n, k, p) does not depend arwe can move it in fraction compared to full text encryption.
front of inner sum. The inner sum then reduces to:

U(n,k)

) L(n,k)+U(n,k F(n,0.25) — F(n,0.75) ----
S =W k) - Lin) 1) RO F(n.050) — F(n,0.90) -
i=L(n,k) 0.50 N R 1 _ T T
Thus equation fof (n, p) changes to: g'iz
n k . ™ el
1/n n n 0.35 H- T
PK — 1-— 2 . L T
kzzo (n’k’p)2<k) [(k> ’ ; (Z)} 0.30 \\ E1 T S S — S
Mark this term asc(n, k). 025 \ ~~~~~~~~~~~~~
0.20
It is obvious thate(n,0) = 2 andx(n k+1)—xz(nk) = 015 \
(")), Sox(n, k) = 1+ S ("T1). After substituting
kil =00 1 0.10
z(n, k) andPK(n, k, p) we can writel (n, p) as:
L T e e R e e S e
0.00

0 10 20 30 40 50 60 70 80 90 100
n (length of ciphertext)

INONER WIS o)

Then after factoring ou¢1 - g)” we get:

-0 (55) () [(1)

1=0
By expandlng summand and using binomial theorem for Since we want to prove that the limit goes to zero, it is

Fig. 1. This graph indicates thatim F'(n,p) = 0.

n—oo

7+ 1) we get: possible to simplify the proof by realizing that(n, p) > 0
and show that some simpler upper boufadn,p) +
1 [2 \" fi(n,p) + fa(n,p) > F(n,p) goes to zero too. We choose
“(1-3% +
2 (2) 2—p fi(n,p) as follows
1
n. k k f n,p —
2 2 2—p k) < i n k
k=0 i=0 f (TL) . 1 2 —D p n Sn+1
S TEE I 2-p) \k)7*

(50 S (65) (s () 1

2_ n
g P =g (2]))

38 Richard Oste#y

whereS,ﬁ}Jrl denotest:0 (”jl) andais § — §n8 To By solvmg this inequality we get that |t holds for every
prove the main limit it is sufficient to show that for allt > £n. Because we start with= % — §n8 , we will now

i € {0,1,2} lim, . fi(n,p) equals to zero. For = 0 solve for whichn holds:

it is trivial so we move ta = 1. In the proof we will use

following lemma. n 1 s _p 1 1 3
Lemmal (for proof see [5]).Let o(n) be any function n
sattisfyinglim, . ¢(n) = oo. Then Now we have showed that for all€ (0, 1), if we setm to
8
n/2—p(n)vn (n 1)®
o SRR (25)" then
n—oo on
1 s
Theorem 3. Letp < 1. Thenlim,,_, f1(n,p) = 0. Vn > mVk > g 5715 Dag > Gyl
Proof. Firstly we replacef; (n, p) with even simpler upper 0
bound:
1 2 - p\" o P ki Now we are able to proof the last theorem on the limit
hlnp) < oo (2> Sotty () () < of function fo.
Theorem 4. Letp < 1. Thenlim,,_, o f2(n,p) = 0.
< 1 2—p gn+l Z _
- 2ntl 2 * — 2—p k Proof. Again we replacefz(n, p) with even simpler upper

bound:

() e (p) - e
2ntl 2 * \2-p 2ntl 1 (2—19) Z(p) (n> gntl <
k

2n+l \ 2 2—p < -

_ (71—1)%—0—1

Now we can sep(n) = N and use lemma 1: k=a <on+1
s, TR e 2\ (2) (o
o S B, (26 0
Becasef; (n,p) > 0 the theorem is proved. | ak

Now we use lemma 3 and the fact that we are interested in
limit for n — oo. Thus for large enough we can upper
bound the last equation by

In the proof fori = 2 we will utilize another two lem-
mas.

Lemma2 (for proof see [6] equation 9.98)Let |k| <

7ns Then binomial coefficient around center for— oo (2 - p>n (n—a+1)
can be aproximated as follows: 2

(s70) =y (1+0 () (350 e (55) (1) <
Lemma 3. Letay = (ﬁ)k(z) for k € {0,1,...,n}. < (2_p)nn(D)a (n) _

Then the following inequality holds: 2 2-p a
1 n z ln%
VpE(O,l)HmVn>ka227*TL%Iak>ak+1« = 2-p P\ (2zp)? n(") =

2 2 2 2—p D o
Proof. We rewrite theorem inequality as a fraction. So we s
getvp € (0,1) ImVn > mVk > 2 — Ln% . (2 —p)p|? (2p>2"8 < n)

= n 5 -
n P n __ lng
—k -k 2- 27 2
WAl g P T TR 27P . N i .
ay 2—pk+1 k+1 P In the sequel we get rid of binomial coefficient by applying

lemma 2. We omit thé + O(n~ %) factor from following
Becausei—k < b k it is sufficient to find an arbitraryn equations to save space.

k+1
thatVn > m V& > no_ 7n8 :
z 1ns n ln%)2
n—k 2-p » [(2—p>]2(2 p>2 08
<—@n<k+k—@n<k— o nN——=€ "=
k p P D 2 p 5n

45

40
0.8
35

10
30

25

ax

20

15

10

250
225
200
175

0.8
74

150

125

ay /103

100
75
50

25

50

45

0.8
40

35
30

148

25

ay / 10%°

20
15
10

20 40 60 80 100 120 140k

Fig. 2. These graphs illustrate how value @f starts to decrease

fromk = 2 — %n% if large enoughn is used ¢ > m). For

p = 0.8 based on lemma 3 we get that approximately equals
to 73.1.

39

oofor

1
3N

2

~[2-pp)®

The coin flipping selector for selective encryption
2-p

5")

We want to prove now that the last equation goes to zero as
n approachesc. We will do so by showing that logarithm

of the equation goes teco. We also omit constant factor
\/2/m as itis irrelevant in this context.

\/ﬁe_%%

n 1n(2—p)p+1n§ In <2—p) +1 In n—1 Vn+0 (n‘é)

2 2 2 2

Since In(2 — p)p is most influencing summand aggoes

to infinity andIn(2 — p)p < 0 we have proved that the
equation goes te-co. If we again omitthd +O(n~) fac-
tor from the right-hand side of inequality we get for large

enoughn that

0< fa(n,p) < \/Z[(Zp)p}g <2pp>

As we have proved that the right-hand side goes to zero
asn goes to infinity, we are done. a

ool

n

N

b,

Vne~

4 Conclusion

In this paper we have showed that even the coin flipping
selector tremendously decreases the security of selective
encryption for anyp < 1. In other words it means that
even if we encrypt nearly the entire plaintext up to some
small fraction, this small fraction is still enough to reéuc
attack complexity to negligible fraction compared to full
text encryption. The same result holds for random bit selec-
tor from [4] if the attacker and the attack complexity from
this paper is assumed. As a conclusion we can say, that
every studied selector significantly degrades security eve
if the encrypted fraction is closed tbfor large enough
messages.

References

1. Shi, C., Bhargava, B.: A fast mpeg video encryption algo-
rithm. In: Proceedings of the sixth ACM international confer-
ence on Multimedia, ACM Press (1998) 81-88

. Droogenbroeck, M.V., Benedett, R.: Techniques for a selec-
tive encryption of uncompressed and compressed images. In:
Proceedings of ACIVS 2002 (Advanced Concepts for Intelli-
gent Vision Systems), Ghent, Belgium (2002) 90 — 97

. Liu, X., Eskicioglu, A.M.: Selective encryption of multimedia

content in distribution networks: Challenges and new direc-

tions. ASTED International Conference on Communications,

Internet and Information Technology (CIIT 2003) (2003)

Osterdg, R., Ka&inar, P.. Anayza selektorov pre se-

lektivneSifrovanie. In: ITAT 2006: Information Technologies-

Applications and Theory, $&: PONT (2006) 131-137

4.

40 Richard Oste#y

5. Olejar, D., Stanek, M.: On cryptographic properties of ran-
dom Boolean functions. J.UCS: Journal of Universal Com-
puter Sciencd (1998) 705-718

6. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathe-
matics: A Foundation for Computer Science. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1994)

On PCGS and FRR-automata

Dana Pardubgk!, Martin Patek*2, and Friedrich Ott®

! Department of Computer Science, Comenius University, Bratislava
par dubska@ics. f nph. uni ba. sk
2 Department of Computer Science, Charles University, Prague
Martin. Pl atek@ff.cuni.cz
3 Fachbereich Elektrotechnik/Informatik, UniveitiKassel, Kassel
otto@heory.informatik. uni-kassel . de

Abstract. This paper presents the second part of the technidal order to ensure theorrectness preserving propertgr
report [7] in which the study of the relation between Parallefhe analysis, i.e., after any restart in an accepting coaput
Communicating Grammar SystenfJGS) and Freely Rewrit- tion the content of the tape is a word from the characteristic
ing Restarting AutolmatfﬁR) has begn !nltlgted. The first Partianguage. In fact, we mainly considstrongly lexicalized

of [7] is presented in [6]. Here, the distribution and generationagiarting automata. This additional restriction recaiirat
complexity forPCGS are introduced and studied. It is shownaII rewrite operations are deletions

that analysis by reduction fd?CGS with distribution complexity Parallel Communicating Grammar Systems are able to

bounded by a constatand generation complexity bounded bﬁ . X . -
some other constarjtcan be implemented by strongly linearize@#@ndle creations of copies of generated strings and their

deterministicFRR-automata withk rewrites per cycle. We show€gular mappings in a natural way. This ability strongly
infinite hierarchies of classes of languages based on the pararf@sembles the generation of coordinations in Czech (and
tersk, j and on the notion askeleton some other natural languages) sentences, where coordina-
tions are certain contiguous segments (not only lexicdlize
elements). However, the synonymy of coordinations has
1 Introduction not yet been modelled appropriately.
In this paper the notions of distribution and genera-
This paper deals with the comparison of Freely Rewritirigpn complexity forPCGS are introduced and studied. It
Restarting AutomataFRRR, [4]) and Parallel Communi- is shown that analysis by reduction fBICGS with dis-
cating Grammar SystemBPCGS, [1, 8]). Namely, the so- tribution complexity bounded by a constaniand gener-
called linearized-RR-automaton is used for this purposeation complexity bounded by some other constarmian
The motivation for our study is the usefulness of both moble implemented by strongly linearized determinisiRR-
els in computational linguistics. automata witht rewrites per cycle. We show infinite hier-
Freely rewriting restarting automata form a suigrchies of classes of languages based on the paramejers
able tool for modelling the so-callednalysis by reduc- and on the notion agkeleton The notion of skeleton is in-
tion. Analysis by reduction in general facilitates the devefroduced in order to model the principle of so-called seg-
opment and testing of categories for syntactic and semarents in (Czech) sentences (or in text). The elements of
tic disambiguation of sentences of natural languages. Tkeletons are so-callédlands which serve to model the
Functional Generative Description for the Czech language-called separators of segments (see [3]).
developed in Prague (see, e.g., [2]) is based on this method.
FRR automata work on so-callecharacteristic lan- _ _
guagesthat is, on languages with auxiliary symbols (ca2 Basic notions
egories) included in addition to the input symbols. The

proper language is obtained from a characteristic languagefreely rewriting restarting automaton abbreviated
by re_r_noving all auxiliary symbols_ from it§ sentences. Bys FRR-automaton, is described by an 8-tuplé =
requiring that the automatz_i_con5|dered lnearizedwe (Q,%.T,¢,$,q0, k,5). It consists of a finite-state control,
restrict the number of auxiliary symbols allowed on thg fiexiple tape, and a read/write window of a fixed size
tape by a function linear in the number of terminals on t@ez 1. HereQ denotes a finite set of (internal) states that
tape. We mainly focus on deterministic restarting automatgntains the initial statey, > is a finite input alphabet, and
CF is a finite tape alphabet that contaib's The elements of

(VEGA) under contract “Theory of Models, Complexity anOle‘ ~. X are calledauxiliary symbols The additional sym-
Algorithms” bolsc$ ¢ I" are used as markers for the left and right end

** Partially supported by the Grant Agency of the Czech Repubfi the workspace, respectively. They cannot be removed
under Grant-No. 405/08/0681 and by the program Informatifom the tape. The behavior i/ is described by a tran-
Society under project 1IET100300517. sition functioné that associates transition steps to certain

* Partially supported by the Slovak Grant Agency for Scien

42 Dana Pardubsket al.

pairs of the form(¢, «) consisting of a state and a pos- For each typeX of restarting automata, we ugk; (X)

sible contentu of the read/write window. There are fourand £p(X) to denote the class of all characteristic lan-
types of transition stepsnove-right stepsrewrite steps guages and the class of all proper languages of automata
restart stepsandaccept stepsA move-right stegimply of this type.

shifts the read/write window one position to the right and Following basic properties &fRR-automata are often
changes the internal state.r@write stepcausesV to re- used in proofs.

pl_a ce a non-empty prefix of the content of t_he read/W”te(Correctness Preserving Property.) Each deterministic

window by a shorter word, thereby shortening the Iengtk‘: . L :
RR-automaton M is correctness preservingi.e., if

of the tape, and to change the state. Further, the read/wytg Lo(M) andu H¢, v, thenv € Lo (M), too

window is placed immediately to the right of the string © M © R

A restart sterauses\/ to place its read/write window over(Cycle Pumping Lemma.) For anyFRR-automaton},

the left end of the tape, so that the first symbol it sees is tihere exists a constaptsuch that the following property

left sentineli¢ and to reenter the initial statg. Finally, an holds. Assume thatzvyz F§, ux’'vy'z is a cycle of M,

accept steimply causes// to halt and accept. where v = wjus---u, for some non-empty words

A configurationof M is described by a stringg, “1:--->un and an integen > p. Then there exist
whereq € Q, and eithera = ¢ (the empty word) and 7+ € N+, 1 <7 <s < n, such that
3 e {@}F* {$} ora € {c}[’* andg ¢ I'* {$}, here ul"'urfl(ur"‘usfl)lus"'unxvyz '_?U .
q represents the current statgj is the current content of o U “Tfl(ur T “S*_l)lus T UnTUY 2
the tape, and it is understood that the window contains ds foralli > 0, thatis,u, - --us—; is @ “pumping fac-
first & symbols of3 or all of 3 when| 3| < k. A restarting tor” in the abqve cycle. S|r_n|Ia_rIy, such a pumping factor
configurationis of the formgocw$, wherew € I'*. can be found in any_factorlzatlon_ of _Iength greater thpan

of v or z as well as in any factorization of length greater

Any computation of M consists of certain phasesy, ., of 4 word accepted in a tail computation.
A phase, called ayclg starts in a restarting configuration.

The window is shifted along the tape by move-right and We focus our attention ofFRR-automata, for which
rewrite operations until a restart operation is performed athe use of auxiliary symbols is less restricted than in [4].
thus a new restarting configuration is reached. If no furtl
restart operation is performed, the computation necdgs
finishes in a halting configuration — such a phase is call
atail. It is required that in each cycle/ performs at least
one rewrite step. As each rewrite step shortens the taf@), TheFRR-automatonl/ is calledlinearizedif there ex-
we see that each cycle reduces the length of the tape. Weists a constanj € N, such thatw|r_x < j-|w|s+j

re ..
efiniton 1. Let M = (Q,X,Ic,$,q0,k,0) be an
R-automaton|z|x denotes the number of occurrences
of symbols froni< in word .

use the notatiom +$, v to denote a cycle ol that be- for eachw € Lc(M).

gins with the restarting configuratiogcu$ and ends with (b) M is calledstrongly linearizedf it is linearized, and
the restarting configuratioq,cv$; the relationl—f\} is the if each of its rewrite operations just deletes some sym-
reflexive and transitive closure bf;,. bols.

Awordw € I'* is acceptedby M, if there is a compu- Since linearized~RR automata use linear space only,
tation which starts from the restarting configuratignw$, we have the following:

and ends with an application of an accept stepZBy M))] .
we denote the language consisting of all words accepfe@rollary 1. If M is a linearizedFRR-automaton, then
by M. Itis thecharacteristic languagef M. the proper languagé.p (1) is context-sensitive.

By Pr” we denote the projection from™* onto 5%, In what follows we are mainly interested in strongly
that is,Pr™ is the morphism defined by — a (a € X) linearizedFRR-automata and their proper languages. We
andA — e (A € '\ X). If v := Pr¥(w), thenv is the denote by(S)LNRR the class of (strongly) linearized de-
X-projectionof w, andw is anexpanded versioaf v. For - terministicFRR-automata, bjN(S)LnRR the class of non-
alanguage. C I'*, Pr¥(L) := {Pr*(w) |w € L}. deterministic (strongly) linearizeBRR-automata, and by

In recent papers restarting automata were mainly uged the subclass ofi-automata which execute at mast
as acceptors. Thénput) languageaccepted by a restart-rewrite steps in any cycle.
ing automatonV/ is the setl.(M) := Lc(M) N X*. Here,
rr_10tivated byllingu_istic consideration; to model the analéjl Parallel Communicating Grammar Systems
sis by reduction with parallel processing, we are rather in-
terested in the so-callgaroper language of\/, which is A PCGS of degreem, m > 1, is an(m + 1)-tuple
the set of wordd.p (M) := Pr¥(Lc(M)). Hence, aword IT = (Gy,...,Gy, K), where for alli € {1,...,m},

v € X* belongs toLp (M) if and only if there exists an G; = (N;,T,S;, P;), so-called component grammars,
expanded version of v such thatu € Lq(M). are regular grammars satisfyiny; N7 = () and K C

PCGS & RA (Proofs) 43

{@Q1,...,Qm}NU~, N;is a set of special symbols,inthis communication step, it may be replaced in one of the
calledcommunication symbals next communication steps. Communication steps are per-
A configurationis anm-tuple C' = (x1,...,2,), z; = formed until no more communication symbols are present

a; A, ap € T* A; € (N; Ue); we callz; thei-th com- or the derivation is blocked, because no communication
ponent of the configuratiofresp. component). Theon- symbol can be replaced in the last communication step.

terminal cutof configurationC' is them—tuple N(C) = The (terminal) languageL (IT) generated by RCGS I7 is

(A1, 4s,... Am). If the r_lontermmal FU.W(C) contains a set of the terminal words generated®y (in cooperation
at least one communication symbol, it is denoféd'(C) _ . i
with the other grammars):

and called an NC-cut.
We say that aconfiguration X = (z1,...,2,) di- LU ={a€T*[(S1,....Sm) =" (@, 2., fm) }-
rectly derives a configuratiol” = (y1,...,ym), and write Let D = D(w) = Cy,Cy,...,C; be a derivation of
X =Y, if Yis derived fromX by onegenerativeor com- w by IT; D(w), II andw are fixed in what follows. With
municationstep (see below). Informally, in a communicaderivationD(w), several notions can be associated which
tion step any occurrence of a communication symRel help to analyze the derivation éf and to unambiguously
in X is substituted by thé-th component of{ (assuming determinew.
that this component does not contain any communicatidhe trace of a (sub)derivationD is the sequenc&'(D)
symbol). = N(Cy)N(C1)...N(C) of the nonterminal cuts of the

1. (Generative step) Ifr;|x = O0foralli,1 <i < m, individual configurations oD .

then The NC-sequences defined analogouslyyC'S(D) is the
z; = y; forz; € T*N; and sequence of the NC-cuts of the configurations in the
y; = x; forx; € T, (sub)derivationD. Let us recall that any NC-cut contains

2. (Communication step) lfr;|x > 0 for somei, 1 < at least one communication symbol.
e

;; m thelrg ftc;]reeleclr;c ?r?chst?ratg_’“ = 21 Qi 2k A cycle in a derivationis a subsequenc® (C), N(C}),
Q. e i Wing | u ' _q. - .., N(C;), N(C) of nonterminal cuts of the derivatitn
(@) if|zj, |k = 0, theny, = z,x;, andy;, = S;,; : i)
e O _ in which the first and the last cutsV(C)) are the same.
(b) if |z, |k = 1, thenyy = xy. . .)
A) ~If N(C) is an NC-cut, and none of the intermediate cuts
For all remaining indices, for whichz, does not contain x(¢;) is an NC-cut, then the cycle is calledcammuni-
a communication symbol an@, has not occurred in anycation cycle A generative cyclés defined analogously, we

of thew;'s, we puty, = ;. only require thahoneof its cuts is an NC-cut.

Now, we describe the derivations RCGSs. A deri- Note that, if there is a cycle in the derivatidd(w),
vationof aPCGS II is a sequence of configuratiohs = then manifold repetition of the cycle is possible and the
C1,Cy, ..., Cy, whereC; = Cipy in 11 If the first com- yesylting derivation is again a derivation of some terminal

ponent ofC, is a terminal wordw, then we usually write \word. We call a derivationD (w) reduced if each repeti-
D(w) instead ofD. Analogously, we denote by’(D) the tion of each of its cycles leads tolanger terminal word
terminal word generated within the derivatidn. Every . lw| < |w|. Obviously, to every derivatiom (w) there is
derivation can be viewed as a sequencegaferativeand an equivalent reduced derivatidd (w)
communication stepoo.

If no communication symbol appears in any of tha generative sectioiis a non-empty sequence of genera-
component grammars, then we perforngenerative step tive steps between two consecutive communication steps
consisting of rewriting steps synchronously performed in D(w)®, resp. before the first and/or after the last com-
each of the component grammays, 1 < i < m. If any munication steps i (w).
of the components is a terminal string, it is left unchangethedegree of generatioh G (D (w)) is the number of gen-

If any of the component grammars contains a nontermirghtive sections ab (w). In the following we consider only
that cannot be rewritten, the derivation is blocked. If tfeCGS without communication cycles i.e., DG(D(w))
first grammarG,; contains a terminal word, the deriva- is bounded by a constant depending onlylén

tion finishes andw is the word generated byl in this

derivation. g(i,j) (g(i,j,D(w))) denotes the terminal part generated
If a communication symbol is present in any of the Py Gi within the j-th generative section Cﬂ?(w)’ we
components, then eommunication stefs performed. It call it the (i, j)-(generative) factor (oD (w));

consists of replacing those communication symbols witfi:J) (1(i.j, D(w))) denotes the number of occurrences
the phrases they refer to for which the phrases do not con- of 9(i,J) in w;

tain communication symbols. Such an individual replaceryjore precisely it is a subsequence of trace of the derivation.
ment is called aommunicationObviously, in one com- 5 Note that if some communication cut contains more than one
munication step at most — 1 communications can be per- communication symbol, then there might be no generative step
formed. If some communication symbol was not replacedbetween two communication steps.

44 Dana Pardubsket al.

g(i,j,1) denotes théth occurrence of(i, j) inw, wecall 3 Bounded degree of distribution

it the (4, 7, 1)-(generative) factor.
We start the section showing that a language generated by

Thecommunication structur€'S(D(w)) of D(w) is a PCGS II with constant distribution complexity can be
CS(D(w)) = (i1, 41, 1), (i2, J2,12) 5 - - -, (ir, 4r, 1), @nalyzed (by reduction) bytaSLnRR-automaton\/.

wherew = g(i1,41,01), g(i2, j2,12) - . . g(ir, jr, I-). The In fact, the result follows from the analysis of the proof

setof these indices is denotdd D (w)). of Theorem 1 ([7]). For better understanding and to mo-

tivate the notions defined below we sketch the mentioned

N(j,D(w)) = X; n(i, j, D(w)), where the sum is takenProof (from [7]).

over suchi for which 3s : i = i, & (is,js,ls) € The high-level idea is to merge the terminal ward

I(D(w)). with the information describing its reduced deriva-
tion D(w) in a way allowing simultaneously the "simula-
tion/reduction” of the derivatio) (w) and the correctness
checking. Analysis by reduction is based on the deletion
of the parts of a (characteristic) word which correspond to

Now, we are ready to introduce the notionsditrib- parts generated within one generative cycle. We call such
ution complexityandgeneration complexityFirst, the dis- @ merged (characteristic) wofd-description ofw.
tribution complexity of a derivatioD (denotedDD(D)) Let(aiAy, ..., anAy) be the configuration at the begin-

Thedegree of distributioD D(D(w)) of D(w) is the max-
imum over all (defined)V(j, D(w)).

is the degree of distribution introduced above. ning of thej-th generative section,
Then, the distribution complexity of a language and tHel1, - - - - Am), (@1,1411, ..., a1 mArm), .-
associated complexity class are defined in the usual way (11021 1A 15 O Q2 m - Qs m A m)

(always considering the corresponding maximum): distriie sub-derivation corresponding to this generative secti

ution complexity of a derivatior- distribution complexity Merging the description of this sub-derivation int@, j, /)

of a word~~ distribution complexity of a language (de- We obtain the extended versiongifi, j,):

noted DD(L)) as a function of the length of the woré Ay A1 Az

f(n) — DD as class of languages whose distribution com- [0, %, J,] (2) Qi (e) Qg ()

plexity is bounded byf (n). !
The generation complexity is introduced analogously. o (A;j_i > le,i,7,1].

Here, we are mainly interested in the classes of languages As,m

with t-DD and/or withj-DG for some natural numbeyst. Such a description of(é, j, 1) is denoteckz-g(i, j,). We

We denote by-t-DDG the class of languages such that, tése ez-g(i, j, 1) to merge the (topological) information

any languagé of this class, there is BCGS I7 such that about derivationD(w) into w. Obviously, we can speak

L(II) = L, andDD(L(II)) = t, DG(L(II)) = j. abouttraces andfactor cyclesin ex-g(i, j,1) similarly as
Relevant observations about derivations PEGS We speak about traces and generative cycles in derivations.

(see [5] for more information) are summarized in the fol- L€t w, D(w),ex-g(i,j, 1), be as above. Replace any

lowing facts: 9(1,7,1) In w by ex-g(i, 4,1); the result is denotedz-w.

Then, concatenating the NC-sequenceidiv), the com-
Fact1 LetI7 be aPCGS without a communication cycle,Munication structure given bf (w), andez-w we obtain
Then there are constad{ 1), ¢(I1), s(II) such that the I7-description ofuw:

IId(D(w)) = NCS(D(w))CS(D(w))ex-w.

Am Al,m A2,m

1. the number.(i, j) of occurrences of individual
g(i,7)’s in a reduced derivatio)(w) is bounded by Observations.Let I1d(D(w)) be thelI-description ofw.

d(l);n(i,j) <d(Il); (a) When a reduced derivatioR(w) is taken, then the
2. the length of the communication structure for every re- length of I7d(D(w)) is bounded from above by -
duced derivatiorD(w) is bounded by (I7); ~|w|4cm, wherec; is a constant depending @ only.
3. the cardinality of the set of possible communicatiqR) From I1d(D(w)) the terminal wordw is easily ob-
structures corresponding to reduced derivations/by tained by deleting all symbols which are not terminal
(c) Let T(D(w)) be the trace ofD(w), andT'(II) :=
Fact 2 LetII be aPCGS without a communication cycle, {T(D(w)) | w € L(I)}. Then,T(II) is a regular
D(w) a reduced derivation of a terminal word. Then language, and the sets of NC-cuts and communication
there is a constant(/7) such that, if more than(II) gen- sequences aff are finite. Note that a finite automaton
erative steps of one generative section are performed, then js also able to check whether a given string a cor-
at least oneg(i, j, D(w)) is changed (see Example 1 rectea-g(i,j,1), NCS(D(w)), or CS(D(w)) given
in [7]). by I1.

PCGS & RA (Proofs) 45

Analyzing the proof of Theorem 1 from [7] we have thd Skeletons
following consequence. The construction ok-&LnRR-
automaton M accepting the characteristic language this part we define the notions skeletonandislands
Lo(M) = {ld(D(w)) | w € L(II)} is outlined in [7]. whose introduction has been motivated by our attempt to
model two basic kinds of coordinated segments in (Czech,
Corollary 2. Forall k € N, k-DD C Lp(k-SLNRR). German, Slovak) sentences. The islands in a level of skele-
ton serve to denote places of coordinated segments which

F.OH € N, separation oPCGSs of diStribu“on €OM- are coordinated in a mutually dependent (bound) way. The
plexity ¢ from the proper languages of nondeterm|n|st|cIlqjiﬁerem levels of islands serve for modelling the inde-

'eaglzed:RI?l—a;lutohm?ta}Nlrtlh Tt most-1 rewrites per cycle, pendence of segments. A technical example how to con-
Is done with the help of the language struct skeletons is given by the construction in the proof
of [7] Theorem 1. In fact, skeletons are only defined for

Le:={erwd: - cowd [w € {a,b}" }, t-SLnRR-automata that fulfill certain additional require-

where ¥y = {c1,...,c,d} is a new alphabet disjointMENtS:
from %o := {a, }- Definition2. Let M = (Q, X, I, ¢, $, qo, k, §) be
Proposition 1. Forall t € N at-SLnRR-automaton for some e N, and lets € N

Let SK(s) = {cij |1 <i<t 1<j<s}beasub-
L, € L(t-DD Lp((t —1)-NLNnRR). J)
' (I~ Lol)) alphabet of cardinalityt - s of I = I' U {c, $}. For each

Proof. It is not hard to show thak, € £(t-DD). We use J € {1,-.., s}, 18tSK(s,7) = {c1j,...,c1;} be thej-th

aPCGS with ¢ + 1 component grammars for that: level of SI_((s). We say thab K (s) is ans-skeleton (skele-
(S1,S%,...,Sm41) = ton) of M if the following holds:

=>: (c1Q2,2Q3, .. ., c1Qp41, wd) 1. Forallw € Lo(M) and allc € SK(s), |w|. < 1,

=" (awdeawd. .. cowd, Sy, ..., 5, Sey1). that is,w contains at most one occurrencecof

For the lower-bound part we use a similar technique a&. Each rewrite operation af/ deletes a single continu-
in [4]. ous factor from the actual contents of the window, and

Let M = (Q, X, I,¢,$,qo,k,d) be a nondeterminis- at that point the window must contain exactly one oc-
tic linearizedFRR-automaton that executes at most 1 currence of a symbol frol§ K (s). This symbol is ei-
rewrites per cycle, whereX = Y, U X;. Assume ther in the first or in the last position of the window.
that Lp(M) = L; holds. Consider the wordw := 3. IfacycleC of M contains a rewrite operation during
c1a™b™d- - - c,a™bd € Ly, wheren is alarge integer. Then which a symbok; ; € S(s,) is in the first or last
there exists an expanded versign € '™ of w such that position of the window, then every rewrite operation
W e Lc(M). Let W be a shortest expanded versionuof during C'is executed with some elementt, j) in
in Lc(M). Consider an accepting computation faf on the first or last position of the window.
input W. Clearly this cannot just be an accepting tail, andl. If w € Lo(M), w = zyz, such thatly| > k, andy
hence, it begins with a cycle of the foriv 5, Wi. does not contain any element$f((s), then starting
From the Correctness Preserving Property it follows that from the restarting configuration corresponding4q
W1 € L¢(M), which implies thatw; := PrE(Wl) € M will execute at least one cycle before it accepts.

L. As |[IW7] < |W|, we see from our choice df that _
wy # w, that is,w; = ciz1d---c,x1d for some word ~ The elements if K (s) are calledislandsof M. We say

x1 € X of length|z1| < 2n. However, in the above cy-that SK(s) is aleft skeletonof M, if M executes rewrite
cle M executes at most— 1 rewrite steps, that is, it can-operations only with an island in the leftmost position sf it
not possibly rewrite each of theoccurrences af”b” into Window.

the same worck;. It follows thatw, ¢ L., implying that . .
L. & Lp((t — 1)-NLNRR). 0 Thus, in each cyclé/ performs up tat rewrite (that

is, delete) operations, and during each of these operations
As L(t-DD) C Lp(t-SLnRR), we obtain the follow- a different islandc; ; of the same leveb K (j) is inside
ing hierarchies from Proposition 1, whefe (t-DD) just the window. As there are such levels, we see that there
denotes the class(¢-DD). are essentially just different ways to perform the rewrite
steps of a cycle.
Theorem 1. For all X € {DD,LnRR, SLnRR, NLNRR, By Lp(t-SK(s)) (resp. byLp(t-LSK(s))) we denote

NSLnRR}, and allt > 1, the class of proper languages ©8LnRR-automata with
s-skeletong(resp. with lefts-skeletons. The correspond-
Lp(t-X) C Le((t+1)-X) C | Le(t-X) € Lp(X). ing classes of characteristic languages are denoted by

t>1 Lc(t-SK(s)) (resp. byLc(t-LSK(s))).

46 Dana Pardubsket al.

Observe that the symbols of the folitlni, s,] in the an islande; ; in the left- or rightmost position of the win-
construction of ars-SLnRR-automaton) accepting the dow. From the proof of Proposition 1 we see that, for each
languageL¢o (M) = {IId(D(w)) | w € L(II)} play of the factorsL, ;, t rewrite steps per cycle are required.
the role of islands fofM/, and their complete set is a leffThus, each of the factoid’; must contairt islands, that
skeleton for)M . This observation serves as the basis for the W must contain at least- s islands. However, as the
proof of the next corollary. Recall thatt-DDG denotes wordW € Lq(M) contains at most a single occurrence of
the class of PCGSs that have simultaneously generationech symbol of the sétK' (s — 1), and a§SK (s — 1)| =

grees and distribution degree t-(s—1), W can contain at most- (s — 1) islands. This
contradicts the observation above, implying tihat ,) is

Corollary 3. not the proper language of amBK(s — 1)-automaton.

Forall s, € Ny, L(s-t-DDG) C Lp(t-LSK(s)). (c) For the lower-bound part recall Proposition 1 where

_) . Ly ¢ Lp((t—1)-NLnRR) is shown to hold. From the
_ T(_) separaté’CGSs of generation complexityyand dis- proof it follows that L. ¢ Lp((t—1)-NLNRR).
tribution complexitys from the class of proper languageg,g (t — 1)-SK(s)-automata are a special type @f— 1)-

of (¢ —1)-LSK(s)-automata we define languade.). S| nRR-automata, the non-inclusion result in (c) follows.
This language is based on a kind of bounded concatenation 0

of L;. Fors,t € Ny andi < s, let

Ly == {cwd- - cowd | w € {a,b}*,¢; € Xj,d € A},
whereX, ... X, A are new alphabets with empty inter
section with{a, b}. Then,

Next we consider the languads,. := { wew? | w €
{0,1}* }. By taking the symbot as an island, we easily
obtain the following result.

Lisy = (L))" Proposition 3. L,. € Lp(2-SK(1)).

Proposition 2. For all s,t € N, On the other hand, this language cannot be accepted if
we restrict our attention to left skeletons.
€) L5 € L(s-t-DDG),
(b) L) ¢ Lp(t-SK(s — 1)) for s > 1, and Proposition 4. Vs,t € Ny : L,. & Lp(t-LSK(s)).
(C) L(t,s) ¢ ,Cp((t - 1)-SK(S)) fort > 1.
Proof. Assume that\/ is at-LSK(s)-automaton such that
Sketch of the proof.Note thatL; = Ly = L) when Lp(M) = Ly, that is,M has a left skeleto K (s) =
| Y= = |2 =14 = 1. {ci;j|1<i<t 1<j<s} Letw= (a"b™)", where
(a) For the upper-bound part we us®&GS with (t+s) n,m € N, are sufficiently large, and let = wcw® €
component grammars, which realiz@hases correspond-L,.. Then there exists a (shortest) expanded vergioa
ing to s generative sections. The group of gramF* of z such thatZ € L¢(M). Hence, the computation
marsGg.1,...,Gsys playstherole of7s, ..., Gy from of M on inputZ is accepting, but because of the Pump-
the proof of Proposition 1, while the component grammairyg Lemma it cannot just consist of an accepting tail, that
G1,...,G, play the role of grammafy; from that proof. is, it begins with a cycleZ -, V, whereV € Lo(M)
Atthe end of the-th generative section, thereisawargi and|V| < |Z|. Thus,v = Pr¥(V) € L., butv # z. In

present in component grammaks,;, where w, = this cycleM performs up ta delete operations that each
c1pWpdy - . . cr pwydy isaterminalword and 1 <i < s, delete a continuous factor éf to the right of an island,; ;
is a nonterminal symbol indicating thé&t; is the grammar for some levelj € {1,...,s}. It follows thatv = w;cwf

into whichw,, should be communicated. Finally, the syrfor some wordw; € {a,b}* satisfying|w;| < |w|, and
chronized communication concatenates.lin an appro- thatw, is obtained fromw by deleting some factors, and
priaté® way in component grammaz; . wf is obtained fromu™ by deleting the corresponding re-
verse factors. When deleting a factowithin the prefixw

to the right of an island, ;, then this means that this island
“moves” to the right insidev, that is, frome; ;2y the factor
¢i,;y is obtained. Here we just consider the projectiotzof
onto (SK(s,j) U {a,b})*. Now when the corresponding
factor 2% is deleted fromw?, then it is to the right of an

(b) Assume thatM is at-SK(s — 1)-automaton such
that Lp(M) = L. Thus, M has a(s — 1)-skeleton
SK(s—1) ={¢,; |1 <i<t1<j<s—1}L
Now assume that, for = 1,...,s, w; € L;,, thatis,
w = wiws - ws € L 5. Further, let? be an expanded
version ofw. For each cycle of/ in an accepting Compu_islandci,’j, that s, fromy™c, ;o the factory™e, ; is ob-

tation on inpufiV, there exists an indexe {1,...,s—1}) : :
such that each rewrite step of this cycle is executed W}ﬁ'lned' Thus, while for dgletlng the factprof.w the same
Islandc; ; could be used in a later cycle, an island different
6 The construction oPCGS heavily utilizes nondeterminism. from c;: ; is needed foy . The same argument applies to
In case of “wrong” nondeterministic choices the derivation g€ case that the roles ef andw® are interchanged. This
blocked. means that in the process of synchronously processing

PCGS & RA (Proofs) 47

andw?®, the same island can be used repeatedly in subses. D.Pardubsk. Communication complexity hierarchy of par-

guence cycles within one of the two parts, but the corre-
sponding deletions in the other part require new islands in
each cycle. Ifw is of sufficient length, then it follows that
t - s islands will not suffice. Hencd,,. ¢ Lp(¢t-LSK(s)).

O 6.
The results above yield the following consequences.
7.
Theorem 2. For all X € {LSK,SK}, and alls,t > 1, we
have the followingroperinclusions:
(@) s-t-DDG C (s + 1)-t-DDG.
(b) s-t-DDG C s-(t + 1)-DDG. 8.

(€) Lp(t-X(s)) C Lp((t+1)-X(s)).
(d) Le(t-X(s)) C Lp(t-X(s +1)).
(e) s-t-DDG C Lp(t-LSK(s)) C Lp(t-SK(s)).
() Lp(t-LSK(s)) C Lp(t-SK(s)) fort > 2.

5 Conclusion

The study of the relation betwed?CGS and FRR was
motivated by computational linguistics; both models seem
to be useful in this field. While in [6] the basic relation be-
tween the computational power of these two models was
established, the aim of this paper was to introduce and
study the relevant complexity measuresP@GS and re-
strictions on computation &fRR.

We have succeeded in showing infinite hierarchies both
for PCGSs andFRRs. The question of wheth@k-DDG
is equal tolp (j-LSK(k)) or not remains open.

We also believe that properly using nondeterminism the
next conjecture can be shown.

Conjecture 1.For anyL € j-k-DDG, there is a correctness
preserving k-NSLnRR-automatdd with a left j-skeleton
SK(j) such thatL, = Lp(M), and M has no auxiliary
symbols outside of K (j).

References

1. J. Hromkowt, J. Kari, L. Kari, and D. Pardubék Two
lower bounds on distributive generation of languages.
In Proc. 19th International Symposium on Mathematical
Foundations of Computer Science 199NCSvol. 841,
Springer-Verlag, London, 423-432.

2. M. Lopatkoa, M. Phtek, and P. Sgall. Towards a formal
model for functional generative description: Analysis by re-
duction and restarting automatalhe Prague Bulletin of
Mathematical Linguistic87 (2007) 7—26.

3. V. Kuban, M. Lopatkoa, M. Phtek, and P. Pognan. Seg-
mentation of Complex Sentence. In:Lecture Notes In Com-
puter Science 4188, 2006, 151-158.

4. F. Otto and M. Ritek. A two-dimensional taxonomy
of proper languages of lexicalized FRR-automékae-
proc. LATA 2008 S.Z. Fazekas, C. Martin-Vide, and
C. Tirnau@& (eds.), Tarragona 2008, 419 — 430.

allel communicating grammar system. IDevelopments

in Theoretical Computer Scienc&'verdon: Gordon and
Breach Science Publishers, 1994, - 115-122. - ISBN 2-
88124-961-2.

D. Pardubs&k and M. Patek. Parallel Communicating
Grammar Systems and Analysis by Reduction by Restart-
ing Automata. Submitted to ForLing 2008.

Dana Pardubsk Martin Patek, and Friedrich Otto. On the
Correspondence between Parallel Communicating Gram-
mar Systems and Restarting Automata. Technical Re-
ports in Informatics, TR-2008-015, Comenius University,
Bratislava(http://kedrigern.dcs.fmph.uniba.sk/reports/)

Gh. Faun and L. Santean. Parallel communicating grammar
systems: the regular cag&n. Univ. Buc. Ser. Mat.-Inform.
37 vol.2 (1989) 55-63.

Learning algorithms for small mobile robots: case study on maze exploratioh

Stanislav Slany and Roman Neruda and Petra Vidnéaov

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod vodrenskou &7 2, Prague 8, Czech Republic

slusny@s. cas. cz

Abstract. An emergence of intelligent behavior within a simplto study emergence of intelligent behavior within the group
robotic agent is studied in this paper. Two control mechanisms fof robots.

an agent are considered — new direction of reinforcement learn- Pioneering work was done by Martinoli [14]. He solved
ing called relational reinforcement learning, and a radial basigneg task, in which group of simulated Khepera robots were
function neural network trained by evolutionary algorithm. Rel isked to find “food items” randomly distributed on

tional reinforcement learning is a new interdisciplinary approac o
- . : i y : gn arena. The control system was developed by the artifi-
combining logical programming with traditional reinforcement.

learning. Radial basis function networks offer wider interpretac-""‘I evolut'lon. Oyr work with single robot and robot teams
tion possibilities than commonly used multilayer perceptrons. R¥€re published in [19, 18].
sults are discussed on the maze exploration problem. Reinforcement learning is gaining increasing attention
in recent years. The basic overview of the field can be
) found in [20].
1 Introduction

One of the key question of Artificial Intelligence is howg Eyolutionary robotics
to design intelligent agents. Several approaches have been

ierUdr:]e:ilr?IO E\;o:Et?(;]r:;rre;/(l)%l:;i(\:\;o(réh\gle have been exaMiffe evolutionary algorithms (EA) [13, 12] represent a sto-
) 4 y ' P_astic search technique used to find approximate solutions

The ER approach attacks the problem through a Sj% optimization and search problems. They use techniques

organization process based on artificial evo-lu-ti-on {13 spired by evolutionary biology such as mutation, selec-
Robot co.ntrol sy;tem IS typically r_eallzed by a neural n lon, and crossover. The EA typically works with a p;opula-
work, which provides direct mapping from robot's S?r?SOEﬁm of individualsrepresenting abstract representations of
to ef_“fectors. Most of current applications use trad'tlonfz‘aasible solutions. Each individual is assignddreessthat
r_nult|-layer perceptron networks. In our app_roach We U5 a measure of how good solution it represents. The bet-
lize local unit network architecture called radial basisdu C : .)
tion (RBF) network, which has competitive erformancéer the solution is, the higher the fitness value it gets. The
' P P opulation evolves toward better solutions. The evolution

more learning options, and (due to its local nature) better . oo
. ; oo starts from a population of completely random individuals
interpretation possibilities [18, 19]. ; . .) .
: .) . and iterates in generations. In each generation, the fithess
This article gives summary of our experiences an

comparison to Reinforcement Learning (RL) - anothgr each individual is evaluated. Individuals are stochasti

widely studied approach in Artificial Intelligence. RL is-fo cally selected from the current population (based on their

cusing on agent, that is interacting with the environme]?]ttness)’ and modified by means of operatowgtationand

: L . rossoveto form a new population. The new population is
by its sensors and effectors. This interaction proceS$het . . ! .
. . . en used in the next iteration of the algorithm.
agent to learn effective behavior. These kinds of tasks are
Feed forward neural used as robot controllers are en-

commonly studied on miniature mobile robots of type . . : .
Khepera [2] and E-puck [1]. coded in order to use them in the evolutionary algorithm.

The encoded vector is represented as a floating-point en-
coded vector of real parameters determining the network
2 Related work weights.

Typical evolutionary operators for this case have been
The book [16] provides comprehensive introduction to thged, namely the uniform crossover and the muta-
ER, with focus on robot systems. Recently, effort is magign which performs a slight additive change in the para-

* This work has been supported by the Ministry of Education Bf€ter value. The rate of these operators is quite big, en-

the Czech Republic under the project Center of Applied Cyb&Uring exploration capabilities of an eyolutionary leami '
netics No. 1M684077004 (LM0567), S. Shf been partially A standard roulette-wheel selection is used together with

supported by by the Czech Science Foundation under the c@nsmall elitist rate parameter. Detailed discussions about
tract no. 201/05/H014G. fitness function are presented in the next section.

50 Stanislav Slény et al.

4 Relational reinforcement learning

The lack of theoretical insight into EA is the most serious Vils) = mng () “)

problem of the previous approach. The RL is based on dy-

namic programming [6], which has been studied more than The first breakthrough of RL was the Q-learning al-

50 years already. It has solid theoretical backgrounds b@ierithm [21, 4], which computes optimal strategy in de-

around Markov chains and several proved fundamental $€fibed conditions.

sults. On the other side, it is not possible usually to fulfill The key idea of the algorithm is to define the so-called

theoretical assumptions in the experiments. Q-values Q™ (s,a) is the expected reward, if the agent
The general model of agent-environment interactiontiskes actiom in states and then follows policyr.

modeled through the notion of rewards. The essential as-

sumption of RL states, that agent is able to sense rewards

coming from the environment. Rewards evaluate taken ac- Q" (s,a) =r(s,a) +7V7™(s), (5)

tions, agent’s task is to maximize them. The next assump-

tion is that agent is working in discrete time steps. Symheres’ is the state, in which agent occurs taking action

bol S will denote finite discrete set of states and symhHol in states (s’ = 4(s, a)).

set of actions. In each time stepagent determines its ac- |t is probably most commonly used algorithm of RL,
tual state and chooses one action. Therefore, agent's ifginly because of its simplicity. However, several

can be written as a sequence improvements have been suggested to speed up the algo-
rithm. In real life applications, state space is usuallykiamp
00aQT051A1TT ... (1) and convergence toward optimal strategy is slow. In recent

ears, there have been a lot of efforts devoted to rethinking
[®Ra of states by using function approximators [7], defin-
ing notion of options and hierarchical abstractions [5}: Re
lational reinforcement learning [11] is approach that com-
bines RL with Inductive Logical Programming.

The distinction between classical RL and Relational
V7 (8)) = 1y 4+ Yros1 + V2o + ... = Z’Vimri (2) Reinforcement Learning is the way how the Q-values are
=0 represented. In classical Q-learning algorithm are Qaslu
stored in the table. In relational version of the algorithm,
where the quantity/”(s;) [16] is called discounted cu-they are stored in the structure callésgical decision
mulative reward. It is telling us, what reward can be exree [8]. In our experiments, we have used logical deci-
pected, if the agent starts in stateand follows policyr, sion trees as implemented in the programs TILDE [8] from
0 < v < 1is a constant that determines the relative valgackage ACE-ilProlog [9].
of delayed versus immediate rewards.
The most serious assumption of RL algorithms is the
Markov property which states, that agent does not need
. . - .. — for eachs, a do
history of previous states to make decision. The decision o ,
. - e initialize the table entry)’(s,a) = 0
of the agent is based on the last stateonly. When this

wheres; denotes state, which is determined by processi
sensors inputg; € A action and finally symbol, € R
representseward, that was received at time

Formally, agent’s task is to maximize

property holds, we can use theory coming from the field of_ do.fcfre_ve(!)r
Markov decision processésiDP). ec=c+1

The policyw, which determines what action is chosen e i=0
in particular state, can be defined as functionS — A, e generate a random state
wherer(s;) = a;. Now, the agent's task is to find opti- e while not goal;) do
mal strategyr*. Optimal strategy is the one, that maximal- * select an action; and execute it
izes expected reward. In MDP, single optimal deterministic + receive an immediate reward = r(s;, a:)
strategy always exists, no matter in what state has the agent * Observe the new statg.
started. ¥ i=it1l

e endwhile

Optimal strategyr™ can now be defined as

forj=i—1to0do

x updateQ’(sj,a;) = r; + ymax, Q' (sj+1,a’)
7 =argmax V" (s),Vs € S 3) Y ’ ’

To simplify the notation, let's writé/*(s) instead of Fig. 1. Scheme of Q-learning algorithm, taken from [11].
symbolV ™", value function corresponding to optimal strat-
egyr*.

5 Evolutionary RBF Networks

Learning algorithms for small mobile ... 51

1. START: Create populatioR(0) = {I1,---,In}.
2. FITNESS EVALUATION: For each individual evaluate fit-

Evolutionary robotics combines two Al approaches: neural ness function.

networks and evolutionary algorithms. Neural network re3. TEST: If the stop criterion is satisfied, return the solution.
ceives input values from robot’s sensors and it outputs cod- NEW GENERATION: Create empty population

trol signals to the wheels. This way it realizes a control (i + 1) and repeat the following procedure until

system of the robot.

Evolutionary algorithms [13, 12] are then used to train
such a network. It would be difficult to utilize the training

P(i+ 1) hasN individuals.
i) Selection: Select two individuals frof(7) :
I, — selection(P;),
I, — selection(F;).

by traditional supervised learning algorithms since ey r iy crossover: With probability. :
quire instant feedback in each step. Here we typically can (I, I,) — crossover(I1, I)
evaluate each run of a robot as a good or bad one, but it is jij) Mutation: With probabilityp,y,:
impossible to assess each one move as good or bad. Thus, I, «— mutate(I),k = 1,2
the evolutionary algorithm represent one of the few possi- iv) Insert: Insert/y, I> into P;11

bilities, how to train the network.
The RBF networl{17,15,10], used in this work,

5. LOOP: Go to step 2.

RBF unitsand linear output layer. The network function is

given by Eq. (7).

e = (L20) ©

h
fo(x) = ijs<,0 (H:c;q”) ’ @)
=1 !

wheref is the output of the s-th output unij,is the out-
put of a hidden unity is an activation function, typically
Gaussian functiop(s) = e=*".

Fig. 2. A scheme of a Radial Basis Function Network.

The evolutionary algorithm is summarised in Fig.
It works with a population ofndividualsrepresenting ab-
stract representations of feasible solutions. Each iddadi

is assigned ditnessthat is a measure of how good solu

whereh is a number of hidden units. Each of the blocks
contains parameter values of one RBF units:

Bk- :{ckl,...,ckn,bk,wkl,...,wkm}, (9)

wheren is the number of inputsyp is the number of out-
puts,cx = {ck1,...,ckn} is thek-th unit's centrep, the
width andwy, = {wg1, .. ., wkm } the weights connecting
k-th hidden unit with the output layer. The parameter val-
ues are encoded using direct floating-point encoding.

We use standardtournament selectign 1-point
crossover and additive mutation Additive mutation
changes the values in the individual by adding small value
randomly drawn from{—e, ¢).

The fitness function should reflect how good the robot
is in given tasks and so it is always problem dependent.
Detailed description of the fitness function is included in
the experiment section.

6 Experiments

In order to compare performance and properties of
escribed algorithms, we conducted simulated experiment.
viiniature robot of type e-puck [1] was trained to explore

the environment and avoid walls. E-puck is a mobile ro-

bot with a diameter of 70 mm and a weight of 50 g. The

tion it represents. The evolution starts from a population
of completely random individuals and iterates in genera-
tions. Individuals are stochastically selected from the cu
rent population (based on their fithess), and modified by
means of genetic operatarsutationto form a new gener-
ation.

In case of RBF networks learning, each individual en-
codes one RBF network. The individual consists of
h blocks:

Irpr =A{Bi,..., By}, 8)

Fig. 4. Miniature e-puck robot.

52 Stanislav Slény et al.

robot is supported by two lateral wheels that can rotate

in both directions and two rigid pivots in the front and

in the back. The sensory system employs eight “active in-

frared light” sensors distributed around the body, six o& on

side and two on other side. In “passive mode”, they mea-

sure the amount of infrared light in the environment, which

is roughly proportional to the amount of visible light. In

“active mode” these sensors emit a ray of infrared light

and measure the amount of reflected light. The closer they

are to a surface, the higher is the amount of infrared light

measured. The e-puck sensors can detect a white paper at

a maximum distance of approximately 8 cm. Sensors reFig. 6. Simulated testing environment of size 110 x 100 cm.

turn values from intervald, 4095]. Effectors accept values

from interval [—-1000, 1000]. The higher value, the faster

the motor is moving. ware. Simulation process consisted of predefined number
of steps. In each simulation step agent processed sensor
values and set speed to the left and right motor. One simu-

Sensor value Meaning lation step took 32 ms.
0-50 NOWHERE
51-300 FEEL
301-500 VERYFAR 6.1 Evolutionary RBF networks
Elsgé_ll-(z)ggo EASA\R The evolutionary RBF networks were applied to the maze
2001-3000 VERYNEAR exploration task. The network input and output values are
3001-4095 CRASHED preprocessed in the same way as for the reinforcement
learning.
Table 1. Sensor values and their meaning. To stimulate maze exploration, agent is rewarded, when

it passes through the zone. The zone is randomly located
area, which can not be sensed by an agent. Therefore,
;j is 1, if agent passed through the zongjtth trial and0

Without any further preprocessing of sensor’s and € 'lfaherwise. The fitness value is then computed as

fector’s values, the state space would be too big. Thergefor

instead of raw sensor values, learning algorithms worked 4
with “perceptions”. Instead 0f095 raw sensor values, we Fitness = Z(Sj +4;), (10)
used only5 perceptions(table 1). Effector’s values were j=1

procgssed in similar way: instead 2100 values, learning where quantitys; is computed by summing normalized

algorithm chosen from valués-500,—100, 200, 300, 500]. ' tria} gainsT}.; in each simulation stepand trialj.

To reduce the state space even more, we grouped pairs o '

sensors together and back sensors were not used at all. 8
The agent was trained in the simulated environment of S; = 3 (j) . (12)

size 100 x 60 cm and tested in more complex environment

of size 110 x 100 cm. We used Webots [3] simulation soft- The three componefi, ; motivates agent to move and

avoid obstacles.

Ty j = Vij(1 = /AVi) (1 — iy 5) (12)

First componentV} ; is computed by summing
absolute values of motor speedkisth simulation step and
j-th trial, generating value between 0 and 1. The second

o
=

0

~

Il

—
o

| ———— component(l — /AV; ;) encourages the two wheels to
() rotate in the same direction. The last compor{@nt iy, ;)

supports agent’s ability to avoid obstacles. The vajueof

the most active sensor ith simulation step angth trial
provides a conservative measure of how close the robot is
to an object. The closer it is to an object, the higher the
Fig. 5. Agent was trained in the simulated environment of sizg@easured value in range from 0 to 1. Thill,; is in range

100 x 60 cm. from 0 to 1, too.

Learning algorithms for small mobile ... 53

The experiment was repeated 10 times, each run lastet
200 generations (each generation corresponding tc_
800 simulation steps). In all cases the successful behavio™
was found, i.e. the evolved robot was able to explore the P
whole maze without crashing to the walls. See Fig. 7 for ,gﬁgi;gg}:t
the mean, minimal and maximal fitness over 10 runs. B

e

Fitness function

77777777777777777 - Fig. 8. The evolved RBF network (see also Tab. 2). Local units re-
e) sponses plotted in 2D input space corresponding to left and right
sensory inputs.

1 agent is shown on figure 9. The graph shows average num-
ber of steps from each learning episode. It can be seen that
after 10000 episodes, the agent has learned the success-
ful behavior. This number roughly corresponds to the time
complexity of the GA, where 200 populations of 50 indi-
S viduals also result in0000 simulations. The fitness of the

T s solution found by RL is slightly better than the GA-found
solution, on the other hand the inner representation of the

: - . , _ neural network is much more compact.
Fig. 7. The mean, minimal and maximal fitness function over

10 runs of evolution. Fitness is scaled in a way that successful
walk through the whole maze corresponds to the fithess 600 and

higher.

ks

Table 2 and Figure 8 show parameters of an evolved o ﬁ?
network with five RBF units. For the sake of clarity, the 500 ﬁ
parameters listed are also discretized. We can understand " gf
them as rules providing mapping from input sensor space
to motor control. However, these ‘rules’ act in accord, sinc
the whole network computes linear sum of the five corre-
sponding gaussians.

Fitness

o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Episode

Sensor Width ~ Motor
left front right left right
VERYNEAR NEAR VERYFAR 1.56 500 -100 Fig. 9. Learning curve for Reinforcement Learning agent aver-
FEEL NOWHERE NOWHERE 1.93 -500 500 aged on 10 runs.
NEAR NEAR NOWHERE 0.75 500 -500
FEEL NOWHERE NEAR 0.29 500 -500

VERYFAR NOWHERE NOWHERE 0.16 500 500

Table 2. Rules represented by RBF units (listed values are origl- Discussion
nal RBF network parameters after discretization).
This article presented survey of popular approaches in mo-

bile robotics used to robot behavior synthesis. In our fu-
ture work, we would like to design hybrid intelligent sys-
tem, combining the advantages of these approaches. This
6.2 Reinforcement learning way, agent would benefit from using three widely stud-
ied fields: Inductive Logic Programming, Neural Networks
The same experiment has been performed by means ofared Reinforcement Learning. The Reinforcement Learning
lational reinforcement learning algorithm described abotas strong mathematical background. On the other side, in
under the same simulated environment and identical coeal experiments, some of the assumptions are not realis-
ditions. The performance of the Reinforcement learnitig. Neural networks are very popular in robotics, because

54 Stanislav Slény et al.

they provide straightforward mapping from input signals tt8. S. Sl&ény and R. Neruda. Evolving homing behaviour for
output signals, several levels of adaptation and are robust team of robots. Computational Intelligence, Robotics and
to noise. Inductive logic programming allows agent to rea- Autonomous Systems. Palmerston North : Massey University
son about states, thus concentrating attention on the most2907- o _ _
promising parts of the state space. 19. S. Slqry, R. Neruda, and P. Vidneréav E\{olutlon of S|mplg
The experiments showed that a preprocessing plays behavior patterns for autonomous robotic ag&yistem Sci-

rather important role in the case of robotic agent control. j;iiflng ?Onat;lanon In Engineering. - : WSEAS Frpages

In our approach we have chosen a rather strong procesg’&g Richard S. Sutton and Andrew G. BartcReinforcement
of inputs and outputs, which is suitable for RL algorithms | earning: An Introduction MIT Press, Cambridge, MA
mainly. In our future work we would like to study control 199g.

with less preprocessed inputs/outputs which can be uged C. J. WatkingsLearning from Delayed RewardBhD thesis,
mainly for the neural network controller. Also, another im- Cambridge University, 1989.

mediate work is to extract the most frequently used state

transitions from the RL algorithm and interpret them as

rules in a similar fashion we did with the RBF network.

References

. E-puck, online documentation. http://www.e-puck.org.

. Khepera Il documentation. http://k-team.com.

. Webots simulator. http://www.cyberbotics.com/.

. A.Barto, S. Bradtke, and S. Singh. Learning to act using real-
time dynamic programming.Artificial Intelligence pages
81-138.

5. A. G. Barto and S. Mahadevan. Recent advances in hierar-
chical reinforcement learning. 13:341-379.

6. R. E.BellmanDynamic ProgrammingPrinceton University
Press, 1957.

7. D. Bertsekas and J. Tsitsiklisleuro-dynamic programming
Ahtena Scientific, 1996.

8. H. Blockeel and L. De Raedt. Top-down induction of first
order logical decision tree#rtificial Intelligence 101:285—
297, 1998.

9. H.Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon,
and H. Vandecasteele. Improving the efficiency of inductive
logic programming through the use of query paclsurnal
of Artificial Intelligence Resear¢ii6:135-166.

10. D.S. Broomhead and D. Lowe. Multivariable functional in-
terpolation and adaptive networkSomplex Systemg:321—
355, 1988.

11. S. Dzeroski, L. De Raedt, and K. Driessens. Relational rein-
forcement learningMachine Learning 43pages 7-52, 2001.

12. D. B. Fogel.Evolutionary Computation: The Fossil Record
MIT-IEEE Press, 1998.

13. J. Holland. Adaptation In Natural and Artificial Systems
MIT Press, reprinted edition, 1992.

14. A. Martinoli. Swarm intelligence in autonomous Collective
robotics: from tools to the analysis and synthesis of distrib-
uted control strategied.ausanne: Computer Science Depart-
ment, EPFL, 1999.

15. J. Moody and C. Darken. Fast learning in networks of
locally-tuned processing unitdeural Computationl:289—
303, 1989.

16. S. Nolfi and D. Floreano.Evolutionary Robotics — The
Biology, Intelligence and Techology of Self-Organizing Ma-
chines.The MIT Press, 2000.

17. T.Poggio and F. Girosi. A theory of networks for approxima-

tion and learning. Technical report, Cambridge, MA, USA,

1989. A.l. Memo No. 1140, C.B.I.P. Paper No. 31.

AWNP

	000-uvod.pdf
	001
	007
	013
	021
	027
	035
	041
	049

