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Preface

The 18th annual conference ITAT took place in Hotel Plejsy, Slovakia, from 21 to 25 September 2018.
ITAT, meaning Information Technologies – Applications and Theory, is a place where young re-

searchers, doctoral students and their teachers meet every year to present their results from the
various fields of computer science. They come mainly from the Czech and Slovak republic, but the
conference is open to participants from other countries as well. In addition to the professional pro-
gram, much time is devoted to informal discussions, and above all to the formation and maintenance
of friendly relations between scientists from the both countries. The Slovak mountains make a perfect
background for that. The 2018 conference consisted of the main track and 4 workshops:

• Computational Intelligence and Data Mining (CIDM)

• Slovenskočeský NLP workshop (SloNLP)

• WWW-Challenges and Trends (W3-ChaT)

• Combinatorics on words (CoW)

All the 37 submitted papers were reviewed by two or more independent reviewers. The proceed-
ings contain 26 scientific papers and abstracts of four invited talks:

• Radim Bělohlávek (Univerzita Palackého v Olomouci): Fuzzy Logic and Mathematics: A His-
torical Perspective

• Katarína Cechlárová (Univerzita P.J.Šafárika v Košiciach): Budúci učitelia do škôl - problém
(nielen) matematický

• Filip Šroubek (AVČR): Digital image restoration: blur as a motion cue

• Petr Ambrož (ČVUT): Palindromy pohledem kombinatoriky na slovech

The conference was organized by Institute of Computer Science, The Faculty of Natural
Sciences, P. J. Šafárik University, Košice, The Academy of Sciences of the Czech Republic, Prague,
The Faculty of Mathematics and Physics, Charles University, Prague, Slovenská spoločnost’ pre
umelú inteligenciu (Slovak society for artificial intelligence).

I would like to thank all organizers led by the conference spirit Peter Gurský, also to workshop
organizers, program committee members, all anonymous referees, the invited speakers and authors
of the submitted papers for contributing to the scientific program of ITAT 2018. Special thanks belong
to our sponsor Profinit (http://www.profinit.eu/).

Stanislav Krajči
Šafárik University, Košice
Chair of the Program Committee
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Radim Bělohlávek : Fuzzy Logic and Mathematics: A Historical Perspective . . . . . . . . . 1
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proaches for classification with reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 52
Jan Motl and Pavel Kordík : Violation of Independence of Irrelevant Alternatives in Fried-

man’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Fuzzy Logic and Mathematics: A Historical Perspective

Radim Bělohlávek

Univerzita Palackého v Olomouci

Abstract: Cílem přednášky je představit stejnojmennou
knihu, která nedávno vyšla (R. Bělohávek, J. W. Dauben,
G. J. Klir, Fuzzy Logic and Mathematics: A Histor-
ical Perspective, Oxford University Press, New York,
2017, 544 str.). Během přednášky se podíváme na výz-
načné myšlenkové počiny v oblasti filozofie, matematiky
a přírodních věd, které předcházely vzniku fuzzy logiky,
projdeme vybranými milníky vývoje teoretických základů
i aplikací fuzzy logiky a zhodnotíme její dosavadní výz-
nam a perspektivy.

Radim Bělohlávek se zabývá fuzzy logikou a použitím
algebry a logiky v modelování relačních dat. Je autorem
nebo spoluautorem více než sta prací publikovaných v
mezinárodních časopisech a čtyř knih v těchto oblastech.
Působí jako profesor informatiky na Přírodovědecké
fakultě Univerzity Palackého v Olomouci, kde v současné
době vede katedru informatiky. Tři roky také pracoval jako
řádný profesor na State University of New York v USA.
Podle Web of Science byly jeho práce citovány více než
2000krát.
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Budúci učitelia do škôl – problém (nielen) matematický

Katarína Cechlárová

Univerzita P. J. Šafárika v Košiciach

Abstract: Prednáška je venovaná téme na rozhraní teore-
tickej informatiky a kombinatorickej optimalizácie. Pred-
stavíme niekol’ko vo svete fungujúcich prirad’ovacích
schém, ktoré pomáhajú nájst’ prvé zamestnanie absolven-
tom medicíny, miesto v škole pre diet’a, alebo obličku
pre pacienta čakajúceho na transplantáciu, a potom sa
sústredíme na praktický problém, ktorý rieši Univerzita
Pavla Jozefa Šafárika v Košiciach. Ide o prirad’ovanie štu-
dentov učitel’stva na praxe do škôl. Problém priradenia
všetkých zapísaných študentov pri dodržaní kapacitných
obmedzení škôl je NP-úplný, dokonca niektoré jeho verzie
sú neaproximovatel’né. Ukážeme, ako sme našli riešenie
metódami celočíselného lineárneho programovania a ako
to ul’ahčilo život pracovníčkam Katedry pedagogiky.

Katarína Cechlárová pôsobí na Ústave matematic-
kých vied Univerzity Pavla Jozefa Šafárika v Košici-
ach. Vedecky pôsobí v oblasti na rozhraní ekonómie,
kombinatorickej optimalizácie a teórie výpočtovej zloži-
tosti, nazývanej Computational Social Choice. Má širokú
medzinárodnú spoluprácu. Jej spoluautormi sú kolegovia
z Česka, Mad’arska, Anglicka, Škótska, Grécka, Španiel-
ska, USA a Francúzska.

S. Krajči (ed.): ITAT 2018 Proceedings, p. 2
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Katarína Cechlárová



Speedup of Uniform Bicubic Spline Interpolation

Viliam Kačala, Lukáš Miňo, and Csaba Török

Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice
Jesenná 5, 040 01 Košice, Slovakia

viliam.kacala@student.upjs.sk, lukas.mino@upjs.sk, csaba.torok@upjs.sk

Abstract: The goal of the paper is to introduce an efficient
algorithm for computation of derivatives of bicubic spline
surfaces over equispaced grids with C2 class continuity.
The algorithm is based on a recently proposed approach
using a special approximation property between quartic
and cubic polynomials. The proposed solution replaces
the classical de Boor’s systems of equations with systems
of reduced size and simple remainder explicit formulas.
We will show that the proposed new algorithm is numer-
ically equivalent to de Boor’s algorithm and the former is
more than 50% faster.

1 Introduction and problem statement

Modeling of surfaces plays a key role in a wide variety
of computer science fields such as graphics or CAD ap-
plications. The paper proposes an efficient computational
algorithm for interpolating uniform bicubic spline surfaces
of class C2. The standard way to accomplish that is an al-
most 60 years old classic algorithm designed by Carl de
Boor [2] that uses tridiagonal systems of equations. We
will refer to it as the full algorithm.

Even though the evaluation of such systems is quite
straightforward in general, running in linear time, it can
be still viewed as slow especially in real time computing
scenarios. For this reason we present a new reduced algo-
rithm for uniform bicubic spline surfaces that, while being
in the same complexity class, is faster and needs lower
memory requirements.

The structure of the paper is as follows. The remaining
part of this section is devoted to the problem statement
and introducing terminology. Section 2 presents the new
reduced algorithm along with proof of its equality to the
full algorithm. The third section provides experimental
measurements of actual time savings of the new approach
along with some words about its efficient implementation.
To be self contained, we provide the equations of de Boor’s
full algorithm for surfaces and the reduced algorithm for
curves in Appendix, for easier comparison with ours.

Now let’s jump into the problem statement. Consider a
uniform grid

[x0,x1,x2, . . . ,xI−1]× [y0,y1,y2, . . . ,yJ−1], (1)

where

xi = x0 + ihx, i = 1,2,3, . . . , I−1, I > 1, hx ∈ R+,

y j = y0 + ihy, j = 1,2,3, . . . ,J−1, J > 1, hy ∈ R+.

According to [2], a spline surface is defined by given val-
ues

zi, j, i = 0,1,2, . . . , I−1, j = 0,1,2, . . . ,J−1 (2)

at the grid-points, and given first directional derivatives

dx
i, j, i = 0, I−1, j = 0,1,2, . . . ,J−1 (3)

at the boundary verticals,

dy
i, j, i = 0,1,2, . . . , I−1, j = 0,J−1 (4)

at the boundary horizontals and cross derivatives

dx,y
i, j , i = 0, I−1, j = 0,J−1 (5)

at the four corners of the grid.
The task is to define a quadruple [zi, j,dx

i, j,d
y
i, j,d

x,y
i, j ] at

every grid-point [xi,y j], based on which a bicubic clamped
spline surface S of class C2 is constructed with properties

S(xi,y j) = zi, j,

∂S(xi,y j)

∂x
= dx

i, j,

∂S(xi,y j)

∂y
= dy

i, j,

∂ 2S(xi,y j)

∂x∂y
= dx,y

i, j .

For I = 7 and J = 5, we provide visual illustration of
the input situation in Figure 1, where bold values represent
(2) – (5) while the remaining non-bold values represent the
unknown derivatives to compute.
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Figure 1: Input situation for a 7×5 uniform grid.
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2 Reduced algorithm

The reduced algorithm for uniform cubic spline curves
was proposed in [11], where the model equations were
obtained using a special approximation property between
cubic splines and quartic polynomials [10]. This property
was extended for spline surfaces proving that a biquar-
tic polynomial fully determines a 2× 2-component uni-
form bicubic spline surface of class C2 [9], [5]. This ap-
proach was generalized in [3], [6], [4], where a new algo-
rithm for solving the unknown derivatives was proposed
and new model equations and explicit formulas were de-
rived. The proposed algorithm introduced equation sys-
tems with reduced dimensionality while the remaining un-
known derivatives were computed from simple explicit
formulas. Measured results showed, that the proposed al-
gorithm is faster than the full one [4]. Thorough analysis
has shown that we can further increase the performance of
the reduced approach. In the next subsection every model
equation will be expressed by simple expressions that cor-
respond to the model equations of [11].

This section consists of two parts. Firstly we show that
one of the four systems of de Boor’s algorithm can be
equivalently solved by a reduced system and additional ex-
plicit formulas. In the second part a reduced algorithm is
proposed for the solution of the unknown derivatives of a
spline surface of class C2 that is equivalent to de Boor’s
full algorithm.

2.1 Model equations

Consider the uniform grid (1) with given input values (2) –
(5). Any of the remaining unknown values can be com-
puted using the systems of equations (20) – (23) of the full
algorithm, see Appendix.

Consider a system of linear equations for the j-th hor-
izontal ( j = 0,1,2, . . . ,J− 1), see (20) in Appendix, that
takes a form




4 1 0

1 4 1

0 1 4 1
. . . . . . . . .

1 4 1

0 1 4




·




dx
1, j

dx
2, j

dx
3, j
...

dx
I−3, j

dx
I−2, j




=

=




3
hx
(z2, j− z0, j)−dx

0, j
3
hx
(z3, j− z1, j)

3
hx
(z4, j− z2, j)

...
3
hx
(zI−2, j− zI−4, j)

3
hx
(zI−1, j− zI−3, j)−dx

I−1, j




.

(6)

The following lemma shows that any of the systems (6)
can be solved by a reduced system.

Lemma 1. Let hx ∈ R+, I ≥ 4,
{z0, j,z1, j,z2, j, . . .zI−1, j,dx

0, j,d
x
I−1, j} ⊂ R be some known

values and {dx
1, j,d

x
2, j,d

x
3, j, . . . ,d

x
I−2, j} ⊂ R be unknown

values. Then the full equation system (6) and the reduced
one 



−14 1 0

1 −14 1

0 1 −14 1
. . .

. . .
. . .

1 −14 1

0 1 µ




·




dx
2, j

dx
4, j

dx
6, j
...

dx
ν−2, j

dx
ν , j




=

=




3
hx
(z4, j− z0, j)− 3

hx
(z3, j− z1, j)−dx

0, j
3
hx
(z6, j− z2, j)− 3

hx
(z5, j− z3, j)

3
hx
(z8, j− z4, j)− 3

hx
(z7, j− z5, j)

...
3
hx
(zν , j− zν−4, j)− 12

hx
(zν−1, j− zν−3, j)

3
hx
(zν+τ, j− zν−2, j)− 12

hx
(zν+1, j− zν−1, j)−ηdI−1, j




,

(7)

where

µ =−14, τ = 2, η = 1, ν = I−3,
µ =−15, τ = 0, η =−4, ν = I−2,

if I is odd,

if I is even,
(8)

with explicit formulas

dx
i, j =

3
4hx

(zi+1, j− zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j),

i = 1,3,5, . . . ,ν + τ−1,
(9)

are equivalent.

Proof. It follows from Lemma 3 of Appendix that the so-
lution of the reduced algorithm is equivalent to the solution
of the full system, see e.g. [8],




4 1 0

1 4 1

0 1 4 1
. . . . . . . . .

1 4 1

0 1 4




·




d1

d2

d3
...

dN−3

dN−2




=

=




3
h (y2− y0)−d0

3
h (y3− y1)
3
h (y4− y2)

...
3
h (yN−2− yN−4)

3
h (yN−1− yN−3)−dN−1




.

(10)

As we see the systems (6) and (10) use the same tridi-
agonal matrix. The systems (10) and (6) differ in the un-
knowns and the right-hand side vectors. However, using a
substitution

h = hx, di = dx
i, j, yi = zi, j, i = 0,1,2, . . . ,N−1, N = I, (11)
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we get (6) from (10), (7) from (24) and the remainder for-
mulas (9) from (26) that alongside with Lemma 3 finishes
the proof.

2.2 Algorithm

Now we have sufficient theoretical foundations to propose
an efficient algorithm to compute spline derivatives over
a uniform grid of points. The reduced algorithm consists
of four main steps, each evaluating systems of equations
derived from (7) and remainder formulas (9). The algo-
rithm as a whole takes the same input values and provides
identical results as the original full algorithm in Appendix.
Therefore it is intended as a drop-in replacement for the
full algorithm.

Based on Lemma 1 the full systems (21) – (23) can be
solved using analogical reduced systems and explicit for-
mulas. Hence we get immediately the reduced algorithm
for solving the unknown derivatives of a C2 spline surface
that appears to provide faster computations than de Boor’s
algorithm.

Theorem 1 (Reduced algorithm for surfaces). If the val-
ues (2) – (5) over the uniform grid (1) are given, then the
unknown values

dx
i, j, i = 1,2,3, . . . , I−2, j = 0,1,2, . . . ,J−1,

dy
i, j, i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2,

dx,y
i, j , i = 1,2,3, . . . , I−2, j = 0,J−1,

dx,y
i, j , i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2

for spline surface of class C2 are uniquely determined by
the following linear systems and formulas in four main
steps:

Step 1a. Computation of dx along the horizontals from
equation systems for inner even-indexed grid-points.
For each j = 0,1,2, . . . ,J−1,

solve_system(

dx
i+2, j−14dx

i, j +dx
i−2, j =

=
3
hx

(zi+2, j− zi−2, j)−
12
hx

(zi+1, j− zi−1, j),

where i = 2,4,6, . . . , I−3
).

(12)

Step 1b. Computation of dx along the horizontals from
explicit formulas for inner odd-indexed grid-points.
For each i = 1,3,5, . . . , I−2 and j = 0,1,2, . . . ,J−1,

dx
i, j =

3
4hx

(zi+1, j− zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j). (13)

Step 2a. Computation of dy along the verticals from
equation systems for inner even-indexed grid-points.

For each i = 0,1,2, . . . , I−1,

solve_system(

dy
i, j+2−14dy

i, j +dy
i, j−2 =

=
3
hy
(zi, j+2− zi, j−2)−

12
hy

(zi, j+1− zi, j−1),

where j = 2,4,6, . . . ,J−3
).

(14)

Step 2b. Computation of dy along the verticals from ex-
plicit formulas for inner odd-indexed grid-points.
For each i = 0,1,2, . . . , I−1 and j = 1,3,5, . . . ,J−2,

dy
i, j =

3
4hy

(zi, j+1− zi, j−1)−
1
4
(dy

i, j+1 +dy
i, j−1). (15)

Step 3a. Computation of dx,y along the horizontals from
equation systems for inner even-indexed grid-points.
For each j = 0,J−1 ,

solve_system(

dx,y
i+2, j−14dx,y

i, j +dx,y
i−2, j =

=
3
hx

(dx
i+2, j−dx

i−2, j)−
12
hx

(dx
i+1, j−dx

i−1, j),

where i = 2,4,6, . . . , I−3
).

(16)

Step 3b. Computation of dx,y along the horizontals from
explicit formulas for inner odd-indexed grid-points.
For each i = 1,3,5, . . . , I−2 and j = 0,J−1,

dx,y
i, j =

3
4hx

(dx
i+1, j−dx

i−1, j)−
1
4
(dx,y

i+1, j +dx,y
i−1, j). (17)

Step 4a. Computation of dx,y along the verticals from
equation systems for inner even-indexed grid-points.
For each i = 0,1,2, . . . , I−1,

solve_system(

dx,y
i, j+2−14dx,y

i, j +dx,y
i, j−2 =

=
3
hy
(dy

i, j+2−dy
i, j−2)−

12
hy

(dy
i, j+1−dy

i, j−1),

where j = 2,4,6, . . . ,J−3
).

(18)

Step 4b. Computation of dx,y along the verticals from
explicit formulas for inner odd-indexed grid-points.
for each i = 0,1,2, . . . , I−1 and i = 1,3,5, . . . , I−2,

dx,y
i, j =

3
4hy

(dy
i, j+1−dy

i, j−1)−
1
4
(dx,y

i, j+1 +dx,y
i, j−1). (19)

If I is even, then the last model equation in steps (12)
and (16) needs to be accordingly replaced by the model
equation derived according to (8). Analogically, if J is
even, the same applies to steps (14) and (18).
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We underline that the systems (12), (14), (16) and (18)
are diagonally dominant and use the same tridiagonal ma-
trix with constant main diagonal and upper, lower diago-
nals.

In the next section it will be shown that the reduced al-
gorithm is faster than the full one and additionally it needs
lower memory requirements.

The main difference between original full algorithm and
the reduced one is that the latter computes only half of the
unknown values using LU factorization where the remain-
ing half of the unknowns are solved by simple remainder
formulas. Because of this, the reduced algorithm is sup-
posed to be more efficient in terms of execution speed and
memory requirements as well. We will discuss and mea-
sure it’s speed in Section 3.

3 Performance evaluation

To be worth of actual implementation, the reduced algo-
rithm should be significantly faster than full one. The el-
ementary task in both algorithms is computation of tridi-
agonal systems of equations. As the full and the reduced
systems are diagonally dominant we use a modified LU
factorization method as the internal solver for such sys-
tems [4]. Our optimizations of the LU factorization relies
on a fact, that the left-hand side matrices comprise only
constant values.

While the LU factorization for tridiagonal linear sys-
tems is a quite efficient way to solve the equations which
are interdependent, it has some drawbacks in the sense of
modern CPU’s capabilities like usage of vectorized SIMD
instructions especially due to the structure of tridiagonal
matrices. By breaking down the computational task of the
full approach into reduced systems and simple explicit for-
mulas, half of the equations are independent and therefore
more versatile to manual or automatic compiler optimiza-
tions.

Memory requirements For the sake of completeness
some words about applied data structures and memory re-
quirements should be given.

The input grid (1) of size I× J needs I + J memory to
store x and y coordinates of the total IJ grid-points. Each
grid-point however requires 4IJ space for zi, j, dx

i, j, dy
i, j, dx,y

i, j
values, where most of them will be computed by the full
or reduced algorithm. This gives us 4IJ + I + J space re-
quirement to store input/output values.

The needs of the full and reduced algorithms are quite
low regarding the size of the grid. The full tridiagonal sys-
tems in Lemma 2 require 2 ·max(I,J) space to store the
right-hand side vector and an auxiliary buffer vector used
for the LU factorization. In case of the reduced algorithm,
only half number of the equations form the tridiagonal sys-
tem, therefore they require only max(I,J) space for the LU
part.

Data structures Since the grid may contain tens of thou-
sands or more grid-points, the most effective representa-
tion is the jagged array structure for each of the z, dx, dy,
dx,y values. Each equation system from any of the two
algorithms always depends on one row of a jagged array,
therefore entire rows of the jagged structure can be effec-
tively cached under the assumption, that the size of the row
is not very large. Notice that the iterations for computing
the dy

i, j and most of the dx,y
i, j values in both algorithms have

interchanged indices compared to the iteration throughout
the dx

i, j values. We mention that an efficient implementa-
tion needs to setup the jagged arrays in accordance with
how we want to iterate the data [7].

3.1 Measurements

Now let us compare the implementations of both algo-
rithms. We implemented a benchmark in C++ 17 compiled
with MSVC 2017 using -O2 optimization level and indi-
vidual code generation for each tested CPU, i.e. CPUs
with AVX2 support were running binaries compiled to
AVX2 instruction set whereas older CPUs received for
instance only SSE2 compiled binaries. Testing environ-
ments comprised several computers with various CPUs
ranging from rather obsolete Nehalem to recent Skylake
microarchitecture. All systems had 8 – 32 GB of RAM,
SSD and Windows 10 installed. The tests were conducted
on freshly booted PCs after 2 minutes of idle time without
running any non-essential services or processes like web
browsers, database engines, etc.

On all testing computers the tests were conducted on
two datasets, a small one on a grid of size I,J = 100,
and a large one, where grid dimensions were I,J =
1000. Both datasets comprised the grid [x0,x1, . . . ,xI−1]×
[y0,y1, . . . ,yJ−1], where x0 = −20, xI−1 = 20, y0 = −20,
yJ−1 = 20 and the values zi, j, dx

i, j, dy
i, j, dx,y

i, j , see (2) – (5),

were computed from function sin
√

x2 + y2 at each grid-
point. These datasets were chosen arbitrarily and the be-
haviour of the algorithms was correct for any input values.
The speedup values were gained averaging 50 measure-
ments of each algorithm.

Tables 1 and 2 contain results for both datasets and con-
sist of four columns. The first column contains the tested
CPUs ordered by their release date. Columns two through
four contain measured execution times in microseconds
for both algorithms and their speed ratios.

To provide better comparison for more datasets, Ta-
ble 3 provides measurements on more different input sizes,
however for the sake of readability it contains measure-
ments only from Intel i7 6700K as the fastest testing CPU.

Let us review the measured performance improvement
of the reduced algorithm. Results of Table 1 say that the
reduced algorithm is more than fifty percent faster than the
full one as long as the grid dimensions remains relatively
small to enable the entire rows of the grid as well as the
auxiliary LU vectors to be cached.
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I,J = 100
CPU Full Reduced Speedup

Intel i5 M430 783 438 1.79
AMD A6 3650M 922 567 1.64
Intel i7 4790 482 250 1.93
Intel i7 6700K 355 190 1.86
AMD X4 845 648 347 1.86

Table 1: Comparison of full and reduced algorithms on
small dataset. Times are in microseconds.

I,J = 1000
CPU Full Reduced Speedup

Intel i5 M430 116 856 90 541 1.29
AMD A6 3650M 116 390 78 892 1.48
Intel i7 4790 54 719 33 584 1.63
Intel i7 6700K 37 029 22 571 1.64
AMD X4 845 78 860 48 955 1.61

Table 2: Comparison of full and reduced algorithms on
large dataset. Times are in microseconds.

The speedup of the reduced algorithm in Table 2 with a
larger dataset is not so high due to difficulties of keeping
data in fast but small L1 cache, resulting in higher ratio of
cache misses. In the case of even larger dataset, let’s say
in the order of billions of grid-points, the performances of
both algorithms are similar with the reduced one gaining
only small advantage.

In our experiments we observed that the reduced algo-
rithm was always faster than the full one, however exact
speedup depends on the size of the input grid. The general
rule is: the larger the grid the smaller the speedup.

The highest speedup does not depend on the grid size if
it is from range of 50 to 200.

CPU Full Reduced Speedup

I,J = 50 92 50 1.84
I,J = 100 355 190 1.86
I,J = 200 1 417 778 1.82
I,J = 300 3 203 1 797 1.78
I,J = 400 5 791 3 234 1.79
I,J = 1000 37 029 22 571 1.64
I,J = 1500 88 236 54 141 1.63
I,J = 2000 178 144 115 674 1.54

Table 3: Multiple dataset comparison of full and reduced
algorithms tested on i7 6700K. Times are in microseconds.

4 Discussion

Let us briefly discuss the new algorithm from the numer-
ical and experimental point of view. While the classic
full algorithm is composed of four series of tridiagonal
systems of equations, the reduced algorithm breaks down
each equation system into a reduced one approximately
half the size of the original one and simple mutually inde-
pendent explicit formulas.

In addition, from the numerical point of view, the re-
duced tridiagonal subsystems are diagonally dominant and
therefore computationally stable [1], similarly to the full
systems. The remainder explicit formulas (9) are simple
and thus do not present an issue.

The maximal numerical difference in our C++ imple-
mentation was in the order of 10−16 on several different
datasets so the reduced algorithm yields numerically ac-
curate results.

Since the algorithm consists of many independent sys-
tems of linear equations, it can be also effectively paral-
lelized for both CPU and GPU architectures.

There is also a future work for further reduction of the
number of equations in the tridiagonal systems.

5 Conclusion

The paper introduced a new algorithm to compute the un-
known derivatives for uniform bicubic spline surfaces of
class C2. The algorithm reduces the size of the tridiag-
onal systems of equations by half and computes the re-
maining unknown derivatives using simple explicit formu-
las. A substantial decrease of execution time of deriva-
tives at grid-points has been achieved with lower mem-
ory space requirements at the cost of a slightly more com-
plex implementation where the measured speedup ranges
from 1.3 to 1.9 depending on the grid size and CPU archi-
tecture.
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This work was partially supported by projects Technicom
ITMS 26220220182 and APVV-15-0091 Effective algo-
rithms, automata and data structures.

Appendix

Carl de Boor in [2] proposed an algorithm for computa-
tion of the unknown derivatives of spline surface of class
C2 over any grid with four types of full systems of linear
equations. The following lemma reformulates this algo-
rithm for uniform grid.

Lemma 2 (Full algorithm for surfaces). If the values (2) –
(5) over the uniform grid (1) are given, then the unknown
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values

dx
i, j, i = 1,2,3, . . . , I−2, j = 0,1,2, . . . ,J−1,

dy
i, j, i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2,

dx,y
i, j , i = 1,2,3, . . . , I−2, j = 0,J−1,

dx,y
i, j , i = 0,1,2, . . . , I−1, j = 1,2,3, . . . ,J−2

for spline surface of class C2 are uniquely determined
by the following linear systems of equations:
Step 1. Computation of dx along the horizontals from
equation systems.
For each j = 0,1,2, . . . ,J−1,

solve_system(

dx
i+1, j +4 ·dx

i, j +dx
i−1, j =

3
hx
· (zi+1, j− zi−1, j),

where i = 1,2,3, . . . , I−2
).

(20)

Step 2. Computation of dy along the verticals from equa-
tion systems.
For each i = 0,1,2, . . . , I−1,

solve_system(

dy
i, j+1 +4 ·dy

i, j +dx
i, j−1 =

3
hy
· (zi, j+1− zi, j−1),

where j = 1,2,3, . . . ,J−2
).

(21)

Step 3. Computation of dx,y along the horizontals from
equation systems.
For each j = 0,J−1,

solve_system(

dx,y
i+1, j +4 ·dx,y

i, j +dx,y
i−1, j =

3
hx
· (dx

i+1, j−dx
i−1, j),

where i = 1,2,3, . . . , I−2
).

(22)

Step 4. Computation of dx,y along the verticals from
equation systems.
For each i = 0,1,2, . . . , I−1,

solve_system(

dz,y
i, j+1 +4 ·dz,y

i, j +dz,y
i, j−1 =

3
hy
· (dy

i, j+1−dy
i, j−1),

where j = 1,2,3, . . . ,J−2
).

(23)

A new algorithm was proposed in [11] for computation
of the unknown derivatives of a spline curve of class C2

over uniform grids with a reduced system of linear equa-
tions instead of the well known full algorithm with param-
eters 1,4,1.

Lemma 3 (Reduced algorithm for curves). Consider a
cubic clamped spline of class C2 over a uniform grid
[u0,u1, . . . ,uN−1], where ui = u0+ ih, i = 1,2,3, . . . ,N−1,

defined by given values y0, . . . ,yN−1 and d0, dN−1 at grid-
points. The tridiagonal system



−14 1 0

1 −14 1

0 1 −14 1
. . .

. . .
. . .

1 −14 1

0 1 −14




·




d2

d4

d6
...

dν−2

dν




=

=




3
h (y4− y0)− 12

h (y3− y1)−d0
3
h (y6− y2)− 12

h (y5− y3)
3
h (y8− y4)− 12

h (y7− y5)
...

3
h (yν − yν−4)− 12

h (yν−1− yν−3)
3
h (yν+τ − yν−2)− 12

h (yν+1− yν−1)−ηdN−1




,

(24)

where

µ =−14, τ = 2, η = 1, ν = N−3,

µ =−15, τ = 0, η =−4, ν = N−2,

if N is odd,

if N is even,
(25)

and the formula

di =
3

4h
(yi+1− yi−1)−

1
4
(di+1 +di−1),

i = 1,3,5, . . . ,ν + τ−1,
(26)

imply that the second derivatives of spline components at
the inner grid-points are equal.
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Abstract: We study h-lexicalized two-way restarting au-
tomaton (hRLWW(i)) that can rewrite at most i times per
cycle, for i ≥ 1. This model is useful for the study of
lexical syntactic disambiguation (a notion from linguistic)
through the formal notion of h-lexicalized syntactic anal-
ysis (hLSA). The hLSA is composed of a basic language
and the corresponding h-proper language obtained from
the basic language by mapping all non-input symbols on
input symbols. We compare the properties of input lan-
guages, which are the languages traditionally considered
in automata theory, to the properties of hLSA, i.e., to the
properties of basic and h-proper languages.

The basic and h-proper languages of hRLWW(i)-
automata fulfill the so called reduction correctness pre-
serving property, but the input languages do not. While
basic and h-proper languages are sensitive to the size of
the read/write window, the input languages are not. More-
over, the basic and h-proper languages are sensitive to the
number of rewrite steps per cycle. All that concerns a sub-
class of context-sensitive languages containing all context-
free languages (and most probably also the class of mildly
context-sensitive languages [5]), i.e., a class suitable for
studying and classifying syntactic and semantic features
of natural languages.

We work here also with the parametrized constraint of
monotonicity. While using the monotonicity of degree one
we can characterize the class of context-free languages,
the monotonicity of higher degrees can model more com-
plex syntactic phenomena of whole natural languages (like
cross-serial dependencies [5]).

Finally, we stress the constraint of weak cyclic form. It
preserves the power of hRLWW(i)-automata, and it allows
to extend the complexity results obtained for the classes of
infinite languages also into the classes of finite languages
(parametrized by the number of performed cycles). It is
useful for classifications in computational and corpus lin-
guistics, where all the (syntactic) observation are of the fi-
nite nature. The main technical novelty of the paper are the
results about the sensitivity and insensivity of finite and in-
finite hLSA and corresponding languages by hRLWW(i)-
automata.

*The research is partially supported by VEGA 2/0165/16

1 Introduction

This paper is a continuation of conference papers [13],
[14], and the technical report [15]. Its motivation is to
study lexical syntactic disambiguation, which is one of
the basic concepts of several linguistic schools, including
the schools working with dependency syntax. In order to
give a theoretical basis for lexicalized syntax, a model of
a restarting automaton that formalizes lexicalization in a
similar way as categorial grammars (see, e.g., [1]) – the
h-lexicalized restarting automaton (hRLWW), was intro-
duced in [13]. This model is obtained from the two-way
restarting automaton of [12] by adding a letter-to-letter
morphism h that assigns an input symbol to each working
symbol. Then the basic language LC(M) of an hRLWW-
automaton M consists of all words over the working al-
phabet of M that are accepted by M, and the h-proper lan-
guage LhP(M) of M is obtained from LC(M) through the
morphism h.

Further, the set of pairs {(h(w),w) | w ∈ LC(M)}, de-
noted as LA(M), is called the h-lexicalized syntactic anal-
ysis (hLSA) by M. Thus, in this setting the auxiliary sym-
bols themselves play the role of the tagged items. That is,
each auxiliary symbol b can be seen as a pair consisting
of an input symbol h(b) and some additional syntactico-
semantic information (tags).

In contrast to the original hRLWW-automaton that uses
exactly one rewrite in a cycle, here we study h-lexicalized
restarting automaton (hRLWW(i)) allowing i≥ 1 rewrites
in a cycle. Our effort is to show that this model is suited
for a transparent and sensitive modeling of the lexicalized
syntactic analysis (lexical disambiguation) of natural lan-
guages (compare to [8, 9]).

The lexicalized syntactic analysis based on analysis by
reduction is traditionally used to analyze sentences of nat-
ural languages with a high degree of word-order freedom
like, e.g., Czech, Latin, or German (see, e.g., [8]). Usually,
a human reader is supposed to understand the meaning of a
given sentence before he starts to analyze it; h-lexicalized
syntactic analysis based on the analysis by reduction sim-
ulates such a behavior by analysis of sentences, where
morphological and syntactical tags have been added to the
word-forms and punctuation marks (see, e.g., [9]). We re-
call some constraints that are typical for restarting auto-
mata, and we outline ways for new combinations of con-
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straints. We establish infinite (two-dimensional) ascend-
ing hierarchies of language classes of h-proper languages
for several subtypes of hRLWW(i)-automata with respect
to the number of allowed cycles, the number of symbols
deleted during each cycle or the length of scanning win-
dow of an automaton.

The paper is structured as follows. In Section 2, we
introduce our model and its sub-models, we define the
h-proper languages, and we state the reduction correct-
ness preserving property and the reduction error preserv-
ing property for the basic languages of deterministic h-
RLWW-automata. In Section 3, we present the achieved
results. The paper concludes with Section 4 in which we
summarize our results and state some problems for future
work.

2 Definitions

By ⊆ and ⊂ we denote the subset and the proper subset
relation, respectively. Further, we will sometimes use reg-
ular expressions instead of the corresponding regular lan-
guages. Finally, throughout the paper λ will denote the
empty word.

We start with the definition of the two-way restart-
ing automaton as an extension to the original definition
from [12]. In contrast to [14], we do not introduce gen-
eral h-lexicalized two-way restarting list automaton which
can rewrite arbitrary many times during each cycle. In-
stead, we introduce two-way restarting automata which
can rewrite at most i times per cycle, for an integer i≥ 1.

Definition 1. Let i be a positive integer. A two-way
restarting automaton, an RLWW(i)-automaton for short,
is a machine with a single flexible tape and a finite-
state control. It is defined through an 9-tuple M =
(Q,Σ,Γ,¢,$,q0,k, i,δ ), where Q is a finite set of states, Σ
is a finite input alphabet, and Γ(⊇Σ) is a finite working al-
phabet. The symbols from ΓrΣ are called auxiliary sym-
bols. Further, the symbols ¢,$ 6∈ Γ, called sentinels, are
the markers for the left and right border of the workspace,
respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size
of the read/write window, i ≥ 1 is the number of allowed
rewrites in a cycle (see later), and

δ : Q×PC≤k→P((Q×{MVR,MVL,W(y),SL(v)})∪
{Restart,Accept,Reject})

is the transition relation. Here P(S) denotes the powerset
of a set S,

PC≤k = (¢ ·Γk−1)∪Γk ∪ (Γ≤k−1 ·$)∪ (¢ ·Γ≤k−2 ·$)

is the set of possible contents of the read/write window
of M, v ∈PC≤k−1, and y ∈PC≤k.

Being in a state q ∈ Q and seeing u ∈PC≤k in its win-
dow, the automaton can perform seven different types of
transition steps (or instructions):

1. A move-right step (q,u) −→ (q′,MVR) assumes that
(q′,MVR) ∈ δ (q,u), where q′ ∈ Q and u /∈ {λ ,¢} ·
Γ≤k−1 · $. This move-right step causes M to shift the
window one position to the right and to enter state q′.

2. A move-left step (q,u) −→ (q′,MVL) assumes that
(q′,MVL)∈ δ (q,u), where q′ ∈Q and u 6∈ ¢ ·Γ∗ ·{λ ,$}.
It causes M to shift the window one position to the left
and to enter state q′.

3. An SL-step (q,u) −→ (q′,SL(v)) assumes that
(q′,SL(v)) ∈ δ (q,u), where q′ ∈ Q, v ∈ PC≤k−1, v
is shorter than u, and v contains all the sentinels that
occur in u (if any). It causes M to replace u by v, to
enter state q′, and to shift the window by |u|− |v| items
to the left – but at most to the left sentinel ¢ (that is,
the contents of the window is ‘completed’ from the left,
and so the distance to the left sentinel decreases, if the
window was not already at ¢).

4. A W-step (q,u) −→ (q′,W(v)) assumes that
(q′,W(v))∈ δ (q,u), where q′ ∈ Q, v ∈ PC≤k,
|v| = |u|, and that v contains all the sentinels that
occur in u (if any). It causes M to replace u by v, and
to enter state q′ without moving its window.

5. A restart step (q,u)−→ Restart assumes that Restart∈
δ (q,u). It causes M to place its window at the left end
of its tape, so that the first symbol it sees is the left
sentinel ¢, and to reenter the initial state q0.

6. An accept step (q,u) −→ Accept assumes that
Accept ∈ δ (q,u). It causes M to halt and accept.

7. A reject step (q,u) −→ Reject assumes that Reject ∈
δ (q,u). It causes M to halt and reject.

A configuration of an RLWW(i)-automaton M is a word
αqβ , where q∈Q, and either α = λ and β ∈ {¢}·Γ∗ ·{$}
or α ∈ {¢} · Γ∗ and β ∈ Γ∗ · {$}; here q represents the
current state, αβ is the current contents of the tape, and
it is understood that the read/write window contains the
first k symbols of β or all of β if |β | < k. A restarting
configuration is of the form q0¢w$, where w ∈ Γ∗; if w ∈
Σ∗, then q0¢w$ is an initial configuration. We see that any
initial configuration is also a restarting configuration, and
that any restart transfers M into a restarting configuration.

In general, an RLWW(i)-automaton M is nondetermin-
istic, that is, there can be two or more steps (instructions)
with the same left-hand side (q,u), and thus, there can be
more than one computation that start from a given restart-
ing configuration. If this is not the case, the automaton is
deterministic.

A computation of M is a sequence C =C0,C1, . . . ,C j of
configurations of M, where C0 is an initial or a restarting
configuration and Ci+1 is obtained from Ci by a step of M,
for all 0 ≤ i < j. In the following we only consider com-
putations of RLWW(i)-automata which are finite and end
either by an accept or by a reject step.
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Cycles and tails: Any finite computation of an RLWW(i)-
automaton M consists of certain phases. A phase, called
a cycle, starts in a restarting configuration, the window
moves along the tape performing non-restarting steps un-
til a restart step is performed and thus a new restarting
configuration is reached. If no further restart step is per-
formed, any finite computation necessarily finishes in a
halting configuration – such a phase is called a tail. It is
required that in each cycle RLWW(i)-automaton executes
at most i rewrite steps (of type W or SL) but at least one
SL-step. Moreover, it must not execute any rewrite step in
a tail.

This induces the following relation of cycle-rewriting
by M: u ⇒c

M v iff there is a cycle that begins with the
restarting configuration q0¢u$ and ends with the restart-
ing configuration q0¢v$. The relation ⇒c∗

M is the reflex-
ive and transitive closure of ⇒c

M . We stress that the
cycle-rewriting is a very important feature of an RLWW(i)-
automaton. As each SL-step is strictly length-reducing,
we see that u⇒c

M v implies that |u| > |v|. Accordingly,
u⇒c

M v is also called a reduction by M.
An input word w ∈ Σ∗ is accepted by M, if there is

a computation which starts with the initial configuration
q0¢w$ and ends by executing an accept step. By L(M) we
denote the language consisting of all input words accepted
by M; we say that M recognizes (or accepts) the input lan-
guage L(M).

A basic (or characteristic) word w ∈ Γ∗ is accepted by
M if there is a computation which starts with the restarting
configuration q0¢w$ and ends by executing an accept step.
By LC(M) we denote the set of all words from Γ∗ that are
accepted by M; we say that M recognizes (or accepts) the
basic (or characteristic1) language LC.

Finally, we come to the definition of the central notion
of this paper, the h-lexicalized RLWW(i)-automaton.

Definition 2. Let i be a positive integer. An h-lexicalized
RLWW(i)-automaton, or an hRLWW(i)-automaton, is a
pair M̂ = (M,h), where M = (Q,Σ,Γ,¢,$,q0,k, i,δ ) is an
RLWW(i)-automaton and h : Γ → Σ is a letter-to-letter
morphism satisfying h(a) = a for all input letters a ∈ Σ.
The input language L(M̂) of M̂ is simply the language
L(M) and the basic language LC(M̂) of M̂ is the language
LC(M). Finally, we take LhP(M̂) = h(LC(M)), and we
say that M̂ recognizes (or accepts) the h-proper language
LhP(M̂).

Finally, the set LA(M̂) = {(h(w),w) | w ∈ LC(M)} is
called the h-lexicalized syntactic analysis (shortly hLSA)
by M̂.

We say that for x ∈ Σ∗, LA(M̂,x) = {(x,y) | y ∈
LC(M),h(y) = x} is the h-syntactic analysis (lexicalized
syntactic analysis) for x by M̂. We see that LA(M̂,x) is
non-empty only for x from LhP(M̂).

1Basic languages were called characteristic languages in [10] and
several other papers, therefore, here we preserve the original notation
with subscript C.

Evidently, for an hRLWW(i)-automaton M̂, we have
L(M̂)⊆ LhP(M̂) = h(LC(M̂)).

Let us note that h-lexicalized syntactic analysis formal-
izes the linguistic notion of lexical disambiguation. Each
auxiliary symbol x ∈ ΓrΣ of a word from LC(M̂) can be
considered as a disambiguated input symbol h(x).

The following two facts ensure the transparency for
computations of hRLWW(i)-automata with respect to their
basic and h-proper languages.

Fact 1. (Reduction Error Preserving Property) Let M
be an hRLWW(i)-automaton. If u⇒c∗

M v and u /∈ LC(M),
then v /∈ LC(M).

Fact 2. (Reduction Correctness Preserving Property)
Let M be a deterministic hRLWW(i)-automaton. If u⇒c∗

M v
and u ∈ LC(M), then v ∈ LC(M), and h(v) ∈ LhP(M).

Notations. For brevity, the prefix det- will be used to de-
note the property of being deterministic. For any class A of
automata, L (A) will denote the class of input languages
that are recognized by automata from A, LC(A) will de-
note the class of basic languages that are recognized by
automata from A, and LhP(A) will denote the class of h-
proper languages that are recognized by automata from A.
LA(A) will denote the class of hLSA (h-lexicalized syn-
tactic analyses) that are defined by automata from A. For a
natural number k ≥ 1, L (k-A), LC(k-A), LhP(k-A), and
LA(k-A) will denote the class of input, basic, h-proper
languages, and hLSA’s, respectively, that are recognized
by those automata from A that use a read/write window of
size k.

2.1 Further Refinements and Constraints on
RLWW-Automata (hRLWW-Automata)

Here we introduce some constrained types of rewrite steps
whose introduction is motivated by different type of lin-
guistic reductions.

A delete-left step (q,u)→ (q′,DL(v)) is a special type
of an SL-step (q′,SL(v)) ∈ δ (q,u), where v is a proper
(scattered) subsequence of u, containing all the sentinels
from u (if any). It causes M to replace u by v (by deleting
excessive symbols), to enter state q′, and to shift the win-
dow by |u|− |v| symbols to the left, but at most to the left
sentinel ¢.

A contextual-left step (q,u) → (q′,CL(v)) is a spe-
cial type of DL-step (q′,DL(v)) ∈ δ (q,u), where
u = v1u1v2u2v3 and v = v1v2v3 such that v contains all the
sentinels from u (if any). It causes M to replace u by v (by
deleting the factors u1 and u2 of u), to enter state q′, and
to shift the window by |u|− |v| symbols to the left, but at
most to the left sentinel ¢.

An RLWW(i)-automaton is called RLW(i)-automaton if
its working alphabet coincides with its input alphabet, that
is, no auxiliary symbols are available for this automaton.
Note that in this situation, each restarting configuration is
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necessarily an initial configuration. Within an abbrevia-
tion for an automata type, R denotes the use of moves to
the right, L denotes the use of moves to the left, WW de-
notes the use of both input and working alphabets, and sin-
gle W denotes the use of input alphabet only (the working
alphabet coincides with the input alphabet).

An RLW(i)-automaton is called RLWD(i)-automaton if
all its rewrite steps are DL steps, and it is an RLWC(i)-
automaton if all its rewrite steps are CL-steps. Further,
an RLWW(i)-automaton is called RLWWC(i)-automaton
if all its rewrite steps are CL-steps. Similarly, an
RLWW(i)-automaton is called RLWWD(i)-automaton if
all its rewrite steps are DL-steps. Observe that when con-
centrating on input languages, DL- and CL-steps ensure
that no auxiliary symbols can ever occur on the tape; if,
however, we are interested in basic or h-proper languages,
then auxiliary symbols can play an important role even
though a given RLWW(i)-automaton uses only DL- or
CL-steps. Therefore, we distinguish between RLWWC(i)-
and RLWC(i)-automata, and between RLWWD(i)- and
RLWD(i)-automata.

In the following we will use the corresponding no-
tations also for subclasses of RLWW(i)-automata, and
hRLWW(i)-automata.

Evidently, we need not distinguish between hRLW(i)-
automata and RLW(i)-automata, since for the RLW(i)-
automata the only possible morphism h is the identity.

Fact 3. (Equality of Languages for RLW(i)-automata.)
For any RLW(i)-automaton M, L(M) = LC(M) = LhP(M).

We recall the notion of monotonicity (see [3, 4]) as
an important constraint for computations of RLWW(i)-
automata. Let M be an RLWW(i)-automaton, and let
C =Ck,Ck+1, . . . ,C j be a sequence of configurations of M,
where C`+1 is obtained by a single transition step from C`,
k ≤ ` < j. We say that C is a subcomputation of M.
If C` = ¢αqβ$, then |β$| is the right distance of C`,
which is denoted by Dr(C`). We say that a sub-sequence
(C`1 ,C`2 , . . . ,C`n) of C is monotone if Dr(C`1)≥Dr(C`2)≥
·· · ≥ Dr(C`n). A computation of M is called monotone if
the corresponding sub-sequence of rewrite configurations
is monotone. Here a configuration is called a rewrite con-
figuration if in this configuration an SL- or W-step is being
applied. Finally, M itself is called monotone if each of its
computations is monotone. We use the prefix mon- to de-
note monotone types of RLWW(i)-automata. This notion
of monotonicity has been considered before in various pa-
pers (see [7]) similarly as its following generalization.

Naturally, a mon-RLWW(i)-automaton can be used to
simulate bottom-up one-pass parsers. In order to simulate
also bottom-up multi-pass parsers, a j-monotonicity for
restarting automata was introduced in [12]. For an inte-
ger j ≥ 1, a RLWW(i)- automaton is called j-monotone if,
for each of its computations, the corresponding sequence
of rewriting configurations can be partitioned into at most
j sub-sequences such that each of these sub-sequences

is monotone. We use the prefix mon( j)- to denote j-
monotone types of RLWW(i)-automata.

Here we transfer some restricted form of restarting au-
tomata called weak cyclic form (wcf) (see [3]) over to
RLWW(i)’s. An RLWW M is said to be in weak cyclic
form if |uv| ≤ k for each accepting configuration ¢uqv$
of M, where k is the size of the read/write window of M.
Thus, before M can accept, it must erase sufficiently many
letters from its tape. The prefix wcf- will be used to denote
restarting automata in the weak cyclic form.

3 Results

3.1 On the Insensitivity of Input Languages

The following characterizations, which are slight exten-
sions of known results, show that with respect to their
input languages, (monotone) RLWW(1)-automata are in-
sensitive to the size of their read/write windows. In the
following CFL is the class of context-free languages.

Theorem 4. For all k ≥ 3, the following equalities hold:
(a) CFL = L (mon-RLWW(1)),
(b) CFL = L (k-wcf-mon-RLWW(1)),
(c) L (RLWW(1)) = L (k-wcf-RLWW(1)).

Proof. It follows from [7] that CFL =
L (k-mon-RLWW(1)) for all k ≥ 3, and the equality
L (RLWW) = L (k-RLWW(1)) follows from [16].

It remains to prove that each (monotone) RLWW(1)-
automaton with a window of size three can be converted
into weak cyclic form.

Transformation into weak cyclic form for input lan-
guages. So let M1 be an RLWW(1)-automaton with win-
dow size three. A wcf-RLWW(1)-automaton M2 can sim-
ulate M1 as follows: M2 uses a new non-input symbol #
to indicate that M1 halts with accepting. At the beginning
of each cycle M2 checks the symbol in front of the right
sentinel $. If it is # there, M2 simply deletes the symbol in
front of # and restarts, except when # is the only symbol
on the tape in which case it accepts. If there is no # on
the tape, M2 simulates M1 step by step until M1 is about
to halt. If M1 rejects, then so does M2. If, however, M1
accepts, then M2 either accepts if the tape contents is of
length at most three, or, in case of longer tape contents,
instead of accepting, M2 moves its window to the right,
rewrites the last two symbols in front of the right sentinel
$ by the special symbol # and restarts.

It is easily seen that M2 is monotone, if M1 is, that it
has window size three, and that it accepts the same input
language as M1.

Theorem 5. For all k,k′, j ≥ 1, X ∈ {λ ,wc f}:
(a) L (k-X-RLWW( j)) ⊆ L (k′-X-RLWW( j′)), for all

j′ ≥ d k
k′ e · j.

(b) CFL⊂L (2-X-RLWW( j)).
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Proof. Case (a) follows from an easy observation that
a single rewrite operation using a window of size k
can be simulated by at most d k

k′ e rewrite operations
with a window of size k′. To prove (b) we show
that 2-wcf-RLWW(1)-automata accept all context-free lan-
guages and give a non-context-free language accepted by
2-wcf-RLWW(1)-automaton.

Given any context-free language L, Niemann and Otto
in [11] showed how to construct a monotone one-way
restarting automaton with window size 3 recognizing L.
As the constructed automaton rewrites at most 2 con-
secutive symbols in a cycle and RLWW(1)-automaton
can move in both directions, the constructed automaton
can be simulated by a monotone 2-RLWW(1)-automaton.
This implies CFL ⊆ L (2-X-RLWW( j)). To complete
the proof of (b) it remains to show that the inclusion is
proper. We will show that the non-context-free language
L = {anb2ncn | n ≥ 0} can be accepted by a 2-RLWW(1)-
automaton M.

The automaton M will use two auxiliary symbols X ,Y
whose role is to indicate deleted subwords ab and bc, re-
spectively. Within four cycles the automaton deletes one
occurrence of a and c and two symbols b. To do so M
scans the contents ω of the tape within the sentinels from
left to right and with the right sentinel in its window M
distinguishes six situations:

1. if ω = λ then M accepts;
2. if ω = a+b+c+, then M rewrites ab with X and

restarts;
3. if ω = a∗Xb+c+, then M rewrites bc with Y and

restarts;
4. if ω = a∗Xb∗Y c∗, then M deletes X and restarts;
5. if ω = a∗b∗Y c∗, then M deletes Y and restarts;
6. finally, in all other situations M rejects.

Obviously, M iteratively repeats a series of four cycles and
then accepts/rejects in a tail computation. From the above
description, L = L(M) and L ∈ L (2-RLWW(1))r CFL
follow easily.

The previous theorem witnesses the insensitivity of in-
put languages of RLWW(i)-automata with respect to the
size of look-ahead window.

3.2 hRLWW(i)-Automata and h-Lexicalized
Syntactic Disambiguation

In the following we will study basic and h-proper lan-
guages of hRLWW(i)-automata, and we will see that with
respect to these languages, hRLWW(i)-automata (and their
variants) are sensitive to the window size, number of SL-
operations in a cycle, etc.

The reformulated basic result from [13] follows.

Theorem 6. The following equalities hold:
CFL = LhP(mon-RLWW(1))

= LhP(det-mon-RLWW(1))
= LhP(det-mon-RLWWD(1))
= LhP(det-mon-RLWWC(1)).

The previous theorem witnesses that for any context-
free language there is a deterministic monotone analyzer
which accepts the language when each input word is com-
pletely lexically disambiguated.

3.3 Weak Cyclic Form for Basic Languages

Theorem 7. Let i ≥ 1. For each RLWW(i)-automaton
M, there is a wcf-RLWW(i)-automaton Mwcf such that
LC(M) = LC(Mwcf), and u⇒c∗

M v implies u⇒c∗
Mwcf

v, for
all words u,v. Moreover, the added reductions are in con-
textual form. If M is deterministic, j-monotone or simul-
taneously deterministic and j-monotone, for some j ≥ 1,
then Mwcf is deterministic, j-monotone or simultaneously
deterministic and j-monotone, respectively.

Proof. Transformation into wcf for basic languages.
Let M be an RLWW(i)-automaton. We describe how M
can be converted into a wcf-RLWW(i)-automaton Mwcf
with the basic language LC(Mwcf) = LC(M). Let us as-
sume that the size of the window of M is k. It is easy to
see that the language LT accepted by M in tail computa-
tions is a regular sub-language of LC(M). This means that
there exists a deterministic finite automaton AT such that
L(AT ) = LT . Assume that AT has p states. For Mwcf we
now take a window of size kwcf = max{k, p+ 1}. Mwcf
executes all cycles (reductions) of M just as M. However,
the accepting tail computations of M are replaced by com-
putations of Mwcf that work in the following way:

(1) Any word w∈ LC(M) satisfying |w| ≤ kwcf is immedi-
ately accepted.

(2) On any word w satisfying |w| > kwcf, Mwcf executes
a cycle that works as follows: the window is moved
to the right until the right sentinel $ appears in the
window. From the pumping lemma for regular lan-
guages we know that if w ∈ LT , then there exists a
factorization w = xyz such that |y| > 0, |y|+ |z| ≤ p,
and xz ∈ LT . Accordingly, Mwcf deletes the factor y
and restarts.

From the construction above we immediately see that
LC(Mwcf) = LC(M). According to the definition of an
RLWW(i)-automaton, the automaton M cannot rewrite
during tail computations. Therefore, if M is determin-
istic then Mwcf is deterministic. Additionally, if M is j-
monotone, then Mwcf is j-monotone, too, as the property
of j-monotonicity is not disturbed by the delete operations
at the very right end of the tape that are executed at the
end of a computation. Moreover, all added reductions are
in contextual form.

This enables to strengthen Theorem 6 by requiring au-
tomata in weak cyclic form only.

Corollary 1. For all X ∈ {RLWW(1), RLWWD(1),
RLWWC(1)}, the following equalities hold:

CFL= LhP(mon-wcf-X) = LhP(det-mon-wcf-X).
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Hence, we can require that analyzers for context-free
languages are not only monotone, but they also should ac-
cept without restart short words only.

3.4 On Sensitivity of hLSA by hRLWW(i)-Automata

Here we will recall that for hRLWW(1)-automata in weak
cyclic form, there are strict hierarchies of classes of finite
and infinite basic and h-proper languages that are based
on the window size and on the number of rewrites in one
cycle (one reduction) the automata are allowed to execute
in accepting computations. As the main new results we
will show similar results for hRLWW( j)-automata.

First, however, we need to introduce some additional
notions. For a type X of RLWW( j)-automata, we denote
the subclass of X-automata which perform at most i re-
ductions in any computation as fin(i)-X-automata, and by
fin-X, we denote those X-automata that are of type fin(i)-X
for some i≥ 0.

For any hRLWW( j)-automaton M, we use LC(M, i) to
denote the subset of LC(M) that consists of all words that
M accepts by computations that contain at most i reduc-
tions, and we take LhP(M, i) = h(LC(M, i)).

Proposition 8. Let i ≥ 0, j ≥ 1 and let M be a wcf-
hRLWW( j)-automaton. Then there exists a fin(i)-wcf-
hRLWW( j)-automaton Mi such that LC(Mi) = LC(M, i),
Mi has the same window size as M, and if u⇒c

M v and
v ∈ LC(M, i−1), then u⇒c

Mi
v. In addition, if M is deter-

ministic, then so is Mi.

Proof. Obviously, for an arbitrary i ≥ 0, j,k ≥ 1
and k-fin(i)-wcf-hRLWW( j)-automaton M, the language
LC(M, i) is finite. Hence, it is accepted by a finite automa-
ton Ai. Automaton Mi cannot simply accept in tail com-
putations all words from LC(M, i), as the words can be of
length greater than k. Therefore, on input w, automaton
Mi first simulates Ai. If Ai accepts, then let v1, . . . ,vn be
all words from LC(M, i− 1) such that w ⇒c

M v`, for all
`,1 ≤ ` ≤ n. Then Mi nondeterministically selects some
`0 between 1 and n, and executes a cycle that rewrites w
into v`0 . Automaton Mi must be able to execute a cycle
w⇒c

mi
v`, for all `,1 ≤ ` ≤ n. This is possible, as both

LC(M, i) and LC(M, i−1) are finite languages.
If M is deterministic, then n = 1 and Mi is deterministic,

too.

For a positive integer k, we will use the prefix de(k)- to
denote those hRLWW-automata for which each reduction
shortens the word on the tape by at most k symbols.

From the previous ITAT-contribution [14] we have the
following hierarchies.

Theorem 9. For all types X ∈ {hRLW(1), hRLWD(1),
hRLWC(1), hRLWW(1), hRLWWD(1), hRLWWC(1)},
all prefixes pr1 ∈ {λ ,fin(i),fin}, where i ≥ 1, all pre-
fixes prefX ∈ {wcf,mon-wcf,det-wcf,det-mon-wcf}, and
all k ≥ 2, we have the following proper inclusions:

(a) LhP(k-pr1-prefX -X) ⊂LhP((k+1)-pr1-prefX -X),
(b) LhP(de(k)-pr1-prefX -X)⊂

LhP(de(k+1)-pr1-prefX -X),
(c) LA(k-pr1-prefX -X) ⊂LA((k+1)-pr1-prefX -X),
(d) LA(de(k)-pr1-prefX -X) ⊂

LA(de(k+1)-pr1-prefX -X).

3.5 On Sensitivity of LSA by hRLWW(i)-Automata

As a simple consequence of Theorem 6 and the fact
that the RLWW(1)-automaton M from the proof of Theo-
rem 5(b) is actually deterministic we obtain the following
corollary.

Corollary 2. For all i > 1, pref ∈ {λ , det,wcf,det-wcf}
and all X ∈ {hRLWW(i), hRLWWD(i), hRLWWC(i)} the
following holds:

CFL⊂LhP(pre f -X).

The previous corollary and the following results
strongly support the idea that hRLWW(i)-automata are
strong and fine enough to cover and classify the complex-
ity of the (surface and deep) syntactic features of natural
languages such as subordination (dependency), valency,
coordination etc.

Lemma 1. For all j,k ≥ 1 it holds the following:

(1) L (k-det-mon-fin(1)-wcf-RLWC( j+1))r
LhP(k-wcf-hRLWW( j)) 6= /0,

(2) L ((k+1)-det-mon-fin(1)-wcf-RLWC( j))r
LhP(k-wcf-hRLWW( j)) 6= /0.

Proof. To be able to show the lower bound we need a lan-
guage containing word(s) that are longer than the window
size.

For r ≥ 1, s ≥ 0 let L(r,s) = {b,a(r−1)sbs+1}. In order
to show L(r,s) ∈L (r-det-mon-fin(1)-wcf-RLWC(s)) con-
sider the mon-RLWW(s) automaton M(r,s) which on its
left-to-right turn distinguishes three situations:

1. if input word is b, then M(r,s) accepts;

2. if input word is not from L(r,s), then M(r,s) rejects;

3. if input word is a(r−1)sbs+1, the automaton applies s
CL operations each of which deletes ar−1b; after that
it restarts and accepts b in the next tail computation.

Realize that hRLWW(s) automaton with window size r
can delete at most rs symbols in any cycle with at most s
rewrite (W- or SL-) operations. Since |a(r−1)sbs+1|− |b|=
rs, neither wcf-hRLWW(s) automaton with window size
r−1 nor wcf-hRLWW(s−1) automaton with window size
r is able to recognize L(r,s) as its basic or h-proper lan-
guage.

Now, the languages L(k, j+1) and L(k+1, j) can be used to
prove (1) and (2), respectively.
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Next we show a similar hierarchy with respect to the
degree on monotonicity which is related to the number of
rewritings in a cycle. The degree of monotonicity is an im-
portant constraint which serves for better approximation of
syntax of natural languages, and their individual features.

Lemma 2. For all j,k ≥ 1 it holds the following:

(1) L (k-det-mon( j+1)-wcf-RLWWC( j+1))r
LhP(k-wcf-RLWW( j)) 6= /0;

(2) L (k-det-mon( j+1)-wcf-RLWWC( j+1))r
LhP(k-mon( j)-wcf-RLWW( j+1)) 6= /0.

Proof. We provide a parametrized sequence of finite lan-
guages

{
L(k, j)

m

}∞

j,k=1
, which satisfy

(a) L(k, j+1)
m ∈L (k-det-mon( j+1)-wcf-RLWC( j+1)),

(b) L(k, j+1)
m 6∈LhP(k-wcf-hRLWW( j)), and

(c) L(k, j+1)
m 6∈LhP(k-mon( j)-wcf-RLWW( j+1)).

Let L(k, j)
m = {(ckdkek( j+1)) j,(dkek( j+1)) j}∪{ekr j | 0≤ r≤

j + 1}. We can construct a k-det-mon( j)-RLWC( j)-
automaton M(k, j)

m accepting L(k, j)
m as its input (and basic)

language. The automaton scans the word on its tape and
distinquishes the following cases:

1. if the word is of the form (ckdkek( j+1)) j, then M(k, j)
m

deletes j blocks of ck and restarts;

2. if the word is of the form (dkek( j+1)) j, then M(k, j)
m

deletes j blocks of dk and restarts;

3. if the word is of the form ekr j, for some r,1 ≤ r ≤
j+1, then M(k, j)

m deletes j blocks of ek and restarts;

4. if the word is empty, then M(k, j)
m accepts, and

5. otherwise, M(k, j)
m rejects.

It is not hard to partition the right distances of the
rewriting configurations from an accepting computation of
M(k, j)

m into at most j monotone sequences. The highest de-
gree j of monotonicity is necessary for accepting the input
word (ckdkek( j+1)) j, which is accepted by M(k, j)

m after per-
forming j+3 reductions.

For reasons similar to that ones used in the proof of
Lemma 1, the language L(k, j)

m cannot be accepted nei-
ther as an h-proper language of a k-wcf-RLWW( j′− 1)-
automaton for any j′ < j nor as an h-proper language of a
k-mon( j′)-wcf-RLWW( j)-automaton, for any j′ < j .

The sample languages from the proofs of Lemma 1 and
Lemma 2 have disjunctive alphabets and, therefore, they
can be combined in order to obtain hierarchies with com-
bined constraints. E.g., the language L(k, j) ∪ L(k′, j′)

m is a
language which can be accepted as an h-proper language
of a k̂-det-mon( j′)-wcf-RLWC( ĵ )-automaton, where k̂ =

max(k,k′) and ĵ = max( j, j′), but not as an h-proper lan-
guage of neither a k-wcf-RLWW( j− 1)-automaton, nor a
k′-mon( j′−1)-wcf-RLWWC( j′).

In a similar way, we obtain the following consequences.
We present here only such consequences which can be in-
terpreted as linguistically relevant with respect to the com-
plete lexical disambiguation.

Corollary 3. For all j,k ≥ 1, all prefixes
prefX ,prefY ∈ {det-wcf, det-fin(i)-wcf} and all
X ,Y ∈ {hRLWW,hRLWWD,hRLWWC}, the follow-
ing holds:

(a) LA(k-pre fX -X( j)) ⊂ LA(k-pre fX -X( j+1)),
(b) LA(k-pre fX -X( j+1)) r LA(k-pre fY -Y ( j)) 6= /0,
(c) LA(k-pre fX -X( j)) ⊂ LA((k+1)-pre fX -X( j)),
(d) LA((k+1)-pre fX -X( j))r LA(k-pre fY -Y ( j)) 6= /0.

If additionally i≥ j+3, the following holds:

(aa) LA(k-mon( j)-pre fX -X( j) ) ⊂
LA(k-mon( j+1)-pre fX -X( j+1)),

(bb) LA(k-mon( j+1)-pre fX -X( j+1)) r
LA(k-pre fY -Y ( j)) 6= /0,

(cc) LA(k-mon( j)-pre fX -X( j)) ⊂
LA((k+1)-mon( j)-pre fX -X( j)),

(dd) LA((k+1)-mon( j)-pre fX -X( j)) r
LA(k-pre fY -Y ( j)) 6= /0.

We can see that the h-lexicalized syntactic analyses of
det-wcf-hRLWW( j)-automata are sensitive to the maximal
number of rewrite (SL- and W-) operations in a cycle and
to the size of the window. The syntax of these languages
is given directly by individual reductions, i.e., by indi-
vidual instructions of the hRLWW( j)-automata. Namely
the reductions of RLWWC( j)-automata describe (define)
the (discontinuous) syntactic constituents of the analyzed
words (sentences). Note that the monotonicity of de-
gree one means a synonymy for context-freeness of the
accepted languages by restarting automata. The mono-
tonicity of higher degree means a degree of non-context-
freeness of accepted languages. In the previous corollary
we have transferred this concept from infinite to finite lan-
guages. That can be very useful for classification of indi-
vidual syntactic features.

4 Conclusion

We have seen that monotone RLWW(i)-automata are not
sensitive to the number of deletions and to the size of
their window with respect to their input languages and that
these languages do in general not yield reduction correct-
ness preserving computations of RLWW(i)-automata. On
the other hand, hRLWW(i)-automata satisfy the reduction
correctness preserving property with respect to their basic
and h-proper languages, and consequently also with re-
spect to their lexicalized syntactic analysis. The reduction
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correctness preserving property enforces the sensitivity to
the number of rewritings in a reduction and to the size of
the window.

We believe that the class of h-proper languages of
det-mon(2)-wcf-RLWWC(2)-automata is strong enough
to model lexicalized (surface) syntax of natural languages,
that is, to model their reduction correctness preserving lex-
icalized syntactic analysis. Namely, we strongly believe
that the class of h-proper languages of det-mon(2)-wcf-
RLWWC(2)-automata is a superclass of the class of mildly
context-sensitive languages [5, 6]. In the future we will try
to characterize the class of mildly context-sensitive lan-
guages by h-proper languages of RLWW-automata with
some constraints.

Our long term goal is to propose and support a for-
mal (and possibly also software) environment for a further
study and development of Functional Generative Descrip-
tion (FGD) of Czech (see [9]). We strongly believe that
the lexical disambiguation of FGD can be fully described
by (a certain refinement of) det-mon(4)-wcf-RLWWD(4)-
automata.

We stress that our current efforts cover an important
gap in theoretical tools supporting computational and cor-
pus linguistics. Chomsky grammars and the correspond-
ing types of automata do not support lexicalized syntactic
analysis, as these grammars work with categories bound
to individual constituents with respect to constituent syn-
tactic analysis. They do not support syntactic analysis
with any kind of correctness preserving property, but they
do support several types of insensitivity to the form of
individual grammar rules (see several normal forms for
context-free grammars, like Chomsky and Greibach nor-
mal form [2]), and, finally, they do not support the classi-
fication of finite phenomena of (natural) languages.

On the other hand, in corpus linguistics, only finite lan-
guage phenomena can be observed. Now the basic and h-
proper languages of hRLWW(i)-automata in weak cyclic
form allow common classifications of finite phenomena as
well as classifications of their infinite generalizations to
the corresponding parts of the Chomsky hierarchy. All
these classifications are based on the reduction correct-
ness preserving property and the weak cyclic form. Let
us recall for restarting and list automata the monotonic-
ity means a synonymy for context-freeness. Here we are
able to distinguish between finite monotone and finite non-
monotone languages (syntactic phenomena), too.

Finally, note that many practical problems in computa-
tional and corpus linguistic became decidable if we con-
sider only parametrized finite languages.
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SOFSEM’01, Proc., pages 316–325, LNCS 2234, Springer,
Berlin (2001)

[13] Martin Plátek, Friedrich Otto: On h-lexicalized restart-
ing automata. In: Erzsébet Csuhaj-Varjú, Pál Dömösi,
György Vaszil (eds.), AFL 2017, Proc., Open Pub-
lishing Association, EPTCS 252: 219–233 (2017),
DOI:10.4204/EPTCS.252.21

[14] Martin Plátek, Friedrich Otto, František Mráz: On h-
lexicalized automata and h-syntactic analysis. In: ITAT
2017, Proc., CEUR Workshop Proceedings Vol. 1885, pp.
40–47 (2017)

[15] Martin Plátek, Friedrich Otto, František Mráz:
On h-Lexicalized Restarting List Automata.
Technical Report, www.theory.informatik.uni-
kassel.de/projekte/RL2016v6.4.pdf, Kassel (2017)

[16] Natalie Schluter: Restarting automata with auxiliary sym-
bols restricted by lookahead size. Intern. J. Comput. Math.
92: 908–938 (2015)

Robustness versus Sensibility by Two-Way Restarting Automata 17



Approaching side-effects in pure functional programming by interpreting data
structures as recipes

Michal Štrba, Richard Ostertág

Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava, Slovakia
faiface@ksp.sk, ostertag@dcs.fmph.uniba.sk

Abstract: We present a new approach to side-effects in
pure functional programming. The approach is not novel
in every aspect but rather in combining of multiple already
known concepts into a coherent method.

The key concept in this approach is to view some data
structures as describing a recipe of what should be done.
A program expressed in form of this data structure is then
passed to another program called ’interpreter’. An inter-
preter takes the recipe, examines it, and actually executes
all the desired side-effects.

Keeping simplicity, clarity, and avoiding introduction of
any unnecessary theory, the recipe data structures tend to
roughly conform to the CPS (continuation passing style)
model and tend to contain function values inside of them.
This means, that expressing them in code involves a lot of
anonymous functions and large “continuations” as argu-
ments to other functions. Attempting to write such code in
any of the traditional functional languages, most notably
Haskell, results in a very messy, unpleasant, and hard to
read code. We also think that it’s the main reason why
techniques described in this paper weren’t developed ear-
lier in these languages.

Therefore, we created a new language that makes such
code beautiful and pleasant to read. The subtle features of
the language that make this new approach to side-effects
viable have far reaching implications, mostly by making it
possible to write purely functional code that reads top to
bottom.

In this paper, we describe the Funky programming lan-
guage, how it facilitates writing vertical code, how we can
write interpreters for recipe data structures, and how we
can use the language to transform and combine the recipes
in purely functional code and thereby attain great expres-
sivity in writing side-effecting programs.

1 Short introduction to Funky

Funky is a simple language with a small set of orthogo-
nal features that combine very well. The language was
designed and implemented by us and was the topic of our
bachelor’s thesis. This paper is a shortened version of that
thesis. The parts left out in this paper are mainly the thor-
ough description of the language. This shouldn’t cause
any trouble to people generally familiar with functional
programming, for whom this paper is intended anyway.

Now we’ll briefly describe the important aspects of the
language so that the following sections are easy to under-

stand. The description is very dense, full comprehension
is not required.

1.1 Names and tokens

Tokens in Funky are generally separated by whitespace,
except for these special characters which are always
parsed as separate tokens, whether separated by whites-
pace or not:

( ) [ ] { } , ; \ #

Aside from these, all tokens are separated by whites-
pace. Consequentially, identifiers may contain all kinds
of symbols. For example, these are all valid identifiers:
fold>, fold<, empty?, skip-whitespace. Dashes (-)
are used to separate words in function names instead of un-
derscores or camel-case. However, type names start with
upper-case letters and use camel-case.

Tokens starting with a digit or a +/- sign followed by a
digit are numbers (valid or invalid). Any series of charac-
ters enclosed in single quotes is a character literal (valid or
invalid) and similarly, double quotes enclose a string literal
(again, valid or invalid). Escaping in characters/strings
works as expected.

1.2 Functions

A function definition is signified by the func keyword,
which is followed by a function name, a colon, the type of
the function, equals sign and finally the function body –
an expression. Function definitions cannot be nested and
expressions are only allowed as function bodies, no ex-
pressions outside functions are meaningful. For example:

func sqrt : Float -> Float = \x x ^ 0.5

func max : Int -> Int -> Int =

\x \y if (x >= y) x y

func flip : (a -> b -> c) -> b -> a -> c =

\f \x \y

f y x

As we can see, function argument names are not spec-
ified before the equals sign, instead, all arguments are in-
troduced by abstractions. Funky is very consistent with
this – literally all variables in expressions are introduced
by abstractions, there isn’t a single case otherwise.
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Abstractions are very concise – they consist only of a
backslash followed by the name of the bound variable fol-
lowed by the body of the abstraction (function). Multi-
ple arguments are introduced simply by nesting abstrac-
tions. The body of an abstraction always spans until the
end of the scope (for example, inside parentheses it spans
until the closing parenthesis), which prevents unnecessary
parentheses in many cases.

Function names consisting solely of special characters
(no letters or numbers) are infix functions. All infix func-
tions have the same precedence, which is lower than the
precedence of regular prefix function application and are
all right-associative. This is to free the programmer from
the burden of manually specifying the precedence and as-
sociativity of infix functions. Right-associativity was cho-
sen because it’s more often useful than left-associativity.

The type system is very similar to the one in Haskell.
The main difference is that Funky has no type-classes and
disallows higher-kinded types (type variables with argu-
ments), which shall not be confused with higher-order
types that are supported in Funky.

Quite unusually and very importantly, Funky supports
function overloading – defining multiple functions with
the same name, but different types. For example:

# map applies a function to all elements of

# a list

func map : (a -> b) -> List a -> List b =

\f

fold< ((::) . f) [] # :: is cons

# map applies a function to the potential

# content of a maybe

func map : (a -> b) -> Maybe a -> Maybe b =

\f \maybe

switch maybe

case nothing nothing

case just \x just (f x)

# useless converts a list of maybe floats to

# a list of maybe ints

# ^ that's a useless comment

func useless : List (Maybe Float) ->

List (Maybe Int) =

map (map int)

This comes very handy in many situations – program-
mer doesn’t have to think about names too much and sim-
ilar behavior on different types may be assigned the same
function name. Also, as we’ll see, records are thereby al-
lowed to share field names, which is something that causes
a lot of trouble in Haskell.

Function overloading is not arbitrary – overloaded func-
tions with colliding types are disallowed. Colliding types
are such types that can be specialized (their type variables
can be substituted) into the same type. This is because it
would be impossible to determine, or even easily express,
which of the colliding functions should be used in many
situations.

In the case of need or a desire for clarification, any ex-
pression can be type-annotated with a colon:

((x : Int) + (y : Int) : Int)

1.3 Records

Records are one of the three means of creating own types
in Funky (the other two are unions and aliases). Records
are similar to structs from C or records from Pascal. They
are compound types, a single value containing multiple
fields.

A record definition is signified by the record keyword,
which is followed by the record name, a list of type vari-
ables required by the record (if any), and an equals sign
followed by a comma-separated list of fields. All fields
must be type annotated.

record Pair a b = first : a, second : b

record Person =

name : String,

age : Int, # trailing comma is allowed

record Vec4D =

x : Float,

y : Float,

z : Float,

w : Float,

Funky generates a few functions per record: the con-
structor and a getter and an updater for each field. For
example, in case of the Person record, these functions get
generated:

func Person : String -> Int -> Person

func name : Person -> String

func name : (String -> String) -> Person ->

Person

func age : Person -> Int

func age : (Int -> Int) -> Person -> Person

The constructor takes the values of the record fields in
order and returns an instance of the record. A getter sim-
ply takes a record value and returns the given field. An
updater is more peculiar. It takes a function mapping the
record field to a new value and a record value. Then it re-
turns a copy of the original record where the given field is
replaced by the result of applying the function to its orig-
inal value. This approach to updaters was chosen for two
reasons: first is that this is usually what we want to do:
to update a field according to its previous value; the sec-
ond reason is that updaters compose very well in this form
(they were inspired by Lenses from Haskell).

For example, let’s work with these two records:

record Point = x : Int, y : Int
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record Segment =

start : Point,

end : Point,

Say we have a variable seg which is a segment. We can
compose getters to access the X coordinate of the starting
point:

(x . start) seg

But we can also compose updaters to change the value
of that coordinate and get an updated segment:

(start . x) (+ 4) seg

To replace the value of a field with a value independent
of the previous value of the field, we use the const func-
tion (const x takes one argument and always returns x):

(start . x) (const 0) seg

Let’s define one more record:

record Plan = segments : List Segment

The map function can also be used as an updater on a
list, and so we can write this to update all Y coordinates of
all the end points of the segments in a plan:

(segments . map . end . y) (* 2) plan

The whole main motivation for the creation of the huge
and abstract Lens library in Haskell is avoided in Funky
simply by providing clever updater functions.

1.4 Unions

Unions are just like data types in Haskell. Their definition
is signified by the union keyword followed by the name of
the union and a list of type variables, then an equals sign
followed by a | separated list of alternative forms. For
example (:: is cons, the list prepend function):

union Bool = true | false

union Maybe a = nothing | just a

union List a = empty | a :: List a

Funky generates a single constructor function for each
alternative, which takes all the arguments in the order and
returns an instance of the union. For example, these func-
tions get generated for the List union:

func empty : List a

func (::) : a -> List a -> List a

To get values out of a union value, Funky introduces a
special switch/case structure that looks like this:

func length : List a -> Int =

\list

switch list

case empty

0

case (::) \x \xs

1 + length xs

Each case is followed by the name of the alternative,
which is followed by a function that accepts the argu-
ments of the alternative and returns the final result of the
switch/case structure. The arguments in the case body
don’t have to be mentioned explicitly – the above function
could’ve been written like this:

func length : List a -> Int =

\list

switch list

case empty 0

case (::) const ((1 +) . length)

1.5 Aliases

The simplest way of making type names is by aliasing.
Alias simply defines another name for an existing type,
albeit a possibly more complex one. For example, the
String type from the standard library is defined like this:

alias String = List Char

The alias is perfectly identical to the type on right side
of the equals side. They may be used interchangeably.
Aliases may also have type variables.

2 Vertical code

No feature is useful unless the benefits of its employment
outweigh the costs – the feature must be viable. The new
approach to side-effects described in this paper is viable in
Funky, but not in Haskell, or any other traditional purely
functional language. What makes the difference? Surpris-
ingly, only two subtle syntactic differences, nothing major
at the first sight. Yet, these two syntactic differences make
code that is otherwise ugly and messy in Haskell beauti-
ful and readable in Funky. Of course, some code that is
beautiful and readable in Haskell is in its original form not
possible in Funky at all. But, we’re not talking about just
any code here: we’re talking about the kind of code that
makes the new approach to side-effects viable and that is
– vertical code.

Writing code that reads top to bottom and composes ver-
tically has always been the domain of imperative program-
ming. “Do this, then do that, then repeat this until some
other thing happens” is a very natural way of expressing
programs. Programmer reads the code top to bottom, re-
membering the invariants as they occur, until they form a
complete picture of the program in their mind.
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Functional programs tend to compose differently. In-
stead of a series of statements, functional programs are
mere expressions constructed mostly from function appli-
cation and abstraction. An expression has no natural “or-
der of execution”, it’s usually a function application whose
arguments are yet other expressions. The arguments can
be understood in any order. However, if the arguments are
large expressions containing more function applications
with still more large expressions as their arguments, the
whole thing becomes very inconvenient to read and un-
derstand. The reason is that humans operate with only a
finite (and fairly small) amount of working memory. Un-
derstanding an expression that is syntactically a wide and
deep tree requires a lot of working cognitive memory, so
it’s hard.

Of course, designers of functional languages are well
aware of this. Many syntactic features present in those lan-
guages are specially designed to tackle this issue. These
features include: pattern matching, guards, let bindings,
where bindings, or Haskell’s do notation. However, none
of these features solves the problem fully, because they
don’t nest very well.

The motivation for designing Funky arose from the har-
mony experienced while playing with the pure λ -calculus
and from the frustration with existing functional lan-
guages. Experimenting with the pure λ -calculus gave us
the opportunity to step back – see the bigger picture. We
saw that instead of adding new syntactic features like the
ones described above, all that was needed was to improve
the core – make writing ordinary expressions more concise
and make it possible to naturally split them into multiple
lines. It turned out that this was enough. Funky has no
pattern matching, guards, let binding syntax, nor anything
analogous to the Haskell’s do notation.

The two subtle syntactic features that make it possible
are: concise trailing lambdas and the semicolon. We’ll
demonstrate them on concrete examples: the if and the
let function in Funky.

2.1 if and let

In Funky, if is a simple function from the standard library
(body omitted):

func if : Bool -> a -> a -> a

It takes a condition and two arguments of the same type:
then and else, and returns back the correct one. It can be
used as a simple conditional expression, just like the if
structure in Haskell, or the ternary operator in C:

func min : Int -> Int -> Int =

\x \y

if (x < y) x y

But if the expressions are more complex, this becomes
hard to read. Let’s take the factorial function as an exam-
ple (we’ll call it n! because Funky allows this):

func n! : Int -> Int =

\n

if (n <= 0) 1 (n * n! (n - 1))

This particular code isn’t too bad, but it’s easy to con-
ceive situations where using the if as a simple, one-line
conditional expression would be outright unacceptable.

Funky introduces a special syntactic concept: the semi-
colon. All it does is it puts everything that’s after it (in the
scope) inside parentheses. It works just like the $ function
in Haskell. So we can rewrite this:

if (n <= 0) 1 (n * n! (n - 1))

into this:

if (n <= 1) 1; n * n! (n - 1)

and then split it into multiple lines:

if (n <= 1)

1;

n * n! (n - 1)

A more involved example is the infamous FizzBuzz
problem. Here’s a function that returns the correct output
for each number:

func fizzbuzz : Int -> String =

\number

if ((number % 15) == 0)

"fizzbuzz";

if ((number % 3) == 0)

"fizz";

if ((number % 5) == 0)

"buzz";

string number

Here, if is used to express a series of cases terminated
by a catch-all case. The built-in if structure in Haskell is
not suitable for such purposes – one would have to use
guards instead. But as we’ve already said, guards don’t
nest so well.

In contrary, Funky’s if function nests perfectly. Both
“then” and “else” expressions may be arbitrarily large,
nested, vertical expressions.

if condition (

then

...

);

else

...

Similarly to if, let bindings (variable assignments) are
not a built-in language construct in Funky. Instead, let is
a function from the standard library. Here’s its full defini-
tion (including the body):

func let : a -> (a -> b) -> b = \x \f f x
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The function let takes a value and then takes a function
to which it passes the value as an argument. Thanks to
the Funky’s concise function construction (lambda/back-
slash), this function is a perfectly viable replacement for a
let binding construct built directly into the language.

let "me stay by your"

(\side reverse side ++ " " ++ side)

Here we call the let function with two arguments: the
first one is the string "me stay by your" and the second
one is a function. Calling let passes the string as the ar-
gument to the function and the whole expression evaluates
to "ruoy yb yats em me stay by your".

Thanks to the Funky’s trailing lambda syntax (function
body spans until the end of scope), we can remove the
parentheses around the function:

let "me stay by your"

\side reverse side ++ " " ++ side

Furthermore, we can split the expression into two lines,
yielding a very readable piece of code:

let "me stay by your" \side

reverse side ++ " " ++ side

Now, instead of thinking in terms of function applica-
tions and abstractions, we understand the code as an as-
signment to a variable (immutable, of course) followed by
the resulting expression.

To assign multiple variables, we can just stack let as-
signments:

let (filter prime? (count 2)) \primes

let (take-while (< 100) primes) \small-primes

let (length small-primes) \count

string count ++ " small primes (< 100)"

This expression evaluates to: "25 small primes (<

100)".

2.2 Vertical functions

Some function are suitable for composing code vertically,
either with the help of the semicolon or trailing lambdas.
We’ve seen both in the previous section on the if and the
let function. Other functions aren’t suitable for that. Now
we’ll describe a small theory about these functions that al-
low vertical composition. We call them vertical functions.

There are two main kinds of vertical functions: those
that utilize the semicolon and those that involve trailing
lambdas. Both are characterized by their signature (type).

The first kind we call semicolon kind vertical functions.
Their signatures have this general form (where V is an ar-
bitrary type and ... is an arbitrary sequence of -> appli-
cations):

... -> V -> V

The last argument to a semicolon kind vertical function
can be usually understood as a continuation, analogous to
CPS (continuation passing style).

The if function is an example of a semicolon kind ver-
tical function.

In some cases, the above form is violated and the return
type doesn’t match the last argument, while the function
is still used vertically. However, the signature usually fol-
lows the mentioned form.

The second kind we call trailing lambda kind vertical
functions. Their signatures have this general form:

... -> (... -> V ) -> V

The vertical function passes some arguments to the con-
tinuation, which then takes on the same role as with the
semicolon kind vertical functions. Again, some vertical
functions may violate this form, but those cases are rare.

The let function is an example of a trailing lambda
kind vertical function.

2.3 Viability

The main reason why vertical functions along with their
usage haven’t seen the light of the day in traditional func-
tional languages, such as Haskell is that they’re hardly vi-
able there. The reasons are very subtle. After all, Haskell
supports anonymous functions and has the $ function anal-
ogous to the Funky’s semicolon.

To demonstrate this, let’s take a function for generating
all permutations of a list (the code contains some functions
we haven’t discussed, and won’t discuss, in this paper, but
the understanding of what the function does is irrelevant
now):

func permutations : List a -> List (List a) =

\list

if (empty? list)

(yield []; empty);

pick (permutations (rest list)) \tail

pick (insert (first list) tail) \perm

yield perm;

empty

In Haskell, the above code could be rewritten roughly
like this:

permutations list =

if null list

then yield [] $ empty

else

pick (permutations (rest list)) (\tail ->

pick (insert (first list) tail) (\perm ->

yield perm $

empty))

In case if was a function in Haskell, instead of a built-in
construct, we can improve the code a bit:
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permutations list =

if (null list)

(yield [] $ empty) $

pick (permutations (rest list)) (\tail ->

pick (insert (first list) tail) (\perm ->

yield perm $

empty))

We could improve the code a little bit more by removing
the parentheses around anonymous functions and inserting
a few more dollars:

permutations list =

if (null list)

(yield [] $ empty) $

pick (permutations (rest list)) $ \tail ->

pick (insert (first list) tail) $ \perm ->

yield perm $

empty

The result is still fairly bad, though. The dollar signs all
over the place stick out too much and the arrow at the end
of the argument list of an anonymous function is similarly
detrimental to the overall aesthetics. It’s no wonder that
vertical functions weren’t in fact invented in Haskell. Of
course, one would use pattern matching or the do notation
to write a similar function in Haskell. However, neither
of those features nests very well. The approach taken by
Funky is more general.

3 Side-effects and interpreters

Funky’s approach to side-effects is unique among func-
tional languages, but after exploring it, this fact comes
rather surprising. The approach is so obvious that it’s quite
curious no other language (to our knowledge) has adopted
it before.

The idea is this: a program in Funky is just a value, a
data structure. Then there is a special program called in-
terpreter. This program interacts with the Funky’s runtime
(evaluator) to examine this data structure, which serves the
role of a recipe. A recipe then tells the interpreter what to
do. Contrary to ordinary recipes, these recipes are gen-
erated, combined, recursive, and so on, all the goods of
functional programming.

The Funky programming language itself has no intrinsic
concept of side-effects. In fact, the interpreters themselves
add no real concept of side-effects either. Everything still
remains just a value. The recipe is a value that can be trans-
formed and manipulated just like any other value. This is
where a lot of expressive power comes in as we’ll see.

There isn’t just one interpreter. In fact, any Funky pro-
grammer can make their own interpreters for their own
special purposes. Each interpreter works with a different
data structure describing the desired side-effects. One in-
terpreter is intended for command-line applications. An-
other one is for web servers. And yet another is for 2D
games. Each interprets a data structure specialized for the

given task. In this paper, we’ll examine the interpreter for
command-line applications.

3.1 Interpreters

Funky’s runtime is currently written in Go. As interpreters
need to interact with the runtime, they too must be writ-
ten in Go. This may be expanded to more languages in
the future, for example, it would be useful to write Funky
interpreters in Java or C++.

To write an interpreter we need to import the
"github.com/faiface/funky" package and call the
funky.Run function. This function does all the job re-
garding command-line flags, reading, parsing, and compil-
ing source files, and returns a runtime value representing
the data structure, the recipe, back to the programmer.

package main

import "github.com/faiface/funky"

func main() {

program := funky.Run("main")

}

The funky.Run function takes one argument: the
name of the function containing the recipe value.
The return type of the funky.Run function is
*runtime.Value. The runtime package is located
at "github.com/faiface/funky/runtime". The
*runtime.Value type provides several methods we can
use to interact with the value:

func (*runtime.Value) Char() rune

func (*runtime.Value) Int() *big.Int

func (*runtime.Value) Float() float64

func (*runtime.Value) Field(i int)

*runtime.Value

func (*runtime.Value) Alternative() int

func (*runtime.Value) Apply(

arg *runtime.Value) *runtime.Value

// these three are implemented using the

// above six

func (*runtime.Value) Bool() bool

func (*runtime.Value) List() []*runtime.Value

func (*runtime.Value) String() string

The Char, Int, and Float methods are used to retrieve
values of Funky’s built-in types. The Field function re-
turns the i-th field of a record, or the i-th argument to a
union constructor. The Alternative method returns the
index of the union constructor of the value. And lastly, the
Apply function takes another runtime value and applies it
to the function in the receiving runtime value and returns
the result of this application.

All the above functions crash if they’re used on values
of wrong types. For example, calling Alternative on
a record value crashes, and calling Char on a float value
likewise.
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The last three functions are just for convenience because
booleans, lists, and strings are very widely used types.

The interpreter sometimes needs to fabricate new run-
time values not originating in the Funky program. For
example, when a command-line interpreter loads a char-
acter from the input, it needs to make a character value
and pass it to the program. These functions are provided
in the "github.com/faiface/funky/runtime" pack-
age for this purpose:

func MkChar(c rune) *runtime.Value

func MkInt(i *big.Int) *runtime.Value

func MkFloat(f float64) *runtime.Value

func MkRecord(fields ...*runtime.Value)

*runtime.Value

func MkUnion(alt int, fields ...*runtime.Value)

*runtime.Value

// these three are, again, implemented using

// the above five

func MkBool(b bool) *runtime.Value

func MkList(elems ...*runtime.Value)

*runtime.Value

func MkString(s string) *runtime.Value

Their meaning is clear, so we’ll avoid explaining that.

3.2 Interactive command-line programs

The data structure serving the role of a recipe we chose for
simple interactive command-line programs is strikingly
simple:

union IO =

done |

putc Char IO |

getc (Char -> IO) |

It is a kind of a linked list, with three types of nodes.
One signals the end of the program: done. The next one
– putc – says that a character should be printed and the
program should continue in some way. The first argument
to putc is the character to be printed. The other argument
is the rest of the program – a continuation. The last node
– getc – is requesting a character from the input. It has
one argument: a function. The interpreter should read the
character and pass it as an argument to this function. The
function then returns the rest of the program.

Funky always generates constructor functions for a
union and these are the ones generated for IO (bodies omit-
ted, internal to the compiler/runtime):

func done : IO

func putc : Char -> IO -> IO

func getc : (Char -> IO) -> IO

The imporant thing to notice is that putc is a semicolon
kind vertical function and getc is a trailing lambda kind
vertical function. This makes it easy to compose interac-
tive command-line programs in a natural, imperative-like
style.

For example, here’s a “cat” program, a program that
simply copies the input to the output:

func main : IO =

getc \c

putc c;

main

This program has no done node, it’s an infinite data
structure. Before we run it, though, we need an interpreter.
Here it is (badly formatted, because the lack of horizontal
space):

package main

import (

"bufio"

"io"

"os"

"github.com/faiface/funky"

"github.com/faiface/funky/runtime"

)

func main() {

program := funky.Run("main")

in := bufio.NewReader(os.Stdin)

out := bufio.NewWriter(os.Stdout)

defer out.Flush()

loop:

for {

switch program.Alternative() {

case 0: // done

break loop

case 1: // putc

out.WriteRune(program.Field(0).Char())

program = program.Field(1)

case 2: // getc

out.Flush()

r, _, err := in.ReadRune()

if err == io.EOF {

break loop

}

program = program.Field(0).

Apply(runtime.MkChar(r))

}

}

}

The interpreter enters a loop where it checks the pro-
gram node type and acts accordingly, always proceeding
to the continuation until reaching the done node.

Now we can run the “cat” program (user input is em-
phasized, funkycmd is the name of the interpreter):

$ funkycmd cat.fn stdlib/*.fn stdlib/

funkycmd/*.fn

hello, cat!

hello, cat!

do you cat?

do you cat?

you do cat!

you do cat!

^D
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At the end, the user pressed the Ctrl+D combination to
signal the end of file which caused the program to finish.

We can’t do much with just done, putc, and getc, not
at least conveniently. That’s why we’ll now show how to
define more complex functions on top of the basic ones to
get a more powerful – and sometimes surprisingly power-
ful – behavior.

3.3 print, println, scanln

The first function with a more complex behavior that we’re
going to tackle is print. The print function prints a
whole string instead of a single character as putc does
(it doesn’t do it, but it instructs the interpreter to do it, and
similarly, print instructs the interpreter to print a string).

func print : String -> IO -> IO =

\s \next

if (empty? s)

next;

putc (first s);

print (rest s);

next

The print function takes a string and a continuation
– the rest of the program. Then it recursively describes
how to print the string – print the first character and then
continue printing the rest until we printed the whole string.
Alternatively, print can be defined with a right fold:

func print : String -> IO -> IO =

\s \next fold< putc next s

Now we can use print to create a convenience
println function, which additionally prints a newline at
the end of the string:

func println : String -> IO -> IO =

print . (++ "\n")

The next function we’re going to define is scanln,
which scans a whole line from the input (excluding the
newline character) and passes its content. While print

and println prepended some putc nodes to the contin-
uation, scanln prepends some getc nodes, accumulates
the line and passes it to the continuation, which accepts
one argument: the line string. It’s a trailing lambda kind
vertical function.

func scanln : (String -> IO) -> IO =

\f

"" |> fix \loop \s

getc \c

if (c == '\n')

(f (reverse s));

loop (c :: s)

The body makes use of the fix function (fix-point op-
erator, fix f = f (fix f)) to insert inline recursion.

This is a common pattern in Funky. It’s used to avoid cre-
ating unnecessary helper functions in places where the re-
cursion needs to remember more arguments than the orig-
inal function has. The recursion in our case has to remem-
ber the accumulated string starting from an empty string.
The |> function (x |> f = f x) passes the empty string
as the initial value to the recursion.

With the help of print, println, and scanln, we can
make more involved programs. Here’s a number guessing
game:

func main : IO =

println "Think a number from 1 and 100.";

100 |> 1 |> fix \loop \min \max

let ((min + max) / 2) \mid

print (string mid ++ "? ");

scanln \response

if (response == "less")

(loop min (mid - 1));

if (response == "more")

(loop (mid + 1) max);

if (response == "yes")

(println "Yay!"; done);

println "Say one of less/more/yes.";

loop min max

And here’s an example running of the program:

Think a number from 1 and 100.

50? no

Say one of less/more/yes.

50? nope

Say one of less/more/yes.

50? less

25? more

37? more

43? less

40? more

41? more

42? yes

Yay!

3.4 ungetc, skip-whitespace, scan

The print, println, and scanln functions only
“prepend” operations to the continuation. But since IO is
a fully transparent data structure, we can define transfor-
mations that penetrate it, twist it around, or transform it in
any other way.

The first and a very useful example of such a function
is ungetc. It is used to “push a character back on the in-
put”, so that the next getc call will get it. The plain IO

data structure has no such functionality and we can’t get
any similar behavior just by sequencing done, putc, and
getc. What we need is we need to write a function that
takes a character and a continuation, then searches through
the continuation until it finds the first getc node, and fi-
nally passes the character to that node. Since IO is just a
transparent data structure, this is quite easy:
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func ungetc : Char -> IO -> IO =

\c \io

switch io

case done

done

case putc \d \jo

putc d;

ungetc c;

jo

case getc \f

f c

The ungetc function examines the top node of the con-
tinuation and recursively propagates itself down the data
structure until it finds a getc node. When it does, it passes
the character to the function of the getc node and turns it
into its result.

The ungetc function is particularly useful for imple-
menting the scan function. We’ve already implemented
scanln, which scans whole lines. The scan function, on
the other hand, scans the next full word (a continuous se-
quence of characters not containing any whitespace) on the
input. To do that it first needs to skip all the whitespace
preceding the word, then scan the word, but avoid scan-
ning the first whitespace character after the word. We’ll
see how ungetc comes to help with this.

First, we’ll make a general function for skipping whites-
pace on the input:

func whitespace? : Char -> Bool =

\c

any (c ==) [' ', '\t', '\n', '\r']

func skip-whitespace : IO -> IO =

\next

getc \c

if (whitespace? c) (

skip-whitespace;

next

);

ungetc c;

next

The skip-whitespace function continuously reads
characters from the input until it reaches a non-whitespace
character. It wasn’t supposed to read this character, but it
needed to in order to determine whether to stop skipping
or not. So it uses ungetc to put it back on the input.

With the help of skip-whitespace, here’s scan:

func scan : (String -> IO) -> IO =

\f

skip-whitespace;

"" |> fix \loop \s

getc \c

if (whitespace? c) (

ungetc c;

f (reverse s)

);

loop (c :: s)

It uses the skip-whitespace at the beginning, then it
enters a loop where it accumulates the word until it reaches
a whitespace again. This whitespace wasn’t supposed to
be read by scan, so it’s put back on the input by ungetc.

Here’s a simple calculator program demonstrating the
scan function:

func main : IO =

print "> ";

scan \x-str

scan \op

scan \y-str

# float x-str returns Maybe Float

# hence the call to extract

let (extract (float x-str)) \x

let (extract (float y-str)) \y

println (

if (op == "*") (string (x * y));

if (op == "/") (string (x / y));

"invalid operation: " ++ op

);

main

And here’s its running:

> 10 / 3

3.3333333333333335

> ^D

3.5 reverse-lines

The last example in our exploring of the possibilities of the
IO data structure is a rather peculiar one: not practically
useful, but quite showing of the potential present here.

The function is called reverse-lines and its job is
to reverse all the lines on the output. Lines come to the
output in two ways: either a sequence of putc nodes ter-
minated by a putc of a newline, or a sequence of putc
nodes terminated by a getc node – all the pending output
must be shown to the user before requesting input and the
user input will be entered by a newline.

func reverse-lines : IO -> IO =

\io

io |> "" |> fix \loop \s \(io : IO)

switch io

case done

done

case putc \c \jo

if (c == '\n') (

println s;

loop "";

jo

);

loop (c :: s);

jo

case getc \f

print s;

getc \c

loop "";

f c
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The reverse-lines function starts a loop using inline
recursion with fix to accumulate the line to be reversed.
It removes the original putc nodes from the data structure
and keeps accumulating until reaching one of the above-
mentioned conditions for terminating a line. When one
of the conditions occurs, it transforms the accumulated re-
versed line into a proper series of putc calls using print

or println.
Here’s the small program augmented by

reverse-lines:

func main : IO =

reverse-lines;

print " What's your name? ";

scan \name

println ("Hello, " ++ name ++ "!");

done

And here’s its running:

?eman ruoy s'tahW

!lahciM ,olleH

Unimportant to this paper, this reverse-lines func-
tion isn’t perfect. For example, it fails to reverse the lines
of the “cat” program, because that one has a getc before
each putc and so no full line ever gets accumulated. The
solution to this problem is left as an exercise to the reader.

4 Conclusion

Combining the concept of vertical code with the new ap-
proach to side-effects in a language that makes it viable
resulted in a whole new approach to structuring purely
functional code. We saw that purely functional programs
can be expressed in a way that is familiar to an imperative
programmer. In Funky, this doesn’t come from artificially
implanted syntactic features, but instead stems naturally
from the core, general concepts in the language itself.

At the moment, Funky is virtually unknown. We will
make all the efforts to get the word out there, because we
believe we’ve got something worthy in our hands.
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Abstract: We show that frequent patterns can contribute
to the quality of text summarization. Here we focus
on single-document extractive summarization in English.
Performance of the frequent patterns based model ob-
tained with DGRMiner yields the most relevant sentences
of all compared methods. Two out of three proposed meth-
ods outperform other methods if compared on ROUGE
data.

1 Introduction

Extractive summarization assigns a score to each text
unit (phrase, sentence, paragraph, passage) and then picks
the most informative ones to form a summary called ex-
tract. The selected sentences are used verbatim [1, 25].

Graph representation is a common way for represent-
ing data in automatic text summarization tasks. We intro-
duce a new method for single-document extractive sum-
marization in English language where a text is represented
as a dynamic graph and each sentence corresponds to a dy-
namic graph snapshot, i.e. the graph in a partivular time.
E.g. the first sentence is the oldest snapshot while the last
sentence of a text is the newest one. This method is based
on the principle of mining frequent patterns from such a
dynamic graph and using the resulting patterns as indica-
tors of sentence importance.

The structure of this text is following. In Section 2.
we introduce DGRMiner, a tool for mining in dynamic
graphs. Section 3. describes the algorithm. In Sections
4 we briefly introduce the data used for evaluation. Sec-
tions 5 and 6 explain a way of summarization evaluation
and sentence scoring. Section 7 displays the main results
of text summarization by means of frequent patterns mined
from dynamic graphs. Related work is a contents of Sec-
tion 8. We conclude with concluding Section 9.

2 DGRMiner

We used DGRMiner tool to extract these patterns from
the dynamic graphs. DGRMiner was proposed in [26]
for mining frequent patterns that capture various changes
in dynamic graphs in the form of predictive rules. The
found predictive graph rules express what way the graph
changes. The rules capture patterns such as addition, dele-
tion, and transformation of the subgraph. The use of rel-
ative timestamps for rules allows for mining general pat-
terns while including time information simultaneously. To

ensure that only significant rules are extracted, the al-
gorithm incorporates measuring support and confidence.
While support expresses what portion of the graph is af-
fected by the rule, confidence measures the occurrence
frequency of a specific change, given that a particular pat-
tern was observed. Time abstraction is an extension to the
DGRMiner that allows us to analyse broader class of dy-
namic graphs. The abstraction lies in the use of signum
function on relative timestamps. All the negative times-
tamps become −1, all the positive timestamps become 1
and the timestamp of 0 remains 0. DGRMiner allows for
two types of abstraction. One affects only timestamps of
vertices and should be used when most changes are caused
by edges and vertices remain static. The second one also
affects the edges and is useful when there are too few pat-
terns with exact timestamps.

3 Method

The initial idea was to take a text as a temporal (i.e. dy-
namic) graph where each sentence represent a graph snap-
shot at a particular time and tokens (a lemma together with
a part-of-speech tag) were nodes and edges connected all
pairs of tokens. The label of an edge was equal to a num-
ber of appearances of this pair of tokens. In the following
subsections we describe particular steps of the algorithm.

3.1 Transforming Text to graphs

For pre-processing we employed CoreNLP [15]. CoreNLP
provides a set of natural language analysis tools: POS
tagger, named entity recognition, parser, coreference res-
olution system, sentiment analysis, bootstrapped pattern
learning, and open information extraction. We used four
annotators: sentence split, tokenize, lemma, and POS.

Using the coreNLP package for R, we split the text into
sentences. In every iteration we removed the stop words
from a sentence, lemmatize the remaining words and as-
signed the POS tags. If a lemma-tag pair was not already
in the graph, we added it in and created edges between all
words in a same sentence. Otherwise, we only notified the
DGRMiner that a particular word had appeared again. We
parametrized context c. Therefore, in each step we mod-
elled at most c sentences.

We will show it on simple example that contains a single
sentence.

<sentence position = " 9 " labelers
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= "l, 2 , 3, 4">The great thing about
Aspen is that it has at least one of
each of the really useful stores that
you need, sellingstuff at regular
prices. </sentence>

After removing stop words and labeling words with a
lemma-tag pair, we receive a graph t # 9.

t # 9
an 74 great#ADJ
an 75 thing#NOUN
an 11 Aspen#NOUN
an 76 least#ADJ
an 77 one#NUM
an 78 really#ADV
an 79 useful#ADJ
an 66 store#NOUN
an 5 need#VERB
ae u 48 5 11 [need#VERB]-[Aspen#NOUN]
ae u 432 5 66 [need#VERB]-[store#NOUN]
ae u 433 5 67 [need#VERB]-[sell#VERB]
ae u 434 5 74 [need#VERB]-[great#ADJ]
ae u 435 5 75 [need#VERB]-[thing#NOUN]
ae u 436 5 76 [need#VERB]-[least#ADJ]
ae u 437 5 77 [need#VERB]-[one#NUM]

In the first column, an, ae stand for "add a node" and
"add an edge" respectively.

3.2 Pattern Mining

Then we applied the DGRMiner on the data from previ-
ous step to obtain predictive patterns, i.e. rules that de-
scribe frequent (or rare) changes between past and future
graphs – sentences. We received two types of patterns:
frequent single-vertex patterns corresponding to nodes and
rare patterns corresponding to edges. We modified the sup-
port parameter to change the threshold on frequency of ob-
served patterns. When the support parameter was set too
low, the DGRMiner considered a pattern anything that ap-
peared at least once in the text – every word, every possible
word combination. By setting the confidence parameter
in DGRMiner to 0, the DGRMiner assigned confidence
(as discussed in section 2) to each extracted pattern. We
also played with time abstraction which allowed us to ig-
nore the preset context c as discussed in section 2. There-
fore, patterns were observed in sentences that were more
than c− 2 sentences apart. Although this gave us more
patterns, many of them were uninformative. An example
of observed single-vertex pattern is "+supplies#NOUN".
This pattern indicates that the noun supplies appeared at
least n times in the text, where the n is determined by the
support parameter. An example of multi-vertex pattern is
[store#NOUN]-[sell#VERB], which tells us that the noun
store is frequently closely accompanied by the verb sell.
The proximity of these two words is given by context c
and the frequency is given by the support parameter.

4 Data

To assess the performance of our method we used the Blog
summarization dataset [10, 11, 23]. It consists of 100 posts
annotated in XML that were randomly chosen from two
blogs (half from each blog), Cosmic Variance and Inter-
net Explorer Blog. Each of the four human summariz-
ers picked approximately 7 sentences to form 4 reference
summaries in total. We manually restored apostrophes for
shortened forms of to be and to have verbs, and in posses-
sive nouns. Punctuation within sentences was omitted as
the coreNLP sentence split annotator often wrongly split
the sentences in the middle. We decided not to use CNN
Dataset, nor SUMMAC dataset mentioned in [9] because
the provided reference summaries were not extracted, ver-
batim sentences. This would require us to manually find
the best matching sentence from within the document.

5 Semi-automatic evaluation

Evaluating summaries on sentence level can be done semi-
automatically by measuring content overlap with preci-
sion, recall, and F1 measure. An extracted sentence is
considered acceptable if the same sentence was extracted
in a reference summary. This process cannot be fully
automatized because reference summaries are created by
human judges. Other semi-automatic evaluation methods
used nowadays are: ROUGE, PYRAMID and BASIC ELE-
MENTS. We will discuss only the ROUGE method [25, 14]
as it was used in this work.

5.1 ROUGE

The ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) measure is based on the BLEU metrics used
in machine translation tasks. The idea is to compare the
differences between the distribution of words in the can-
didate summary and the distribution of words in the ref-
erence summaries. Given h reference summaries and a
candidate summary they are split into n-grams to calculate
the intersection of n-grams between the references and the
candidate. This process is illustrated in figure 1.

Given its correlation with manual judgments ROUGE
almost seems to have become a standard. [13] reports
Pearson coefficient for the most commonly used variations
(ROUGE-2 and ROUGE-SU4 [14]) at a value of between
0.94 and 0.99. Generally, the ROUGE-n is calculated from
the co-occurrences of n-grams between the candidate and
reference summaries as shown by formula 1 in [25]:

ROUGE-n =
∑n-grams ∈ {Sumcan∩Sumref}

∑n-grams ∈ Sumref
(1)

where the numerator is the maximum number of co-
occurrences of n-grams in both reference and candidate
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Figure 1: The basic idea of ROUGE for evaluation of sum-
maries [25]

summary and the denominator is the total sum of the num-
ber of n-grams present in the reference summaries.

The ROUGE-SUγ is an adaptation of ROUGE-2 using
skip units (SU) of a size ≤ γ . SU4 considers the bigrams
and the bigrams SU to be arbitrary in a maximum window
length of γ = 4 words. The number of bigrams with an
arbitrary size of length γ is given by formula 2:

Count(k,n) =C
(

n
k

)
−

k−γ

∑
0
(k− γ);γ ≤ 1 (2)

where n is the n-gram length and k is the sentence length
in words.

The ROUGE metrics are not flawless. Firstly, they have
a problem with the representation of content. Secondly,
they will not consider chains of words such as "MUNI"
6= "Masaryk University" and "FI" 6=" Faculty of Informat-
ics". A study [22] found that the system can be tricked into
generating a summary with high ROUGE score.

6 Sentence Scoring

In this step we used the observed patterns as indicators to
score the sentences. The final score was obtained accord-
ing to formula 3 as a sum of single-vertex and multi-vertex
scores:

Score(s) = Scoresingle(s)+Scoremulti(s) (3)

Three different metrics were implemented to calculate
single-vertex score.

The Jaccard coefficient (JAC) as given by formula 4,
expresses the overlap of two sets. In our case, between the
set of patterns P and the set of words in the sentence S.

ScoreJ(s) =
wsum(S∩P)
wsum(S∪P)

(4)

where wsum assigns weight to every element of the set and
then sums over them. A question arises regarding what
weight we should assign to non-indicators. Empirically,
we received the best results for the value of 0.001.

The frequency method (FRQ) as given by formula 5,
is the simplest of the three. For a sentence s and a set of
patterns P the score is calculated as weighted average.

ScoreF(s) = ∑
p∈P

c(p)w(p) (5)

where c(p) is the frequency of the pattern in the sentence
and w(p) is its associated weight.

The density method (DEN) as given by formula 6,
counts the patterns in a sentence and normalizes by the
length of the sentence. This method is parameter-free.

ScoreD(s) =
| S∩P |

length(s)
(6)

For multi-vertex patterns we tested frequency and den-
sity methods. The only difference between the methods is
that instead of length of sentences we use the number of
all possible word pair combinations

(|S|
2

)
.

We built the summary in a greedy fashion. In every it-
eration we picked the highest scoring sentence. Patterns
observed in the sentence were penalized by a parameter
λ . The scores were recomputed and the process continued
until a desired number of sentences was picked or until all
the sentences were used. For every method we discovered
the optimal value of λ . We tuned the parameter on 10% of
the entire dataset. The optimal values for λ are presented
in the tables 2 and 1. The ordering of sentences in the fi-
nal summary maintains the relative ordering in the original
document.

7 Results

We evaluated the model using the ROUGE-1 metric,
which is recommended for short summaries [14]. Every
blog post was compared against four reference summaries
as described in chapter 4. The results of all three methods
can be seen in tables 1, 2 and 3. The first three columns de-
note whether time abstraction on both vertices and edges
is used, whether the patterns were used to score sentences,
and whether the initial weights were determined by the
confidence of DGRMiner for the given pattern, respec-
tively. The last three columns correspond to the ROUGE-1
metrics – precision (what portion of sentences we selected
were part of the reference summary), recall (what portion
of sentences in reference summary we extracted), and f1
measure (harmonic mean of precision and recall).

The FRQ method marked the most accurate sentences
among all the presented algorithms as can be seen from
figure 2. JAC method picked fewer correct sentences than
FRQ method but still more than any traditional approach.
Both FRQ and DEN methods ranked first in terms of pre-
cision.

The frequency-based method incorporating patterns
with no confidence weighting (identified as FRQ) achieved
the highest recall, the highest f1 score, and the highest
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binall patterns weights precision recall f1 score
F F F 0.643 0.694 0.664
F T F 0.643 0.686 0.659
F T T 0.641 0.684 0.657
T F F 0.641 0.683 0.657
F F T 0.640 0.691 0.660
T T F 0.640 0.678 0.654
T T T 0.640 0.678 0.654
T F T 0.639 0.681 0.655

Table 1: Results for blog summarization dataset using jaccard method with parameters λ = 0.55, w0 = 0.001

binall patterns weights precision recall f1 score
F T F 0.645 0.702 0.668
F F T 0.645 0.700 0.667
F F F 0.644 0.701 0.665
F T T 0.643 0.693 0.662
T F F 0.642 0.691 0.661
T T F 0.642 0.691 0.661
T F T 0.642 0.690 0.660
T T T 0.642 0.688 0.660

Table 2: Results for blog summarization dataset using frequency method with parameter λ = 0.20

binall patterns precision recall f1 score
F T 0.651 0.514 0.562
F F 0.650 0.514 0.562
T T 0.649 0.516 0.563
T F 0.649 0.512 0.562

Table 3: Results for blog summarization dataset using density method

Figure 2: Comparison of number of correctly chosen sentences – using blog summarization dataset (our algorithms are
displayed yellow)
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number of correctly chosen sentences. The highest pre-
cision was achieved by density-based method incorporat-
ing patterns with no confidence weighting (identified as
DEN). We chose these two models and the highest scoring
Jaccard method for comparison together with algorithms
presented in article [9]. We could see that FRQ behaves
similarly to Word frequency (WF) algorithm proposed in
the paper. This is not surprising, because the single vertex-
frequent patterns correspond to words that appear at least
n-times in the text. Where n is determined by the support
parameter in the DGRMiner tool as described in section
3.2. The multi-vertex patterns improved the performance
of the summarizer in density models and in one case (the
highest scoring model) in frequency model.

8 Related work

Kupiec et al. introduce in their work [12] method inspired
by Edmundson’s [7]. They approached the summarization
as a statistical classification problem. A Bayes classifier
was trained to estimate the probability that a given sen-
tence would be included in the summary. They used 6
discrete features (presented in order of importance): para-
graph feature (the position of sentence in paragraph s),
fixed-phrase feature (the sentence contains a phrase from
a list), sentence length cutoff feature (threshold u1 = 5,
length(s) > u1), thematic word feature (the presence of
thematic terms), uppercase word feature (the presence of
words in capital letters). The best results were obtained
using the first three features.

Aone et al. [2] built on Kupiec’s work [12] and ex-
panded the feature set of their system, called DIMSUM,
with signature terms, which indicate key concepts for a
given document. Another advantage over [12]’s system
is the use of multi-word phrases – statistically derived
collocation phrases (e.g. "omnibus bill", "crime bill",
"brady bill") and associated words ("camera" and "ob-
scura", "Columbia River" and "gorge"), as well as the use
of WordNet [16] to identify possible synonyms of found
signature terms. He applied a shallow discourse analysis to
resolve co-references and maintain cohesion – only name
aliases were resolved such as UK to United Kingdom.

Osborne in his work [18] disagrees with the traditional
assumption of feature independence and shows empiri-
cally that the maximum entropy (MaxEnt) model produces
better extracts than the naïve Bayes model with similarly
optimized prior appended to both models. Unlike naïve
Bayes, MaxEnt does not make unnecessary feature inde-
pendence assumptions. Let c be a binary label (binary:
part of summary or not), s the item we are interested in la-
beling, fi the i-th feature, and ωi the corresponding feature
weight.

Hidden Markov Models (HMM), similar to MaxEnt,
have weaker assumptions of independence. There are
three types of dependencies: positional dependence, fea-
ture dependence, and Markovity dependence. A first-order

Markov model allows modeling these dependencies. Con-
roy and O’leary [6] use a joint distribution for the features
set, unlike the independence-of-features assumption used
in naïve Bayesian methods. The HMM was trained us-
ing five features: position of the sentence in the document
(number of states); number of terms in a sentence, and
likeliness of the sentence terms given the document terms.

Summarizer NetSum presented by Svore et al. [24] uses
an artificial neural network (ANN) called RankNet to rank
the sentences. RankNet is a pair-based neural network al-
gorithm for ranking a set of inputs. It is trained on pairs
of sentences (Si,S j), such that the ROUGE score for Si
should be higher than S j. Pairs are only generated in a
single document, not across documents. The cost function
for RankNet is the probabilistic cross-entropy cost func-
tion. Training is performed using a modified version of
back-propagation algorithm for two-layer networks, which
is based on optimizing the cost function by gradient de-
scent. The system significantly outperforms the standard
baseline in the ROUGE-1 measure. No past system could
outperform the baseline with statistical significance.

A system for generating product category-based (topic-
based) extractive summarization was proposed by [4, 5].
The collection of 45 news items corresponding to various
products are pre-processed using standard techniques: to-
kenization, stopword removal, stemming. The final corpus
contains around 1500 features and is represented by a bag-
of-words VSM based on these features. To identify the
topics, the news items about specific categories of prod-
ucts are segregated into separate clusters using K-Means
and then an extractive summary is generated from each of
these topical clusters. The K number of cluster is deter-
mined by a Self-Organizing Map (SOM).

Chakraborti and Dey [5] assigned a score to the en-
tire summary as a single unit. The total summary score
(TSS) is taken as a combination of cosine similarity be-
tween centroid of corpus and the summary as a whole;
relative length of the summary; and redundancy penalty.
To maximize TSS constrained by the number of lines in
summary (τ = 5−7%), they opted for quick Artificial Bee
Colony optimization, a global optimization technique, for
sentence selection. The summary with the highest score is
then chosen.

In Muresan’s paper [17], a system called GIST-IT used
for email-summarization task is discussed. First, noun
phrases (NPs) are extracted as they carry the most content-
ful information. Subsequently, machine learning is used to
select the most salient NPs. A set of nine features, divided
into three categories (head of the NP, whole NP, combina-
tion of head and modifiers of NP) were used: head of the
NP TF*IDF, position of first occurrence (focc) of the head
in text, TF*IDF of entire NP, focc of entire NP, length of
the NP in words, length of the NP in characters, position
of the NP in the sentence, position of the NP in the para-
graph, and combination of the TF*IDF scores of head of
the NP and its modifiers.

To find the most salient NPs, three machine learning al-
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gorithms were applied: decision trees (axis-parallel trees –
C4.5 and oblique trees – OC1), rule induction (production
rule – C4.5rules and propositional rules – RIPPER), and
decision forests (DFC using information gain ratio).

Muresan claims that shallow linguistic filtering applied
to NPs improved the classifiers accuracy [17]. The filter-
ing consisted of four steps: grouping inflectional variants,
removing unimportant modifiers, filtering stopwords, and
removing empty nouns.

A modification of PageRank algorithm called LexRank
is used to weight sentences. The undirected graph of sen-
tences is constructed from symmetrical similarities (mod-
ified cosine measure). The score of each vertex s is cal-
culated iteratively until the values of the vertices have not
been modified by more than ε = 0.0001. LexRank algo-
rithm is used as a component of the MEAD [8].

Unlike LexRank, TextRank uses the similarities of
edges to weight the vertices. The score of each sentence si
is calculated iteratively until convergence is reached.

As the graph is constructed from inter-sentence sim-
ilarity measure, the choice of the method for sentence-
weighting has significant impact. One approach is to use
a bag-of-words to represent the sentences. The similarity
is obtained by calculating the cosine similarity weighted
by inverse document frequency [1] between their vectorial
representations. Another approach suggests using word
overlap between sentences instead. The weak point of all
similarity measures that use words (cosine similarity, word
overlap, longest common subsequence) is the dependency
on the lexicon of the document. The solution to this is
its combining with similarity measure based on chains of
characters. Therefore, sentences that do not share a single
word but contain a number of words that are close mor-
phologically can be compared [25].

Patil [19] proposed a new graph-based model called
SUMGRAPH. First the text is pre-processed (stemmed)
and represented as a VSM with TF*IDF weights. He then
computes pair-wise cosine similarities and subtracts the
values from 1 to obtain dissimilarities. The resulting ma-
trix of intra-sentence dissimilarities is then used to model
the document as graph. The vertices represent the sen-
tences and edges are weighted by intra-sentence dissimi-
larities.

The novel idea is the use of link reduction technique
known as Pathfinder Network Scaling (PFnet) [21, 20] to
scale the graph. PFnet models the human aspects of se-
mantic memory. The centrality of a sentence and its po-
sition in a document are used to compute the importance
of sentences. Four different centrality measure were tested
and closeness centrality showed to perform best. Finally,
the sentences are ranked according to their importance and
first n highest-scoring sentences were picked.

The approaches based on similarity graphs solely model
the similarity between pairs of sentences with no clear rep-
resentation of word relations. Therefore, it is not clear
if they adequately cover all topical information. The
hypergraph-based approach is to remedy this problem by

capturing the high-order relations between both sentences
and words. [3] proposed a hypergraph-based model for
generic summarization based on [27]’s hypergraph-based
model for query-focused summarization. The ranking
uses a semi-supervised approach to order sentences. They
model the words as vertices and sentences as hyperedges
and then approach the problem as a random walk over hy-
peredges.

9 Conclusion

We showed that frequent patterns can contribute to the
quality of text summarization. The comparison supports
our statement that the performance of our frequent patterns
based model is comparable to the simpler word frequency
method and yielded the most relevant sentences of all com-
pared methods. Our methods outperformed other methods
in precision but lacked in recall. We attribute the similarity
to word frequency method to inadequate graph represen-
tation – instead of interconnecting all the words within a
sentence, suggest connecting them according to the parse
tree. Another consideration is to use a graph mining tool
that searches for more specific types of patterns than DGR-
Miner.
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Abstract: The paper presents an application for lay,
untrained users to generate high-quality, aligned pho-
netic transcription of speech. The application has
been in use for several years and has served to tran-
scribe over 600 thousand word forms over two versions
of a web interface. We present measures for compen-
sating the lack of expert training.

1 Introduction

1.1 Our Setting

The work presented in this paper is a part of
the project that tends the spoken corpus of Karel
Makoň[1]. The corpus is of the single speaker and
has been recorded in amateur conditions, while the
author was speaking to his friends about a novel way
to interpret the teaching of Jesus and of mystic and
spirituality in general. Karel Makoň died in 1993 and
a community of favorers of his teachings has perse-
vered since then.

The talks can be seen as companions to Makoň’s
written works. Together they form a unique, exten-
sive, consistent systematization of the spiritual path
tailored to modern westerners and accessible primar-
ily to Czech speakers. It draws heavily on traditional
Christian mysticism as well as ancient tradition of In-
dia and China, adapting them for the present. The
whole system can be seen as a manual for entering
the eternal life prior to the physical death.

There are over 1000 hours of digitized recordings
of Karel Makoň, they are accessible under the CC-
BY license and the project aims at bringing the most
benefit out of them. The first step was digitizing the
recordings from the original magnetic tapes, the sec-
ond step was releasing all of them on the world-wide
web, the third step was developing a web-based sys-
tem for human / machine transcription of the bulk,
allowing for search.

The transcription we do is both phonetic and or-
thographic.1 Our users are supposed provide ortho-
graphic transcription where the pronunciation is stan-
dard and phonetic otherwise.

1There is no actual focus on orthography. Instead, we mean
the natural way of transcribing the speech to human-readable
text. Where it matters, focus is directed at precise correspon-
dence with the utterances instead of language cleanliness.

1.2 Architecture Overview

The system consists of

1. The corpus in compressed audio format. We
use mp3 and ogg/vorbis to accomodate most
browsers. These data are hosted on an external
CDN.

2. The exact copy of the corpus in parametrized
(MFCC) format. These data reside on the back-
end server.

3. A complete, aligned transcription of the record-
ings, hosted on the back-end server and mirrored
on a CDN.

4. Acoustic model trained on the human-
transcribed part of the corpus.

5. Language model trained using Srilm[2] on a com-
bination of publicly available Czech texts, Karel
Makoň’s written works, and both the human-
submitted and automatically-acquired transcrip-
tion.

6. Back-end API for collecting correcions to the
transcription, serving the transcription and al-
lowing full-text search with elasticsearch2.

7. Separately hosted front-end web application serv-
ing as an interface for playing the recordings, syn-
chronously displaying the transcriptions and col-
lecting the corrections from users.

To get the initial transcription, we have manually
transcribed some 10 minutes of the material using
Transcriber3, trained an acoustic model on it and rec-
ognized the whole data using it.

2 Annotator Expertise

Our case is on the edge of what can be called linguistic
data annotation. In our lucky part of the world where
alphabetization nears 100%, transcription of speech is
hardly expert work. On the other hand, ensuring that
the transcription exactly matches the audio

2https://www.elastic.co/products/elasticsearch
3http://trans.sourceforge.net/
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• as a representation of the words uttered and of
their meaning,

• on the phonetic level, phone for phoneme,4

• on the time axis

is beyond what can be expected from an untrained
user.

Linguistic data annotation in general requires
trained personnel. If we only look at the Prague De-
pendency Treebank, we can notice the annotators pro-
vided such a degree of expertise they have become the
co-authors[3].

Crowdsourcing, community-driven approach or en-
gaging volunteers is an ever stronger, popular way
of obtaining assets that would otherwise be unbear-
ably costly. Let us mention for example Mihalcea
(2004)[4] who delegates word-sense disambiguation to
volunteers. The Wikicorpus[5] as well as the MASC[6]
gather annotation from volunteers.

In most cases, quality is very important for data
annotation, so some kind of control is essential, no
matter how expert the annotators. Trivially, the less
expertise, the more control is needed.

2.1 Quality Control

A common way of dealing with quality control is to in-
spect annotator agreement. This has the huge down-
side that every piece of data must be annotated at
least twice, which reduces the yield by 50+%.

There is another reason not to use it in our case.
Our application is designed for people who want to
listen to the recordings out of interest and their con-
tribution to the quality of the transcription is more
of a by-product. It would be hard to convince them
to choose exactly a recording that another user has
already transcribed.

Luckily, we can implement automatic measures to
aid the annotators to deliver higher-quality transcrip-
tion.

2.2 Forced Alignment

We always assume an existing transcription, so we can
see the user’s contribution as a correction. Every sub-
mission has the form of replacing a text segment with
another. Since the transcriptions are time-aligned to
the audio, we also know exactly what is the corre-
sponding audio segment to the text submitted.

This enables us to perform forced alignment on the
submitted text and the audio. With a well selected
pruning threshold, we can distinguish false transcrip-
tions and reject them, providing feedback to the con-
tibutor. Since every segment of audio fits the acoustic

4In the sense that each written phoneme corresponds to
exactly one uttered phone.

model to a different degree, both false positives and
false negatives will inevitably occur.

False positives (when the system accepts a wrong
transcription) present a problem, since the error will
enter the training data set. But users can often cir-
cumvent false negatives by submitting the transcrip-
tion divided in different segments. Of course, this
method can also be used to force a wrong transcrip-
tion but we assume no malevolence on the part of the
users.

Apart from catching wrong transcription, the
forced alignment mechanism provides exact synchro-
nization on the time axis. This is a completely miss-
ing element in the case of virtually all programs for
computer-aided transcription. For some examples,
Transcriber, a veteran open-source transcribing pro-
gram for Linux, expects the user to provide alignment
on the level of phrases; Transcribe,5 a commercial
web-based transcribing tool, allows the user to add
timestamps anywhere in the text. There is no acous-
tic model, hence nothing to match against.

3 Phonetic Transcription

3.1 Purpose

We have originally built the acoustic model using
HTK,6 the Hidden Markov Model Toolkit. Here, ex-
plicit phonetically labeled training data are neces-
sary for training. We are switching to DNN, using
Mozilla’s DeepSpeech,7 where no explicit phonetic an-
notation is needed but for some purposes like forced
alignment, the original HMM is still irreplaceable.

Also, the phonetic labeling is valuable per se for
research purposes.

3.2 Phoneme Set

We use a subset of PACal[7]. We shall also refer to
individual phonemes in this paper using the PACal
notation in monospace font. For reference, Table 1
lists the phonemes used with their IPA notation.

3.3 Acquisition

The phonetic transcription is in normal case also a
product of forced alignment, as in case of pronunci-
ation variants, it selects the most fitting one. This
requires a way to automatically obtain all pronunci-
ation variants of any word. We use a combination
of a rule-based system inspired by Psutka et al.[8],
in combination with a dynamic dictionary. The dy-
namic dictionary is a list of alternative pronunciations
of a word, which expands as the app is being used.

5https://transcribe.wreally.com/
6http://htk.eng.cam.ac.uk/
7https://github.com/mozilla/DeepSpeech
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IPA PACal common grapheme IPA PACal common grapheme
a a a ɱ mg tramvaj
aː aa á n n ne
aʊ̯ aw au ŋ ng tank
b b b ɲ nj ň
t͡s c c o o o
t͡ʃ ch č oː oo ó
d d d oʊ̯ ow ou
ɟ dj ď p p p
d͡z dz dz r r r
d͡ʒ dzh dž r ̝̊ rsh tři
ɛ e e r ̝ rzh říz
ɛː ee é s s s
eʊ̯ ew eu ʃ sh š
f f f t t t
g g g c tj ť
ɦ h h ʊ u u
i i i uː uu ú, ů
iː ii í v v v
j j j x x ch
k k k z z z
l l l ʒ zh ž
m m mák sil

sp
Table 1: Phonemes used in transcription

The users are instructed to transcribe any words
with non-standard pronunciation phonetically and
then correct their orthographical form. This is one
of the few cases where we are coercing the users to
something.

When the orthographically broken, phonetic tran-
scription of a word is submitted, if it passes the forced-
alignment phase, it is integrated into the displayed
transcription. The word’s data representation con-
sists of its

1. occurrence: the word as it appears in the text,
including capitalization and punctuation,

2. wordform: the word as it appears in the lan-
guage model and phonetic dictionary (computed
as the occurrence in lowercase and stripped of
non-alphabetic characters8),

3. pronunciation: an array of phonemes,

4. timestamp: distance of the beginning of the word
from the beginning of the file, in seconds, in pre-
cision of 2 decimal digits,

5. manual/automatic: boolean flag denoting
whether the word has been transcribed manually
or not,

8This implies that all non-alphabetic characters are always
a part of a token and never form a token on their own.

6. confidence measure: in case of automatically ac-
quired words, the confidence-measure score of the
recognizer.

Once merged into the displayed transcription, each
word’s occurrence can be edited manually. Now the
user can enter the correct form deviating from Czech
pronunciation rules.

Doing so results in adding the wordform-
pronunciation couple to the dynamic pronunciation
dictionary and is also used for forced alignment.
Thus, this operation need only be performed once per
word and any subsequent time the word is entered in
its standard orthographic form, the correct pronunci-
ation is inferred.

For example, let’s examine the scenario of tran-
scribing the sentence Proč se toto nestalo Marii
Markétě Alacoque? (Why hasn’t this happened to
Mary Margaret Alacoque?) Its phonetic representa-
tion is p r o ch sp s e sp t o t o sp n e s t
a l o sp m a r i j i sp m a r k ee tj e sp a
l a k o k sil .

1. Suppose the user enters the correct ortographic
transcription.

2. The phonetic transducer outputs p r o ch sp
s e sp t o t o sp n e s t a l o sp m a r
i j i sp m a r k ee tj e sp a l a c o k v
u e sil .
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3. With a bit of luck, the forced alignment fails be-
cause of the distiction of the phone sequence
k o k and c o k v u e.

4. The transcription is rejected, the user realizes
that the word is pronounced in a non-standard
way and re-tries with Proč se toto nestalo Marii
Markétě alakok?

5. Forced alignment succeeds now and the entered
transcription is merged into the view.

6. The user selects the non-existent word alakok?
and edits its occurrence to Alacoque?

7. Now the word is correctly stored and on any sub-
sequent user inputs of Alacoque with any punc-
tuation or capitalization, the pronunciation a l
a k o k is inferred by the forced alignment.

3.4 Phonetic Respelling

With all advantages of using PACal as a representa-
tion for phonemes, it is clearly not the most natu-
ral way for lay Czechs to write down and read literal
pronunciation. Thanks to the simple, mostly deter-
ministic mapping between phonemes and graphemes,
pronunciation respelling is a reliable, natural way.
There’s not even a need for explicit syllable sep-
aration as seen in English pronunciation respelling
(wikipedia9 gives the example “Diarrhoea” is pro-
nounced DYE-uh-REE-a). We postulate that the pho-
netic respelling is natural to all alphabetized native
Czech speakers as a fact without any supporting re-
search, based on experience alone.

The previous subsection gave an example of using
pronunciation respelling in Czech with the example
of alakok for Alacoque. The direction from the pho-
netic respelling to the phoneme array is covered by
the ortographic-to-phonetic transducer. But we also
need the opposite direction to provide the users a way
to check whether the pronunciation selected by the
forced alignment fits.

For this purpose, we have created a JavaScript mod-
ule for transduction between the array of phonemes
and the pronunciation respelling.10

The algorithm is simple. In most cases, a phoneme
corresponds uniquely to one character in the re-
spelling. Exceptions are as follows:

1. The phoneme x is spelled ch.

2. The phonemes dz dzh are spelled dz dž.

3. The diphtongs aw ew ow are spelled au eu ou.

9https://en.wikipedia.org/wiki/Pronunciation_respelling
10https://github.com/Sixtease/MakonReact/

blob/master/src/lib/Phonet.js

4. Sequences c h, o u, a u, e u, d z, d zh are
spelled c’h, o’u, a’u, e’u, d’z, d’ž. Note though,
that the sequence c h is purely hypothetical, as
it contradicts voiced/voiceless assimilation.

5. Voiceless alveolar fricative trill is explicated as r’.

6. Palatal nasal and labiodental nasal are spelled n’,
m’.

7. Trailing silence is not represented.

The module includes two-way transduction, al-
though only the one from array of phonemes to
human-readable phonetic respelling is needed in our
application. Still, the user can mark up special-case
pronunciation with the apostrophe, like the sequence
of phonemes o and u with the string o'u. The need
has never occurred during the six years’ lifespan of
the application.

Note that when encoding into the phonetic re-
spelling, none of di ti ni dě tě ně is ever output. The
palatal consonants are always explicitly spelled out
and e.g. the sequence n i is always spelled ny

A few examples of words, pronunciation and pho-
netic respelling as output by the algorithm (given
the corresponding pronunciation is input as phoneme
list):

• nic /nj i c/: ňic,

• kdo /g d o/: gdo,

• disk /d i s k/: dysk,

• dřít /d rzh ii t/: dřít,

• třít /t rsh ii t/: tř’ít,

• auto /aw t o/: auto,

• nauka /n a u k a/: na’uka,

• džbán /dzh b aa n/: džbán,

• odžít /o d dz ii t/: od’žít,

• odznak /o dz n a k/: odznak,

• podzemí /p o d z e m ii/: pod’zemí,

• noc /n o c/: noc,

• tento /t e n t o/: tento,

• hangár /h a ng g aa r/: han’gár,

• samba /s a m b a/: samba,

• tonfa /t o mg f a/: tom’fa.

The use of apostrophe for distinguishing ambi-
guities and special cases is not 100% intuitive and
presents another point where instruction is necessary
for the user to use this feature properly.
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4 Evaluation

We have presented our web application as a tool that
enables gathering precisely aligned, phoneme-exact
transcription from untrained casual visitors. We have
presented measures for reaching this goal but the de-
gree to which it was reached remains unclear.

We have no gold standard data to measure the qual-
ity of our manual transcriptions. On the contrary, we
use the manual transcriptions as gold standard for the
automatic recognition. What we can to, however, is
look at some random samples and try to get a rough
idea of how the system performs.

4.1 Validation by Forced Alignment

One thing we can examine are the approvals / re-
jections of the forced alignment. Of 109640 forced
alignment attempts, 3419 have failed, which makes
for 3.12% rejection rate. We have manually inspected
20 random failed attempts and came to the following
numbers:

• 11 cases were false negatives, where the transcrip-
tion was correct and should have been accepted,

• 4 cases were caused by acoustic irregularities like
noise,

• 4 cases were true negatives caused by wrongly
chosen segment boundaries and

• 1 case was true negative caused by wrong tran-
scription.

Hence, in 25% of the minimalistic sample, the
forced alignment did its job of a validator and pre-
vented a piece of broken training data from entering
the dataset. In 55% it was a nuisance and failure, and
in the remaining 20%, it rejected a valid transcription
but prevented a bad training example from occurring,
so we can see this in positive light.

4.2 Non-Standard Pronunciation

We can also track how the scenario described in sub-
section 3.4 is applied. We have looked up four promis-
ing example records in the dynamic dictionary and
checked submitted transcriptions containing them.
Table 2 lists for each of them the correct orthographic
form, the wrong pronunciation obtained by the trans-
ducer, the correct pronunciation and finally the pho-
netic respelling. Each is followed by the number of
occurrences in the manually transcribed data.

We can see in Table 3 that the majority of cases re-
sults in both orthographic and phonetic forms being
correct. Only in about 13% cases, the orthographi-
cally incorrect form is kept. We attribute this to the

fact that those who use the phonetic respelling are
aware of the problematic and mostly go the whole
way and clean up.

On the other hand, nearly a third of the cases show
the wrong phonetic representation. This is a serious
problem on at least two levels: Firstly, it shows that
the forced aligner failed to catch the error. Secondly,
it lets bad examples into the training dataset.

One of the apparent reasons for this to happen
is that the dynamic dictionary only recognizes exact
matches. We can see in one file, for example, all oc-
currences of the form Weinfurter to have correct pro-
nunciation while Weinfurterovi to have a broken one.

Other factors likely include user carelessness or ig-
norance, which is exactly what our application is try-
ing to compensate, but fails in these cases.

The cases with false orthographic form don’t pose
much of a problem. It can harden searching for the
term in question but performing a search for the pho-
netic respelling or even automatically searching the
pronunciation would easily mitigate this.

The fourth combination of phonetic respelling and
false pronunciation is of course not occuring.

5 Conclusion

We have presented an application that has been
providing access to the extensive corpus of Karel
Makoň and to acquire an almost complete transcrip-
tion thereof. Nearly 70 hours corresponding to over
600,000 word forms have been transcribed manually
with minimal financial11 as well as development12

costs. Only some of the volunteers have indulged in-
struction time in order of minutes. The rest of the
corpus has been transcribed using an ASR system
trained on these ever-growing data.

We have presented the ways we use to aid the un-
trained users to provide a high-quality orthographic
and phonetic time-aligned transcription. We have at-
tempted a rough evaluation of the success rate of the
measures presented. Though clearly far from perfect,
they do serve the purpose and set a baseline for im-
provements or novel approaches.

The system has been built with the motivation of
spreading the message contained in Karel Makoň’s
talks. However, to make the technology more use-
ful, we are actively looking for similar settings where
it could be deployed.
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Correct spelling # wrong phonetic pronunc. # correct pronunciation # phon. respel. #
Moody 2 m o o d i 0 m uu d i 4 múdy, můdy 2
Descartes 2 d e s c a r t e s 0 d e k aa r t 4 dekárt 2
Weinfurter 30 v e j n f u r t e r 13 v a j n f u r t r 19 vajnfurtr 2
Michelangelo 6 m i x e l a ng g e l o 2 m i k e l a n dzh e l o 4 mikelandželo 0

Table 2: Examples of non-standard pronunciation in the manually transcribed data

phonetically correct phonetically incorrect
orthographically correct 25 15
orthographically incorrect 6 0

Table 3: Success rate for phonetic and orthographic representation of foreign words based on data from table2

This work has been using language resources
stored and distributed by the LINDAT/CLARIN
project of the Ministry of Education, Youth and
Sports of the Czech Republic (project LM2015071).
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Computational Intelligence and Data Mining
– 6th International Workshop (CIDM 2018)

As a part of the conference ITAT 2018, the 6th international workshop “Computational Intelligence
and Data Mining” has been organized. It is aimed at participants with research interests in any of
these related areas, especially at PhD students and postdocs. Interested participants were invited to
submit a paper in English of up to 8 double-column pages, prepared according to the instructions at
the ITAT 2018 web pages.

As this workshop started, 5 years ago, it had only 7 regular submissions. However, the interest
in the computational intelligence and data mining workshops has been gradueally incereasing since
that time. This year, we have 1 invited talk by internationally renowned expert Filip Šroubek, and
12 regular papers had been submitted to the workshop, among which 11 have been accepted for
oral presentations and for inclusion in these proceedings.

A key factor influencing the overall quality of a workshop and of the final versions of the submitted
papers is the workshop’s program committee. The 6th international workshop “Computational Intel-
ligence and Data Mining” is grateful to the 27 reviewers from 11 countries who read the submitted
papers, and have provided competent, and in most cases very detailed, feedback to their authors.
Most of them have a great international reputation witnessed by hundreds of WOS citations.

Workshop Program Committee

Dirk Arnold, University of Dalhousie
Jose Luis Balcazar, Technical university of Catalonia, Barcelona
Petr Berka, University of Economics, Prague
Hans Engler, University of Georgetown
Jan Faigl, Czech Technical University, Prague
Pitoyo Hartono, University of Chukyo
Martin Holeňa, Czech Academy of Sciences, Prague
Tamás Horváth, Eötvös Loránd University, Budapest
Ján Hric, Charles University, Prague
Jan Kalina, Czech Academy of Sciences, Prague
Jiří Kléma, Czech Technical University, Prague
Tomas Krilavičius, Vytautas Magnus University, Kaunas
Věra Kůrková, Czech Academy of Sciences, Prague
Stéphane Lallich, University of Lyon
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Antoni Ligȩza, AGH University of Science and Technology, Kraków
Mirko Navara, Czech Technical University, Prague
Engelbert Memphu Nguifo, Blaise Pascal University, Clermont-Ferrand
Ostap Okhrin, Technical University of Dresden
Tomáš Pevný, Czech Technical University, Prague
Petr Pošík, Czech Technical University, Prague
Jan Rauch, University of Economics, Prague
Heike Trautmann, University of Münster
Tingting Zhang, Mid-Sweden University, Sundsvall
Filip Železný, Czech Technical University, Prague



Digital image restoration: blur as a motion cue

Filip Šroubek

AVČR

Abstract: We rely on images with ever growing empha-
sis. Our perception of the world is however limited by im-
perfect measuring conditions and devices used to acquire
images. By image restoration, we understand mathemati-
cal procedures removing degradation from images. Two
prominent topics of image restoration that has evolved
considerably in the last 10 years are blind deconvolution
and superresolution. Deconvolution by itself is an ill-
posed inverse problem and one of the fundamental topics
of image processing. The blind case, when the blur kernel
is also unknown, is even more challenging and requires
special optimization approaches to converge to the correct
solution. Superresolution extends blind deconvolution by
recovering lost spatial resolution of images.

In this talk we will cover the recent advances in both
topics that pave the way from theory to practice. Various
real acquisition scenarios will be discussed together with
proposed solutions for both blind deconvolution and su-
perresolution and efficient numerical optimization meth-
ods, which allow fast implementation. Finally we will
illustrate that combing deblurring with tracking leads to
interesting applications in videos.

Filip Šroubek is currently with the Institute of Infor-
mation Theory and Automation, the Czech Academy of
Sciences, and lectures at Charles University. From 2004
to 2006, he was on a postdoctoral position in the Insti-
tuto de Optica, CSIC, Madrid, Spain. In 2010 and 2011,
he was the Fulbright Visiting Scholar at the University of
California, Santa Cruz. His research covers all aspects of
image processing, in particular, image restoration (denois-
ing, blind deconvolution, super-resolution) and image fu-
sion (multimodal, multifocus). He is an author of 8 book
chapters and over 60 journal and conference papers.
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Do We Need to Observe Features to Perform Feature Selection?

Jan Motl, Pavel Kordík

Czech Technical University in Prague,
Thákurova 9, 160 00 Praha 6, Czech Republic,

jan.motl@fit.cvut.cz, pavel.kordik@fit.cvut.cz

Abstract: Many feature selection methods were developed
in the past, but in the core, they all work the same way —
you pass a set of features to the algorithm and get a reduced
set of the features. But can we perform a non-trivial feature
selection without first observing the features? This is an im-
portant question because if we were actually able to predict
feature importance before observing the features, we would
reduce computation requirements of all stages of machine
learning process beginning with feature engineering. In
this article, we argue that it is possible to predict feature
importance before feature vector observation. The trick is
that we use meta-features about the features to perform the
feature selection. We evaluate the concept on 15 relational
databases. On average, it was enough to generate the top
decile of all features to get the same model accuracy as if
we generated all features and passed them to the model.
Keywords: meta-learning, feature engineering, feature se-
lection, relational database, propositionalization

1 Introduction

Data in relational databases are in the form of many tables,
but common classification algorithms require input data
in the form of a single table. Propositionalization solves
this discrepancy by converting data from the form of many
tables into a single table.

But there are two significant problems with the proposi-
tionalization [3]. It produces a lot of features. And many of
them are redundant. These two issues result in high compu-
tational requirements during both, propositionalization and
classification.

Contrary to the common approach (e.g., [10], [7], [8]),
we deal with these two issues by performing feature se-
lection before the propositionalization and not after the
propositionalization. The key idea is that we collect meta-
data about the attributes in the database (e.g., attribute data
type), meta-data about the feature generative functions (e.g.,
id of the feature function), calculate landmarking features
on a small subset of all features and pass their performance
to a meta-learner, which predicts the optimal order, in which
the remaining features should be calculated.

2 Related Work

The presented work is at the border between feature en-
gineering and feature selection. Hence, we review related
work from both these disciplines.

2.1 Meta-learning for Feature Engineering

Meta-learning was originally concerned with algorithm
selection[21]. Nevertheless, Nargesian [16] trained a neural
network to predict, which feature transformations are going
to improve the accuracy of a classifier based on the feature
histograms.

We extend the idea of using the data-based meta-features
(in Nargesian’s case a histogram) for feature engineering
with landmarking.

2.2 Meta-learning for Feature Selection

Reif [20] applies meta-learning to accelerate forward se-
lection. The key concept is that the performance of all
candidate feature subsets in each forward step is first es-
timated with a meta-learner. And only the top x percent
of the candidates get evaluated on the data to get the true
subset performance. Based on the reported results, it is suf-
ficient to evaluate only the top 10% of all candidate subsets
on the data to get results comparable to classical forward
selection.

The difference between our approach and Reif’s ap-
proach is that Reif calculates meta-features from the fea-
tures, while we calculate meta-features directly from the
attributes that are used to calculate the features (in Figure
1 we use only the left table, while Reif uses the right ta-
ble). Consequently, in Reif’s case, we have to calculate the
features first, to perform feature selection. While in our
case, we can perform the feature selection before feature
calculation.

3 Method

A high-level schema of our approach is in Figure 2. The
whole process is divided into two phases. During the offline
phase, meta-features and feature performance are collected
on many databases and passed to a meta-learner as training
data. During the online phase, the trained meta-learner is
used to rank candidate features in the descending order
of their estimated utility. Following paragraphs define the
feature utility.

There are many properties that a feature should posses
[12], but we focus on predicting properties measurable
directly from the data: relevance to the task, redundancy to
other features and runtime of the feature calculation.

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 44–51
CEUR Workshop Proceedings Vol. 2203, ISSN 1613-0073, c© 2018 Jan Motl and Pavel Kordík



id class att1 att2 ... attn
1 + 10 apple ... 12:03
1 + 12 cinnamon ... 7:53
2 - 4 banana ... 19:21
3 - 3 cherry ... 12:20
3 - 6 banana ... 8:21

feature function

attribute space

( ) id class feature
1 + 10
2 - 4
3 - 3

feature space

Figure 1: An example of a feature generative function min applied on attribute att1, which converts the multi-instance
problem into a single-instance problem solvable with a common attribute value classifier. In this trivial example, the feature
space contains only a single feature vector but it may generally contain thousands of feature vectors.

Figure 2: Flowchart of meta-learning on features.

Relevance Without loss of generality, we assume that we
want to utilize the calculated features for classification. We
use Chi2statistics [4, Section A.6.1] between the feature
and the label as the measure of the relevance (if the feature
is continuous, we first discretize the feature with equal-
width binning). But in theory, any other measure can be
used.

Runtime The runtime is defined as the time needed to
calculate a particular feature vector. If two feature vectors
are otherwise identical, we prefer the one that has a smaller
runtime.

Redundancy In the analyzed databases (discussed further
in Section 4.1), 38% of all calculated features are redundant.
We define that nominal feature f1 is redundant to nominal
feature f2 iff a bijection exists between values in f1 and f2.
A numerical feature f1 is redundant to numerical feature f2
if a linear transformation from f1 to f2 and back exists.

We use this (weaker) definition of redundancy instead
of the identity of the features because it corresponds better
with the notion of redundancy in many models (e.g., in
logistic regression with one shot encoding of categorical

features). To speed up the identification of redundant fea-
tures, we use Chi2 as a hash function to identify potential
redundant features [19, Section 2.1].

3.1 Feature Utility

We calculate features1 in descending order of the estimated
relevance/runtime ratio [1] since we prefer to calculate
highly relevant and fast features first. Furthermore, we pe-
nalize the feature i proportionally to the estimated proba-
bility that the feature is redundant p̂i. Because each dataset
has a different proportion of redundant features (see Table
1) and the tested meta-learning models had difficulties to
model these differences, we employ median thresholding
instead of a fixed threshold:

utilityi = (p̂i > median(p̂) ? 1− p̂i : 1)
relevancei

runtimei
, (1)

where redundancy is a vector of estimated redundancy
probabilities for a database.

1In the production, we would calculate only the top n features that
we would use to build a production classifier. But to demonstrate the
meaningfulness of such approach, we calculate all features.
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4 Experiment

4.1 Data

We used 15 databases listed in Table 1 from relational
repository [15].

4.2 Features

For propositionalization, we used Relaggs [9], which
was modified to work with 31 different feature (gener-
ative) functions, listed in Figure 2. The detail descrip-
tion of the employed feature functions is at http://
predictorfactory.com.

4.3 Meta-features

We employ three sources of meta-features: landmarking fea-
tures, database meta-data and feature function meta-data.

Landmarking features Just like the accuracy of a few clas-
sifiers can be used as meta-features for the recommendation
of the best classifier on the data (e.g., [18]), we define a
subset of feature functions as landmarking feature functions
for the recommendation of the best features.

Without loss of generality, we used following set of land-
marking features: Direct field (a simple copy of the value),
Aggregate (e.g., min, max,...), WOE (Weight of Evidence),
Count (of tuples), Aggregate WOE, Time aggregate since.
These feature functions were selected for their low run-
time (see Table 11 in the appendix) and good coverage
of different data types (numerical/character/temporal) and
relationships between the label and the data (1:1/1:n). Note
that we do not use multivariate feature functions for land-
marking due to the potential combinatorial explosion.

Database meta-data Basic descriptive and statistical meta-
features are frequently employed in meta-learning (e.g.,
[11]) and we do not differ in this respect. A noteworthy
difference is that we do not calculate statistics of the at-
tributes but rather reuse statistics maintained by the rela-
tional database for query plan optimization [14]. This slight
deviation allows us to collect estimates of the statistics in
time independent on the count of tuples (records) in the
database.

Feature function meta-data Feature function meta-data
consists of feature function name (e.g., Aggregate) and
feature function parameters (e.g., min).

4.4 Measures

Anytime algorithm We formulate feature engineering as
anytime algorithm [25], which aims to deliver the best sub-
set of calculated features in any time. The quality of any-
time algorithm can be expressed with a performance profile,
where we measure quality of the solution at the given time

(see example in Figure 3). To assign a single number to
the performance profile, we calculate the area between the
archived curve a(t) and the expected random curve r(t)
(which we obtain from averaging the curve from many ran-
dom permutations), divided by the area between the perfect
curve p(t) and the expected random curve r(t):

POP =

∫
a(t)dt− ∫ r(t)dt∫
p(t)dt− ∫ r(t)dt

, (2)

where t is time. The obtained ratio then represents the
“percentage of perfect” solution [2]. In our case, a(t), r(t)
and p(t) are the Chi2 of the feature calculated at time t. The
only difference between these functions is then the order,
in which the features are calculated. The perfect feature
ordering is based on a complete knowledge of relevance,
redundancy and runtime of all the features. While archived
ordering is based only on the estimates of these feature
properties (the only exception are landmarking features,
which are calculated in a pseudorandom order).

Runtime [s]
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Figure 3: Performance profile. The shaded area represents
the 95% prediction interval for a random curve.

Individual models To assess the ability of relevance and
runtime prediction models to rank, we use Spearman corre-
lation (ρ). The quality of redundancy estimation (a classifi-
cation task) is evaluated with area under receiver operating
characteristic curve (AUROC).

4.5 Methodology

Algorithms were evaluated with leave-one-out validation,
where all but the tested database was used for the training
of the models. Obtained accuracies are reported for three
different algorithms: generalized linear model (GLM), gra-
dient boosting machine (GBM) and deep learning (DL), all
from H2O.

Permutation testing To assess, whether the obtained per-
formance profiles are significantly better than random, we
generate 1,000 random orderings of the features to estimate
95% prediction intervals.
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Table 1: Used databases. The range of relevant features is estimated with forward & backward selection with a decision
tree (the percentage of features when meta-learning feature selection reaches accuracy corresponding to accuracy obtained
on all the features).

Database Domain Attributes Features Redundant [%] Relevant [%]

Accidents Government 43 305 39 2–12 (7)
AustralianFootball Sport 77 794 45 1–6 (1)
BasketballMen Sport 195 865 41 1–49 (1)
Biodegradability Medicine 17 71 25 6–66 (4)
Chess Sport 45 127 16 65–72 (91)
Financial Financial 55 493 32 1–59 (7)
Hepatitis Medicine 26 152 42 4–42 (5)
Mondial Geography 167 1524 45 1–9 (1)
Mutagenesis Medicine 14 65 40 6–46 (6)
Nations Geography 118 191 76 2–21 (3)
PremierLeague Sport 217 667 23 2–27 (7)
PTE Medicine 76 691 58 1–33 (1)
StudentLoan Education 15 41 7 15–66 (21)
VisualGenome Education 20 42 64 10–10 (14)
Walmart Retail 27 545 19 1–22 (4)

average 74 438 38 8–36 (11)

5 Results

First, we report the accuracy of the individual models. Sec-
ond, we comment on the meta-feature importance as re-
ported by L1 & L2 regularized GLM. Third, we report the
obtained POPs.

5.1 Accuracy

The obtained accuracies are depicted in Table 3. Since the
difference between the models is not significant, we use
GLM for all following experiments.

5.2 Feature Importance

Relevance The most important meta-features for feature
relevance prediction is the average relevance of the land-
marking features on individual attributes and the type of
the employed feature function (see Table 4).

Redundancy There are two main sources of redundant fea-
tures [10]: redundancy in the input data and redundancy in-
troduced by the feature functions. The redundancy in the in-
put data is covered by landmarking landmark_is_redundant
and data_type. While the introduced redundancy is ex-
plained with feature_function and feature_parameters (see
Table 5).

Runtime The runtime of a feature function calculation is a
function of two factors: the type of the feature function and
data property. Nevertheless, these two factors are dominated
by the landmarking landmark_runtime (see Table 6).

5.3 Percentage of Perfect

The quality of anytime learning for all 15 datasets is re-
ported in Table 7 in the penultimate column.

6 Discussion

6.1 What is the contribution of the individual models
to POP?

To evaluate the contribution of the individual models to
POP, we performed an experiment with a 2-level full fac-
torial design for presence/absence of runtime, relevance
and redundancy models (8 combinations in total) on all
databases. To deal with the variability across databases
(some are easier than others), we treat the database name
as a random factor.

Conclusion: The result of the factor analysis is in Table 8.
As expected, the intercept is not significantly different from
zero, since POP measure should on average be 0 when we
randomly rank the features. The biggest contributions to
the accuracy are from redundancy and relevance prediction.
The interaction between redundancy and relevance has a
negative estimate because we do not reward calculation of
redundant features even if they are highly relevant. Hence,
prediction of the relevance helps only on the subset of
unique features from the set of all candidate features.

6.2 What is the effect of meta-learning on model
accuracy?

To evaluate the effectivity of the meta-learning, we itera-
tively train a classification model on increasing percentage
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Table 2: Taxonomy of feature functions (data type they work on: c-character, n-numeric, t-temporal). The horizontal axis
differentiates between feature functions working on a single attribute and multiple attributes. The vertical axis differentiate
between feature functions working on a single tuple and multiple tuples.

Univariate Multivariate

1:1

Direct field (any) Time diff (t+t)
Text length (c)
Time day part (t)
Time is weekend (t)
Time part (t)
Time since (t)
WOE (c)

1:n

Aggregate (n) Existential count (any) Aggregate frame (n+t)
Aggregate distinct (n) Log product (n) Correlation (n+t)
Aggregate range (n) Null ratio (any) Intercept (n+t)
Aggregate text length (c) Time aggregate (t) Slope (n+t)
Aggregate WOE (c) Time aggregate since (t) Time aggregate diff (t+t)
Coefficient of variation (n) Time aggregate since event (t)
Count (any) Time frequency (t)
Distinct count (any) Time range (t)
Duplicate ratio (any) Time WOE (t)

Table 3: Leave-one-out accuracy of individual models.
Algorithm Relevance [ρ] Runtime [ρ] Redundancy [AUROC]

DL 0.558±0.255 0.302±0.186 0.798±0.097
GBT 0.556±0.252 0.206±0.259 0.787±0.106
GLM 0.551±0.276 0.369±0.267 0.810±0.102

Table 4: Meta-features for relevance prediction.
Meta-feature Comment Weight

landmark_relevance average on the attribute 9.81
feature_function e.g., null_ratio is inferior to direct field 5.58
feature_parameters e.g., aggregate=min is inferior to aggre-

gate=avg
1.90

data_type e.g., enums are superior to datetimes 0.34
avg_length extremely long attributes like text are subpar 0.25
is_primary_key surrogate primary keys make inferior features 0.10

of the top features, as estimated with meta-learning. As the
classification model, we use a decision tree because it can
model interactions between the features, it is undemand-
ing on data preprocessing and it is reasonably fast. As the
evaluation measure, we use misclassification error as all
databases have reasonably balanced classes in the label.

An example of the obtained curve is depicted in Figure
4, where we can observe that the decision tree slightly
overfits when we use all the features. Nevertheless, forward
selection still outperforms meta-learning feature selection,

Table 5: Meta-features for redundancy prediction.
Meta-feature Comment Weight

landmark_redundancyaverage on the attribute 16.70
feature_parameters e.g., aggregate=min is inferior to aggre-

gate=avg
13.65

feature_function e.g., null_ratio is inferior to count 2.61
data_type e.g., integers are inferior to doubles 0.02

Table 6: Meta-features for runtime prediction.
Meta-feature Comment Weight

landmark_runtime average on the attribute 5.00
feature_function complicated features take more time 3.34
table_rows more data means higher runtime 0.10

as it can observe all the features (our approach does not)
and it is a wrapper (our approach is a filter [5]).
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Figure 4: Area under misclassification error. Smaller is
better.

Conclusion: The result of the factor analysis is in Table
9. Prediction of relevance significantly reduces misclassifi-
cation error. Prediction of runtime insignificantly increases
the misclassification error, because this evaluation does not
reward fast features. Redundancy prediction does not sig-
nificantly decrease the classification error. Based on our
inspection of the results, this is because this evaluation
rewards early discovery of a few highly relevant features
much higher (since the best possible decision tree may use
just a few features) than it penalizes redundancy (a redun-
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Table 7: POPs for all databases based on the used individual models. PI column contains the upper 95% prediction interval
of POPs for random ordering of the features. The best values are in bold.

redundance 0 1 0 0 1 1 0 1
relevance 0 0 1 0 1 0 1 1
runtime 0 0 0 1 0 1 1 1 PI

Accidents 0.11 0.45 0.61 −0.18 0.68 0.44 0.60 0.67 0.33
AustralianFootball 0.03 0.33 0.35 −0.09 0.40 0.33 0.35 0.40 0.36
BasketballMen 0.08 0.53 −0.52 0.28 0.62 0.56 −0.37 0.62 0.11
Biodegradability −0.18 0.31 −0.44 0.24 0.34 −0.21 −0.32 0.32 0.31
Chess 0.05 0.46 0.72 0.31 0.71 0.80 0.90 0.87 0.29
Financial −0.01 0.24 −0.02 −0.01 0.30 0.29 0.02 0.35 0.32
Hepatitis 0.07 0.37 −0.01 0.03 0.34 0.48 0.04 0.37 0.28
Mondial −0.00 0.19 0.30 −0.09 0.32 0.27 0.26 0.32 0.11
Mutagenesis 0.05 0.14 0.09 0.20 0.24 0.63 0.62 0.59 0.22
Nations 0.16 0.59 0.87 0.18 0.75 0.79 0.88 0.76 0.34
PremierLeague −0.07 0.12 0.27 0.08 0.17 0.35 0.35 0.34 0.17
PTE 0.01 0.39 0.32 −0.43 0.54 0.31 0.24 0.53 0.20
StudentLoan 0.25 0.17 0.62 0.14 0.61 0.53 0.65 0.61 0.39
VisualGenome −0.11 0.44 0.95 −0.03 0.95 0.74 0.96 0.94 0.82
Walmart −0.18 0.20 0.77 −0.06 0.49 0.17 0.81 0.52 0.42

average 0.02 0.33 0.32 0.04 0.50 0.43 0.40 0.55 0.31
win count 0 0 0 0 2 2 6 5 0

Table 8: Contribution of models to POP. Adjusted R2:
0.564.

Estimate Std. Error Pr(> |t|)
(Intercept) 0.020 0.0586 0.6877
relevance 0.292 0.0149 4.0527×10−5 ***
redundance 0.318 0.0149 2.9095×10−5 ***
runtime 0.053 0.0122 0.0124 *
rel:red −0.1723 0.0244 0.0021 **

dant feature only pushes all subsequent features one step
later).

Table 9: Contribution of models to reduction of the area
under misclassification error curve. Adjusted R2: 0.486.

Estimate Std. Error Pr(> |t|)
(Intercept) 0.294 0.020 1.3357×10−5 ***
relevance −0.053 0.016 0.0016 **
redundance −0.018 0.014 0.2402
runtime 0.010 0.014 0.5167

6.3 Which meta-features are important?

To analyze the importance of the three categories of the
meta-features (landmarking, database, feature-function),
we design an experiment, in which we vary the set of the
used meta-features.

Table 10: Contribution of meta-feature categories to the
reduction of the count of engineered features needed to
reach or surpass model accuracy obtained on a complete
set of features. Adjusted R2: 0.308.

Estimate Std. Error Pr(> |t|)
(Intercept) 43.328 11.569 0.0013 **
database −0.741 11.007 0.9472
featureFunction −3.755 11.007 0.7377
landmarking −30.586 11.007 0.0140 *

Conclusion: Based on the results reported in Table 10,
only landmarking meta-features help to significantly2 re-
duce the count of features that have to be engineered to
reach model accuracy obtained on all features. Table 10
also tells us that if all meta-features are used, it is in average
sufficient to engineer only the top 8.25% of the features to
match or surpass the classification accuracy of the model
trained on all features.

6.4 Do we need so many feature functions?

We may wonder whether it is not enough to just engineer
the 6 landmarking features and do not continue with the
engineering of the remaining 25 (e.g., multivariate) features.
We compared accuracies of the models trained only on
the landmarking features with accuracies obtained on all

2The reported p-values do not incorporate correction for repeated
evaluation of serially correlated observations
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features. Based on Wilcoxon signed-rank test, we have to
reject the null hypothesis that the additional features do
not improve accuracy (p-value = 0.00048). The median
improvement is 1.2 percent point in classification accuracy
(average improvement is 2.7 percent point).

Conclusion: The additional features improve the accu-
racy of the model over the accuracy of the model build
only on the landmarking features by a small but significant
amount.

6.5 Feature Selection vs. Feature Meta-learning

The described feature meta-learning bears similarity with
filter-type feature selection methods like Correlated Fea-
ture Selection (CFS)[6] and Minimum Redundancy Maxi-
mum Relevance (mRMR)[17]. Both these methods attempt
to quickly select relevant non-redundant features. And so
does our method. But in comparison to these methods, we
perform feature selection before the feature engineering.

Difficulty It can be argued that feature meta-learning is
at least as difficult problem as feature selection since we
can always convert feature selection problem to feature
meta-learning by throwing away the computed features
(and recalculating them on request).

6.6 Limitations

We performed experiments only on relational data and
features from propositionalization. Propositionalization is
known to produce a lot of duplicate features (38% on av-
erage on the tested databases) and many of the features
are irrelevant to the task (64% on average on the tested
databases based on backward selection). These properties
make it possible to obtain substantial gains from feature
selection. However, the performed experiments do not tell
us how the described approach is going to generalize on
non-relational data.

Another limitation of the reported work is that it ignores
interactions between the feature vectors in the downstream
model. This can reduce the accuracy of the downstream
model because a univariate oraculum meta-learner would
not recommend calculation of features that are useful only
in the combination with other features (a trivial example
where this may happen is XOR problem [13]). Possible
solutions to this problem are briefly mentioned in the future
work Section 7.

6.7 Applications

Feature meta-learning is desirable in domains, where a
single universal approach to feature extraction does not
exist or is not known ahead. An exemplary domain are
relational data, which may contain highly diverse content
ranging from structured to unstructured data.

Additionally, feature selection before feature engineer-
ing is applicable to complex or large data, where it is not

feasible or convenient to calculate and evaluate all possible
features due to limited resources.

7 Conclusion

In this article, we evaluated an idea of performing feature se-
lection before feature engineering. To guide the search, we
exploited meta-learning. Nargesian [16] used meta-features
calculated from the original data. But we found out that
landmarking meta-features work better. When we evaluated
the implementation on 15 databases, we concluded that it
is on average enough to engineer only the top decile of
features to get accuracy comparable to accuracy obtained
on all features. This finding is similar to Reif’s [20] finding,
who applied meta-learning to feature selection. However,
Reif performs feature selection after feature engineering
while we perform feature selection before feature engineer-
ing.

7.1 Future Work

In this exploratory work, we optimize an ersatz measure
called POP, which is easy to reason about. One possible
extension of this work is to improve individual components
of the meta-learning model. For example, we can detect
redundancy based on a fuzzy comparison of equal-height
histograms estimated with the database engine or quantile
sketch. With this change, we would detect duplicates that
are identical up to a monotonic transformation, leading to
better alignment with models that are invariant to mono-
tonic transformations of the features (e.g., decision trees in
theory). Or we could replace the redundancy detection with
a precomputed correlation matrix describing similarities
between the feature functions [24, p. 148]. Alternatively,
we could estimate a transition matrix describing the opti-
mal order in which to apply feature functions (or give up
on the given attribute). To improve non-redundancy and
relevance together, we could train a fast model (e.g., naive
Bayes) on streaming features (e.g., [23] or [22, p. 19]). The
possibilities are vast.

Another possible direction is to directly optimize the
measure we are interested in (e.g., improvement to model’s
AUROC over time). This can be done by training a single
model (e.g., [16]). And this article provides an extended set
of meta-features, on which such model could be trained.
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Appendix

Reproducibility
The used code is published at:
https://github.com/janmotl/metalearning.

The used databases are published at:
https://relational.fit.cvut.cz.

Table 11: Expected standardized relevance (bigger is bet-
ter), runtime (smaller is better) and redundancy (smaller is
better) of feature functions (sorted by the feature utility).

Feature function Relevance Runtime Redundancy Utility

Aggregate frame −2.11 −0.17 0.49 −2.19
Time aggregate diff −1.53 0.05 0.54 −1.95
Time diff −0.92 −0.01 0.48 −1.34
Time day part −1.33 0.02 0.02 −1.31
Time since −0.89 −0.04 0.45 −1.22
Null ratio −0.99 −0.02 0.18 −1.06
Time frequency −0.17 0.35 −0.10 −0.71
Existential count −0.67 −0.06 0.06 −0.47
Slope −0.49 0.03 0.03 −0.47
Time WOE 0.51 0.38 0.07 −0.42
Time is weekend −1.03 −0.12 −0.21 −0.40
Time part −0.45 0.00 0.05 −0.40
Text length −0.76 −0.07 −0.09 −0.37
Intercept 1.42 0.36 0.37 −0.21
Correlation 1.32 0.26 0.37 −0.05
Time aggregate 0.57 0.05 0.21 0.19
Aggregate text length −0.24 −0.05 −0.15 0.29
Aggregate range 0.34 −0.02 0.15 0.34
Duplicate ratio 0.32 0.17 −0.26 0.39
Aggregate distinct 0.56 0.03 0.11 0.44
Time range 0.06 0.06 −0.26 0.45
Coefficient of variation 0.36 0.01 −0.07 0.62
Time aggregate since event 0.19 0.01 −0.24 0.75
Direct field 0.26 −0.05 −0.09 0.79
Distinct count 0.21 −0.04 −0.16 0.82
Aggregate 0.49 0.04 −0.16 0.82
Log product 0.62 −0.02 0.02 0.87
Time aggregate since 1.25 0.27 −0.24 0.95
Count 0.30 −0.08 −0.18 1.13
WOE 1.27 −0.03 −0.01 1.69
Aggregate WOE 1.04 0.01 −0.39 2.05
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Abstract: Classification serves an important role in do-
mains such as network security or health care. Although
these domains require understanding of the classifier’s de-
cision, there are only a few classification methods trying
to justify or explain their results.

Classification rules and decision trees are generally con-
sidered comprehensible. Therefore, this study compares
the classification performance and comprehensibility of a
random forest classifier with classification rules extracted
by Frequent Item Set Mining, Logical Item Set Mining
and by the Explainer algorithm, which was previously pro-
posed by the authors.

Keywords: Classification; Comprehensibility; Random
Forest; Rule Mining

1 Introduction

Classification is one of the main directions of machine
learning research. In the past decades, researchers devel-
oped classification models which, when learnt properly,
can beat humans in tasks we believed they would never
succeed, like handwritten text recognition [?, ?], or even
tasks that were specifically designed to be unsolvable for
computers, like CAPTCHAs [?] and other human interac-
tion proofs [?].

Current state-of-the-art classifiers excel in predictive
performance, but they lack other quality characteristics
for human decision process: deep neural networks, for in-
stance, do not provide explanation of their decisions. Yet,
the reasoning justifying decisions is critical in many appli-
cation domains such as medicine or network security. In
medicine, physicians would rather believe a less precise
model, if the classification is justified by explanation they
can understand. In the network security domain, analyst
are often overwhelmed by alarms. But investigation with-
out providing context or explanation, why the alarm was
raised, takes a substantial amount of time. Current ran-
somware affairs [?] have shown that time is critical when
infection occurs.

This work is focused on comparison of context provided
by a random forest classifier and three different rule min-
ing approaches. Random forests were chosen as a rep-
resentative of the state-of-the-art classifiers which is also
able to provide a reasonable justification of its decisions.
The precision of classifiers based on sets of rules highly

depends on the process of mining rules from data. We
tested the quality of rules mined by Frequent Item Set Min-
ing [?], Logical Item Set Mining [?] and extracted by the
Explainer algorithm [?]. The comparison focuses on the
precision and recall over time and also the quality of pre-
sented context. The experiments were done on a dataset
from the network security domain.

The rest of the work is organized as follows. The next
section covers the related work in the field of comprehen-
sible classification. Section ?? briefly introduces all used
rule mining approaches that are experimentally evaluated
in Section ??, followed by the conclusion and future plans.

2 Related work

The pressing issue of comprehensible predictive models
has been intensively studied in the field of anomaly de-
tection. The first work considering anomaly explanation
was [?]. It defined an explanation as “provision of a de-
scription or an explanation of why an identified anoma-
lous sample is exceptional”. The proposed method first de-
tected all distance-based anomalies in the whole attribute
space. Then, it identified the smallest subspace in which
the anomaly could be still detected and used that subspace
as an explanation.

In the approach presented in [?], artificial samples are
generated in the vicinity of each sample x. Then a classi-
fier is trained to separate the artificial samples from real
samples. If x was an anomaly, then artificial samples
should be separated easily, which would result in the clas-
sifier having low error and vice-versa.

The method proposed in [?] derives the anomaly score
from the frequency of histogram bins, from which the
method also extracts context and explanation of the
anomaly.

Authors of [?] used the probabilistic RBF kernels to ex-
tract and compare feature impact (positive and negative)
for each class in multi-class classification problems.

Most of the recent prior art stops the explanation af-
ter identifying the set of features by which the sample un-
der investigation can be differentiated from the rest. The
Explainer [?] describes the sample by a set of association
rules.

A comparison by means of comprehensibility of the
well established classifiers such as decision trees, nearest
neighbours or Bayesian networks was done in [?].
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The authors of [?] compared multiple rule mining ap-
proaches, their general similarities and differences and
also their computational efficacy. This paper is focused
on the comprehensibility and complexity of a context pro-
vided to the domain experts by different rule mining ap-
proaches.

The most advanced approach we are aware of is [?]. It
introduced a framework for measuring not only a compre-
hensibility (if a prediction is presented in a way that it is
easy to understand) but also a justifiability (if a model is
in line with the domain knowledge). We would like to use
this framework in our future work.

3 Rule mining approaches

Association rules are defined as an implication of the form
A⇒C, whereA,C ⊆ I and I = {i1, i2, ..., id} is a set of bi-
nary attributes called items. Association rules are typically
mined from a database X= {x1,x2, ...,xn}. Each line x∈X
represents a set of items x ⊆ I and is called a transaction.
In this paper, we work with a specific type of association
rules, often called classification rules, that are also defined
as A⇒ C. Here, A ⊆ I and C ∈ C = {c1,c2, ...,ck} is a
single item representing a particular class.

The rest of this section surveys rule mining approaches
used in this paper.

3.1 Frequent item set mining

The Frequent Item Set Mining (FISM) is a general frame-
work for discovering groups of items (item sets) that are
often seen together. The first algorithm mining association
rules called GUHA was published by Petr Hájek in [?]. In
fact, it was a mathematical method for automatic search
of hypotheses valid in given data, based on generalized
quantifiers of Boolean predicate logic, and the quantifier
corresponding to association rules was called founded al-
most implication. The very same approach was rediscov-
ered for data mining purposes as the Apriori algorithm by
Agrawal almost thirty years later [?].

Since then, a variety of improvements for the original
Apriori algorithm was proposed [?, ?], and also several
new algorithms for frequent items mining were invented,
e.g., FP-Growth [?], LCM [?] or Eclat [?]. This paper uses
the FP-Growth algorithm as the most time and memory
efficient representative of the FISM algorithms.

FP-Growth algorithm starts by building a specific prefix
tree called frequent pattern tree (FP-tree). First, the fre-
quencies of all items i ∈ I are calculated. Then, all items
i with frequency lower than the user specified threshold
θminFreq are filtered out from all transactions x ∈ X. Items
remaining in the filtered transactions are sorted in descend-
ing order according to their frequency. The prefix tree is
built by inserting the filtered and sorted transactions.

Once the FP tree is built, it is recursively traversed in
a bottom-up manner, mining frequent item sets laying on

the path from leaf to root. Based on the FP-tree construc-
tion process, each transaction is mapped to a path in the
FP-tree. The FP-tree structure also guarantees that all fre-
quent item sets present in the database X can be found on
the path from some leaf to the root. Moreover, one path
in the FP-tree may represent frequent item sets in multi-
ple transactions.1 This property also ensures the memory
efficiency of FP-Growth.

3.2 Logical item set mining

The Logical Item Set Mining (LISM) [?] is an alternative
approach to mining association rules from data. The key
difference from FISM is that LISM captures logical rela-
tions not only between frequent items, but it also extracts
strong relations between rarely occurring items. By lever-
aging indirect relationships between items, it can also dis-
cover relations between item sets that are not present in a
dataset. The algorithm has counting, consistency, denois-
ing and discovery phases.

During the counting phase, co-occurrence counts,
marginal counts and total counts are calculated.

Co-occurrence count ψ(ia, ib) for every pair of items
(ia, ib) ∈ I× I , where ia 6= ib, is defined as the number
of transactions in which both items co-occurred:

ψ(ia, ib) =
n∑

j=1

δ (ia ∈ x j)δ (ib ∈ x j), (1)

where δ (condition) is an indicator function which is 1
if the condition is true and 0 otherwise. The results are
stored in the symmetrical matrix Φ = [φ(ia, ib)], which is
usually very sparse.

Marginal count ψ(ia) is defined as the number of pairs
in which the item ia ∈ I occurred with some other item:

ψ(ia) =
∑

ib∈I,ia 6=ib

ψ(ia, ib). (2)

Total count ψ0 is defined as the total number of pairs in
which some item co-occurred with some other item:

ψ0 =
1
2

∑

ia∈I

ψ(ia) =
1
2

∑

ia∈I

∑

ib∈I

ψ(ia, ib) (3)

These three results are then used as estimates of the co-
occurrence and marginal probabilities

P(ia, ib) =
ψ(ia, ib)

ψ0
, P(ia) =

ψ(ia)
ψ0

. (4)

The consistency phase reduces the effect of noise and
amplifies the importance of rare items that are consistently

1Items in item sets are ordered in the descending order, frequent
items are arranged closer to the top of the FP-tree and more likely to be
shared.
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seen together. A variety of distance measures can be em-
ployed, e.g., cosine, Jaccard or point-wise mutual infor-
mation. The cosine similarity defined as

φ(ia, ib) =
P(ia, ib)√
P(ia)P(ib)

∈ [0,1] (5)

was used in our experiments.
The iterative denoising phase uses the co-occurrence

consistencies obtained in the previous iteration to remove
noisy co-occurrence counts in Φ. Then, marginal and total
counts are recomputed solely from the updated Φ, there
is no need to touch data again. As a last step of every
iteration a consistency counts are updated.

In the discovery phase, a graph is created from the de-
noised co-occurrence consistency matrix Φ. Given Φ, a
logical item set is defined as a set of items where each
item has a high co-occurrence consistency with all other
items in the set. Such sets are found by application of an
algorithm for finding maximal cliques, e.g., [?], on the co-
occurrence consistency graph.

3.3 Explainer

The Explainer [?] is a tree based algorithm designed to
explain why a sample xa ∈ X is an anomaly with respect
to the rest of the data in X. The output can be a set of
the most important features or a set of association rules.
Properties of extracted rules were studied in [?].

To explain an anomaly xa, the Explainer trains a set of
specific decision trees to separate xa from rest of the data
in X. Rules are extracted from each of those trees and
assembled into a set of association rules. The key steps
are summarized in Algorithm ??.

Algorithm 1 Summary of the Explainer algorithm for a
single anomaly xa.
Input:

data – input dataset; xa – anomalous sample; size –
training set size; nT – the number of trees to be trained.

Output:
rules – rules explaining xa

1: Forest←∅
2: for i← 1 . . .nT do
3: T← createTrainingSet(data,size,xa)
4: t← trainTree(T)
5: Forest← Forest ∪ t
6: end for
7: rules← extractRules(Forest)

During the training set selection, a dataset X =
{x1,x2, . . . ,xn} is split into two disjoint sets Xa, containing
anomalous samples, and Xn, containing normal samples.
Then, a training set T contains the anomaly xa as one class
and a subset of Xn as the other. The simplest strategy is to
select k samples randomly from Xn with uniform proba-
bility. This approach is computationally effective and was

proven to work well when compared to more sophisticated
approaches [?].

Training a tree is very similar to standard random
forests [?]. A candidate node is found and the optimal
splitting function is applied on that node. This greedy pro-
cedure repeats until the specified stopping criteria are met.

The node that contain xa is always the one being split
in the Explainer algorithm. The standard procedure to find
the splitting function h is maximizing the information gain
over the space of all possible splitting functionsH. But as
there is only a single point xa in the anomaly class, the
information gain is equivalent to minimizing the size of
the node containing xa:

arg min
h∈H
|Sa(h)|, (6)

where Sa ⊂ T denotes the subset of the training set con-
taining the anomaly xa after the split. The training is
stopped when all leaves are pure (contain samples from
a single class).

Once a tree is trained, it is used for rule extraction.
Let h f1,θ1 , . . . ,h fd ,θd be the set of splitting functions, with
features f1, . . . , fd and threshold θ1, . . . ,θd , used in inner
nodes on a path from the root to the leaf with xa. Then xa

is explained as a conjunction of atomic conditions:

(x f1 > θ1)∧ (x f2 > θ2)∧ . . .∧ (x fd > θd), (7)

which is the output of the algorithm. This conjunction can
be read as “the sample is anomalous because it is greater
than threshold θ1 in feature f1 and greater than θ2 in fea-
ture f2 and . . . than majority of samples”. Each tree pro-
vides one such conjunction, that are then aggregated.

4 Experiments

This section experimentally compares the classification
performance of the three described rule mining approaches
with the random forest classifier. The section starts with a
description of the dataset used in our research and with the
setting of the performed experiments. The comparison is
then based on the precision and recall measures, and the
final part concludes with a thorough discussion of differ-
ences of explanations provided by each approach.

4.1 Dataset description

The dataset in this research consists of 8 consecutive
weeks of network traffic collected by the Cognitive Threat
Analytics (CTA) intrusion detection system. It contains
about 9 million samples, where each sample is a collec-
tion of all network events observed on a particular network
host within the 24-hours window. In the words used in the
market basket analysis, each sample x is a transaction con-
taining a subset of all events/items x⊆ I.

CTA distinguishes about 300 events falling into four
categories:
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• signature based (SB) – produced by matching be-
havioural signatures handmade by a domain expert.

• classifier based (CB) – created by supervised classi-
fiers trained on historical data.

• anomaly based (AB) – created by the anomaly detec-
tion engine which consists of 70 individual detectors
(statistical, volumetric, proximity, targeted, domain
specific).

• contextual events (CE) – describe various network
behaviours to provide an additional context, e.g., file
download, direct access on raw IP, software update.

These events together serve as high level behavioural
indicators that can be used to create a behavioural profile
of a malware family. This behavioural profile can be used
to identify malware infections in their early stages and stop
them before they do any harm.

The database was labelled by the CTA engine in a way
that transactions of a network hosts infected by either
banking trojan, click fraud, information stealer or malware
distribution were marked as positives/malicious (4801 and
6463 transactions in training and testing sets respectively)
and the other transactions were labelled negative/benign
(3.75 mil. and 5.23 mil. transactions respectively).

4.2 Experimental setup

All following experiments used 3 weeks of data, approxi-
mately 3.75 million of transaction, for training/rule mining
and 5 weeks, 5.23 million of transactions, for testing.

Parameters of the random forest were set as follows:
number of trees = 19; maximal depth of a tree = 25; num-
ber of features per split = 100.

The Explainer was set to train 10 trees per positive sam-
ple while selecting a random training set of size 1000 sam-
ples.

The FP-growth algorithm was set to produce only rules
with support higher than 3 transactions.

The parameters of LISM was: similarity measure = co-
sine (??); θcooc = 1 · 10−7; θcons = 2. Cliques discovered
using this setting were split into 3–5 items long rules. De-
tails about the optimization of parameters can be found
in [?].

As a last step, all rules were filtered to have precision on
the training set at least 80%. The filtered rules were then
used in the following experiments.

4.3 Classification efficacy

The described rule filtering, based on the minimal preci-
sion 80% on the training set, resulted in very few false pos-
itive predictions: all classifiers reached more than 90%-
precision on all the testing sets, as depicted in the upper
graph in Figure ??. While the rules mined by the Explainer
and FISM algorithm provide stable results with precision
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Figure 1: Precision and recall of the four considered clas-
sifiers measured in five consecutive weeks in September
2017.

reaching roughly 99% during all five testing weeks, the
rules generated by the LISM and random forest exhibit
greater variance in time.

The ability to discover the malicious content in the test-
ing data, as measured by the classifiers’ recall, diversi-
fies considerably more. Both Explainer’s and random for-
est’s sets of rules were able to identify more than 80%
of the malicious samples in the testing sets (except the
last week). The graph in Figure ??, on the other hand,
clearly shows that the highest precision rate of the LISM-
generated rules is accompanied with the lowest degree of
recall.

The LISM is able to generate complex and very descrip-
tive rules that, however, can be hardly located in the data.
That results in only 34 generated rules reaching the train-
ing precision threshold 80%, which is probably the cause
behind the lowest recall. The 100%-precision in 4 out of 5
testing weeks is surprisingly good result, though.

The performance of the FISM and Explainer differs
mainly in their recall, where the better results of the Ex-
plainer is probably caused by the algorithm’s focus to the
shortest and strongest rules; only 14 rules reached the 80%
precision threshold. The FISM, on the other hand, is able
to generate longer rules, which are harder to match.

Random forest classifier with its up to 25-levels deep
decision trees is able to identify the highest number of the
testing malicious transactions. On the contrary, the high
complexity of the trees, at the same time, causes the lowest
observed precision out of four compared classifiers.
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4.4 Context comparison

This section presents the comparison of context provided
by the random forest classifier, Explainer, Logical Item Set
Mining and Frequent Item Set Mining. Examples of mined
rules are presented and discussed in detail.
Random Forest
In general, random forests can provide two types of con-
text; feature importance and classification rules.

The feature importance provides less information than
rules. It represents aggregated global knowledge for all
classes in the training set. It can be extracted per class
if a random forest is trained for each class separately.
Our database represents a dichotomy problem with both
classes being in fact mixtures of multiple sub-classes that
we are unable to separate.

Classification rules provide more specific/local infor-
mation. Unfortunately, trees in a random forest are typ-
ically trained deep to be as precise as possible. In other
words, the path from a root to a leaf will be long and
therefore, the extracted rule will be also long. The other
drawback of training random forests directly on transac-
tions is so called negative evidence. In the network secu-
rity domain, the negative evidence is when a network host
is being marked as infected because of some behaviour it
doesn’t have, e.g. “a host is infected, because it didn’t
downloaded an image”.

The real example of a rule with multiple negative ev-
idences extracted directly from the random forest used in
the experiments is: “If you are not infected by a click fraud
and you are not infected by an information stealer and you
are not infected by the Sality trojan and you are not in-
fected by the malware called Gamarue and you don’t have
encrypted connection then you are infected.” As you can
see from this simple yet real example, rules extracted from
a random forest may be more puzzling than explaining.
Explainer
The Explainer can be easily set to provide rules with only
positive evidences. The trouble is, that it was designed
to extract the smallest set of the shortest possible rules.
The extracted rules contained the real causes of incidents
but not any additional context which would simplify the
investigation. From the rules created by the Explainer, 14
had a precision higher than 80%. They typically contained
only one event produced by a supervised classifier. The
second event was presents in only 3 cases and there was
no rule longer than that. Selected examples of longer rules
follow:

1. AB:ShadowUser CB:ClickFraud

2. CB:SuspAdvertising CB:MaliciousAdvertising

The first example contains an anomaly based
event AB:ShadowUser and a classifier based event
CB:ClickFraud. AB:ShadowUser identifies network hosts
that are visiting a high number of network domains which
nobody else visit. The CB:ClickFraud event is created by

the random forest classifier trained to discover malware
from the click fraud family. The click fraud malware
family is known for visiting a lot of weird pages without
user’s knowledge and is often used for clicking on web
advertisements to generate money.

The second rule contains two classifier based events in-
dicating a host visited a lot of suspicious advertisement
pages(CB:SuspAdvertising ), some of them probably ma-
licious (CB:MaliciousAdvertising). Here, the malware
started by showing additional unwanted advertisements,
banners and pop-ups and ended by ex-filtrating sensitive
data.
LISM
Rules extracted by the Logical Item Set Mining create a
very logical and justifiable connections between items. All
items in a rule are always very strong indicators of a par-
ticular threat. Unfortunately, they would appear all at once
very rarely, but if they do, it is for sure a serious infec-
tion. LISM created 34 rules with precision over 80%. The
length of the rules is ranging from 3 to 5. Examples fol-
low:

1. SB:Blocked CB:MalBinary SB:Sality

2. CB:ClickFraud CB:Malwartising CB:MalwareDistr

The first example shows a download of malicious
binary (CB:MalBinary) from a black listed domain
(SB:Blocked). Furthermore, it has a well known signa-
ture of a malware called Sality (SB:Sality). Each of these
events is strong enough evidence to trigger an immediate
re-mediation alert on its own.

The second rule shows a nice example of a malicious es-
calation. At first, a host was infected by a click fraud mal-
ware (CB:ClickFraud), which was visiting a shady adver-
tising sites (CB:MalAdvertising). Then, the host started
to download and distribute additional malicious modules
(CB:MalwareDistr).

FISM
The Frequent Item Set Mining provided the best expla-
nation/context from all compared method. Rules contain
all important indicators while providing a reasonable addi-
tional context. FISM created 454 rules, with length rang-
ing from 3 to 5, that satisfied 80% threshold on precision,
examples follow:

1. CE:jQuery AB:SuspDomain CB:ClickFraud

2. AB:PathCount AB:ShadowUser CB:ClickFraud
CE:WPManagment

The first example shows a host that downloaded a mod-
ified javascript library jQuery(CE:jQuery) from a suspi-
cious network domain (AB:SuspDomain). This modified
library was the source of infection, which was later de-
tected by the random forest classifier trained for detection
of a click fraud malware family (CB:ClickFraud).
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The second rule shows a sophisticated example of click
fraud capabilities (CB:ClickFraud). In that case, the mal-
ware had a password cracker module installed and was
used to crack into administration sections of web pages
created using Wordpress(CE:WPManagment). Again, we
can see a host visiting large amount of low probability net-
work domains (AB:ShadowUser), WordPress blogs in that
case, where on most of these pages was visited the out-
lying number of paths (AB:PathCount), specifically only
one.2

5 Conclusion

This paper compared the classification performance and
comprehensibility of a random forest classifier with clas-
sification rules extracted by the Frequent Item Set Mining,
Logical Item Set Mining and by the Explainer algorithm,
which was previously proposed by the authors. All the al-
gorithms showed surprisingly similar precision with rules
extracted by LISM performing slightly better, with excep-
tion on one week. From the recall point of view the best
performing algorithm was the random forest followed by
rules extracted by the Explainer.

The comparison of provided explanations revealed that
rules extracted from random forests trained on transaction
data can be more puzzling than comprehensible. The re-
lationships between items mined by LISM were not only
comprehensible but also justifiable (in line with the do-
main knowledge). Unfortunately, they are very rarely seen
within the real data. Rules extracted by the Explainer tend
to reveal the root cause of an incident but provide only
a little to non additional context. Rules mined by FISM
appeared as an optimal mix of root cause events together
with a reasonable amount of additional context.

As the future work, we would like to extend our research
into the other application domains and also to implement
the work of Martens et al. [?] and compare their numerical
representations of comprehensibility and justifiability with
our domain knowledge.
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Abstract: One of the most common methods for classi-
fier comparison is Friedman’s test. However, Friedman’s
test has a known flaw — ranking of classifiers A and B

does not depend only on the properties of classifiers A and
B, but also on the properties of all other evaluated classi-
fiers. We illustrate the issue on a question: “What is better,
bagging or boosting?”. With Friedman’s test, the answer
depends on the presence/absence of irrelevant classifiers
in the experiment. Based on the application of Friedman’s
test on an experiment with 179 classifiers and 121 datasets
we conclude that it is very easy to game the ranking of two
insignificantly different classifiers. But once the difference
becomes significant, it is unlikely that by removing irrele-
vant classifiers we obtain a significantly different classifiers
but with reversed conclusion.

1 Introduction

Friedman’s test is the recommended way how to compare
algorithms in machine learning (ML) [9]. It is a nonpara-
metric test, which calculates scores not on the raw perfor-
mance measures (e.g. classification accuracy or correlation
coefficient) but on the ranks calculated from the raw mea-
sures. Nonparametric tests are favored over parametric tests
in ML, because the standard formulation of the central limit
theorem (CLT) does not apply on bounded measures [8],
many measures used in ML are bounded, and commonly
used parametric tests rely on CLT. Nevertheless, even non-
parametric tests, which are based on ranking, have flaws
as demonstrated by Arrow’s impossibility theorem [1]. In
this article, we discuss one such flaw of Friedman’s test:
violation of Independence of Irrelevant Alternatives (IIA).

2 Problem Description

Friedman’s test Friedman’s test, if applied on algorithm
ranking, is defined as:

Given data {xi j}n×k, that is, a matrix with n rows (the
datasets), k columns (the algorithms) and a single

performance observation at the intersection of each
dataset and algorithm, calculate the ranks within each
dataset. If there are tied values, assign to each tied
value the average of the ranks that would have been
assigned without ties. Replace the data with a new
matrix {ri j}n×k where the entry ri j is the rank of xi j
within dataset i. Calculate then rank sums of algo-
rithms as: r j = ∑n

i=1 ri j .

We can rank the algorithms based on rank sums r j [10].
Friedman’s test then continues with the evaluation of the
null hypothesis that there are no differences between the
classifiers. Since this article is not about hypothesis testing
but rather about algorithm ranking based on r j, we refer-
ence a keen reader to read [9] for a detailed description of
Friedman’s test hypothesis testing.

IIA Independence of Irrelevant Alternatives [14] condition
is defined as:

If algorithm A is preferred to algorithm B out of the
choice set {A,B}, introducing a third option X , expand-
ing the choice set to {A,B,X}, must not make B prefer-
able to A.

In other words, preferences for algorithm A or algorithm
B, as determined by rank sums r j, should not be changed
by the inclusion of algorithm X , i.e., X is irrelevant to the
choice between A and B.

Illustration Boosting tends to outperform base algorithms
(e.g. decision trees) by a large margin. But sometimes,
boosting fails [2, Chapter 8.2] while bagging reliably out-
performs base algorithms on all datasets, even if only by a
small margin [2, Chapter 7.1]. This is illustrated in the left
part of Figure 1. If we compare boosting only to bagging,
then by the rank sums r j, boosting wins, because boosting
is better than bagging on the majority of datasets. However,
if we add irrelevant algorithms that are always worse than
bagging, the conclusion may change. Bagging will be al-
ways the first or the second. But boosting will be either the
first or (in the provided illustration) the last. And a few ex-
treme values in the rank sum r j can result into the change
of the conclusion.
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Figure 1: What is better, bagging or boosting? Boosting is better than bagging by a large margin on majority of datasets
(e.g. in 95%). But with a constant probability p, boosting fails critically. Interestingly, the decision which of the algorithms
is better does not depend only on p but also on the count of irrelevant algorithms (m).

3 Impact

3.1 Bias of Authors

Hypothesis Authors of highly cited papers, knowingly or
not, frame their algorithms in the best possible light. Based
on the equilibrium equation in Figure 1, we would ex-
pect that proponents of boosting algorithms use fewer al-

gorithms than proponents of bagging in the design of ex-
periments (DOE).

Evaluation Breiman, the author of bagging [6], compared
bagging against 22 other algorithms while Freund and
Schapire, authors of AdaBoost [11], compared their boost-
ing algorithm against only 2 other algorithms. Our expec-
tations were fulfilled.

Threats to validity due to omitted variables Since both
articles were published in the same year, the availability
of algorithms for comparison should be comparable and
cannot be used to explain the observed differences in the
DOE.

Conclusion Since this is just a single observation, which
can be just by chance, following section analyses the im-
pact of DOE numerically.

3.2 Effect on Large Studies

A nice comparison of 179 classifiers on 121 datasets is
provided by Fernández-Delgado et al. [10]. The authors
follow Demšar’s [9] recommendation to use Friedman’s
test to rank the algorithms.

If we directly compare just two classifiers, Ad-

aBoostM1_J48_weka and Bagging_J48_weka, and calcu-
late rank sums r j, then we get that boosting beats bagging

64 to 47. But if we calculate rank sums over all algorithms,
then we get that bagging beats boosting 13136 to 12898.
A completely reversed conclusion!

How frequently does the ordering flip? If we per-
form above analysis over all unique pairs of classifiers
( 1

2 179(179− 1) = 15753), then we get that the ordering
flips in 5% of cases (831/15753).

Are the changes in the ranks significant? We repeated the
experiment once again, but considered only classifier pairs
that are based on Friedman’s test:

1. pairwise significantly different

2. and significantly different in the presence of all the

remaining classifiers.

If we do not apply multiple testing correction, the clas-
sifiers flip the order in mere 0.05% cases (8/15753) at a
shared significance level α = 0.05. Once we add multi-
ple testing correction, the count of significant flips drops

to zero. In our case, the exact type of multiple testing cor-
rection does not make a difference. Bonferroni, Nemeneyi,
Finner & Li and Bergmann & Hommel [17] corrections all
give the same result as the lowest p-value before the cor-
rection in that 8 cases is 0.023, which is already extremely
close to the significance level of 0.05.
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4 Related Work and Discussion

We are not the first one to notice that Friedman’s test does
not fulfill the IIA property. The oldest mention of the issue
in the literature, that we were able to track down, dates
back to 1966 [4]. Following paragraphs discuss possible
solutions to the issue.

4.1 Pairwise Ranking

Benevoli et al. [4] recommend replacing Friedman’s test
with pairwise Wilcoxon signed-rank test followed with mul-

tiple testing correction. The application of a pairwise-test
solves the issue with IIA if we want to show how well “a
new algorithm A fares in comparison to a set of old al-
gorithms B” because each pairwise comparison between
A and some other algorithm B ∈ B is by definition inde-
pendent on C ∈ B,C 6= B. However, if we aim to “rank the
current algorithms together”, pairwise tests may not deliver
a total ordering while a method comparing all algorithms
at once can, as illustrated in Figure 2.

A B C

α 1 2 3
β 1 2 3
γ 3 1 2
δ 3 1 2
ε 2 3 1

Rank sum 10 9 11

Figure 2: A minimal example of 3 algorithms and 5
datasets where rank sums deliver total ordering while pair-
wise methods end up with a cycle: A≺ B,B≺C,C ≺ A.

One important implementation detail, which is not dis-
cussed by Benevoli et al., is that Wilcoxon signed-rank test
does not by default take into account ties (while Fried-
mans’s test does). Ties may appear in an experimental
study as a result of rounding or as a consequence of using
a dataset with a small sample size. And if the percentage
of ties is high, the negligence of the ties can result in mis-
leading results, as discussed by Pratt [13]. In R, we can use
wilcoxsign_test function from coin package, which
implements Pratt’s tie treatment.

4.2 Vote Theory

During the French revolution in the 18th century, the need
to come with a fair vote method arose. Two competitors,

Condorcet and Borda1, came with two different methods.
And they did not manage to agree, which of the methods
is better. This disagreement spurred an interest into vote
theory. One of the possible alternatives to Friedman test
that vote theory offers is Ranked pairs method [16]:

1. Get the count of wins for each pair of algo-
rithms.

2. Sort the pairs by the difference of the win counts
in the pair.

3. “Lock in” the pairs beginning with the strongest
difference of the win counts.

While Ranked pairs method also fails IIA criterium, it at
least fulfills a weaker criterium called Local Independence

from Irrelevant Alternatives (LIIA). LIIA requires that the
following conditions hold:

If the best algorithm is removed, the order of the re-
maining algorithms must not change. If the worst al-
gorithm is removed, the order of the remaining algo-
rithms must not change.

An example where Friedman’s test fails LIIA criterium
is given in Figure 3 [14].

A B C

α 1 3 2
β 1 3 2
γ 2 1 3
δ 2 1 3
ε 2 1 3

Rank sum 8 9 13

A B

α 1 2
β 1 2
γ 2 1
δ 2 1
ε 2 1

Rank sum 8 7

Figure 3: A minimal example of 3 algorithms and 5
datasets demonstrating that Friedman’s test does not ful-
fill LIIA criterium — when we remove the best algorithm
C, algorithm A becomes better than algorithm B.

Friedman’s test also violates Independence of Clones

criterion [15]:

The winner must not change due to the addition of a
non-winning candidate who is similar to a candidate
already present.

An example, when can this can become a problem is
given by [4]:

Assume that a researcher presents a new algorithm A0
and some of its weaker variations A1,A2, . . . ,Ak and
compares the new algorithms with an existing algo-
rithm B. When B is better, the rank is B� A0 � . . .�

1Borda count is equivalent to rank sums r j . Hence, whatever vote
theory has to say about Borda count also applies to Friedman’s test.
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Ak. When A0 is better, the rank is A0 � A1 � . . . �
Ak � B. Therefore, the presence of A1,A2, . . . ,Ak arti-
ficially increases the difference between A0 and B.

But Ranked pairs method fulfills this criterion.
Finally, Friedman’s test violates Majority criterion [3]:

If one algorithm is the best on more than 50% of
datasets, then that algorithm must win.

We have already observed a violation of this criterion in
the though example with bagging versus boosting — even
thought boosting was the best algorithm on the majority
of the datasets, this fact alone did not guarantee boosting’s
victory. The violation of Majority criterion also implies a
violation of Condorcet criterion [5]:

If there is an algorithm which wins pairwise to each
other algorithm, then that algorithm must win.

Which is, nevertheless, once again fulfilled with Ranked
pairs method. However, just like in machine learning we
have no free lunch theorem, Arrow’s impossibility theo-
rem [1] states that there is not a ranked vote method with-
out a flaw. The flaw of all ranked vote methods, but dic-
tatorship2, that fulfill Condorcet criterium is that they fail
Consistency criterium [18, Theorem 2]:

If based on a set of datasets A an algorithm A is the
best. And based on another set of datasets B an algo-
rithm A is, again, the best. Then based on A∪B the
algorithm A must be the best.

Notably, Friedman’s test fulfills this criterium while
Ranked pairs method fails this criterium. For convenience,
a summary table with the list of discussed criteria is given
in Table 1.

Table 1: Method compliance with criteria.

Criterium Friedman’s Ranked pairs

IIA 7 7
LIIA 7 3
Independence of Clones 7 3
Majority 7 3
Condorcet 7 3
Consistency 3 7

4.3 Bayesian

Another option is to go parametric and replace the common
assumption of normal distributions with Beta distributions,

2In a dictatorship, the quality of an algorithm is determined on a
single dataset

which are more appropriate for modeling of upper and bot-
tom bounded measures [7, 12].

4.4 Continue Using Friedman’s Test

Finally, there is the option of continuing using Friedman’s
test as before. In the numerical analysis in Section 3.2, we
did not observe any significant flip in the ordering of the
algorithms.

5 Conclusion

Contrary to our expectations, based on analysis of 179 clas-
sifiers on 121 datasets, Friedman’s test appears to be fairly
resistant to manipulation, where we add or remove irrele-
vant classifiers from the analysis. Therefore, we cannot rec-
ommend avoiding Friedman’s test only because it violates
Independence of Irrelevant Alternatives (IIA) criterium.
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Appendix: Arrow’s theorem

Arrow’s theorem, once applied on algorithms and datasets,
states that once we have 3 or more algorithms, a ranking
method cannot fulfill all following “reasonable” properties:

Unrestricted domain The ranking method should be
complete in that given a choice between algorithms A

and B it should say whether A is preferred to B, or B

is preferred to A or that there is indifference between
A and B.

Transitivity The preferences should be transitive; i.e., if
A is preferred to B and B is preferred to C then A is
also preferred to C.

Non-dictatorship The outcome should not depend only
upon a single dataset.

Weak Pareto Efficiency If algorithm A is better than al-
gorithm B on all datasets, then A must rank above B.

Independence of Irrelevant Alternatives (IIA) If algo-
rithm A is preferred to algorithm B out of the choice
set {A,B}, introducing a third option X , expanding the
choice set to {A,B,X}, must not make B preferable to
A.

Appendix: Criteria

Figure 4: Venn diagram with the dependencies between the
discussed vote theory criteria. IIA and consistency are in-
conceivable with the Condorcet criterion. Independence of
clones is independent of other criteria and is not depicted.
The diagram holds when following conditions from Ar-
row’s theorem are satisfied: unrestricted domain, transitiv-
ity, non-dictatorship, 3 or more competing algorithms.
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1 Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, 118 00 Prague 1, Czech Republic

2 Institute of Computer Science, Czech Academy of Sciences
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Abstract: Gaussian processes have a long tradition
in model-based algorithms for black-box optimization,
where a limited number of objective function evaluations
are available. A principal choice in specifying a Gaus-
sian process model is the choice of the covariance func-
tion, which largely embodies the prior assumptions about
the modeled function. Several methods for learning the
form of covariance function have been proposed. We re-
port a work in progress in which the covariance function is
selected from a fixed set. The goal of covariance function
selection is to capture non-local properties of the objective
function and derive a more accurate surrogate model. The
model-selection algorithm is evaluated in connection with
Doubly Trained Surrogate Covariance Matrix Adaptation
Evolution Strategy on the Comparing Continuous Opti-
mizers framework. Several estimates of predictive perfor-
mance, including cross-validation and information crite-
ria, are discussed. Focus is placed on information criteria
suitable for nonparametric methods, and two of them are
compared experimentally.

1 Introduction

The principle of continuous black-box optimization is
finding extrema of real-parameter objective function an-
alytical definition of which is not known. Such func-
tions, often arising, e. g., in engineering design optimiza-
tion or material science, can only be evaluated empirically
or through simulations. Moreover, obtaining function val-
ues may be expensive and affected by noise. The goal
of finding a global optimum is usually relaxed in favor
of finding a good enough solution within as few objective
function evaluations as possible.

Evolution strategies, stochastic population-based algo-
rithms inspired by the process of natural evolution, present
a popular approach to continuous black-box optimiza-
tion. The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [10, 13] is based on adaptation of the key
component of the mutation operator (the covariance ma-
trix) according to the historical search steps. The CMA-ES
is considered a state-of-the-art continuous black-box opti-
mizer. Nevertheless, considerable improvements in terms

of the number of fitness evaluations can be achieved by
use of surrogate models, i. e., statistical or machine learn-
ing models of the fitness trained on data gathered during
the optimization.

A variety of models for the CMA-ES has been investi-
gated, including but not limited to quadratic approxima-
tions [14], ranking support vector machines [16], random
forests [4] and Gaussian processes (GPs) [4, 19, 25].1

Gaussian process (GP) regression is a nonparametric
method, meaning the data are assumed to be generated
from an infinite-dimensional distribution, i. e., a distribu-
tion of functions. In black-box optimization, the distribu-
tion of function values conditioned on observed data can
be used to derive a criterion for selecting most promis-
ing points for evaluation with the (expensive) fitness. As
far as we know, the first optimization method utilizing un-
certainty modeled by GPs is Bayesian optimization [17].
In this paper, we are going to build upon the more re-
cent Adaptive Doubly Trained Surrogate CMA-ES (aDTS-
CMA-ES), which uses a Gaussian process surrogate mod-
els for the CMA-ES, although our approach is directly ap-
plicable to Bayesian optimization as well.

A Gaussian process is fully specified by a mean func-
tion and a covariance function parametrized a by a small
number of parameters. In order to distinguish parameters
of the mean and covariance functions from the infinite-
dimensional parameter vector – the vector of function val-
ues – they are referred to as hyperparameters. In statisti-
cal works, the mean and covariance functions are chosen
by the statistician in a cycle of model building and model
checking.

The goal of this work is to lay out a suitable method
for learning the form of covariance function for Gaussian
processes in black-box optimization with focus on criteria
for evaluating candidate covariance functions. The main
hypothesis behind this paper is that a GP with a composite
form of its covariance function may result in a more ac-
curate approximation of the objective function and, con-
sequently, better performance of the model-assisted opti-
mization algorithm.

1An experimental comparison of selected surrogate-assisted variants
of the CMA-ES can be found in [3, 20].
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Related Work Learning a composite expression of kernel
functions for support vector machines by genetic program-
ming was explored in [7].

Hierarchical kernel learning [2] and Additive Gaussian
processes [6] are algorithms for determining kernels com-
posed of lower-dimensional kernels.

The goal of Automatic Statistician project [15] is auto-
matic statistical analysis of given data with output in nat-
ural language. The algorithm of structure discovery in GP
models [5] is a greedy search in the space of composite
covariance functions generated by operators of addition
and multiplication recursively applied to basis covariance
functions.

Up to our knowledge, structure discovery in GP surro-
gate models for continuous black-box optimization has not
yet been investigated. As a first step towards this goal,
we perform selection of the best GP model from a model
population that we tried to design large enough to cap-
ture structure of typical continuous black-box function but
still small enough for model selection to be computation-
aly feasible.

The paper is organized as follows. Section 2 presents
ideas behind surrogate models in evolutionary optimiza-
tion and aDTS-CMA-ES algorithm. Section 3 describes
inference and learning in Gaussian process regression
models. Section 4 presents the algorithm for selecting the
best GP surrogate model. First results from an early stage
of experimental evaluation are presented in Section 5. Sec-
tion 6 concludes the paper.

2 Surrogate-Assisted Evolutionary
Optimization

Evolutionary strategies are stochastic search algorithms
based on maintaining a population of candidate solutions,
usually encoded as real vectors. In each iteration (gen-
eration), a population of λ offsprings is generated from a
population of µ parents by operators of recombination and
mutation. The new population of parents is selected either
from the union of offsprings and parents (plus selection),
or, provided that µ ≤ λ , from the offsprings exclusively
(comma selection).

2.1 CMA-ES

Mutation in evolutionary strategies is usually implemented
by sampling from a Gaussian distribution, parameters of
which play a crucial role in algorithms’ convergence. The
main idea behind the CMA-ES is self-adaptation of muta-
tion parameters, especially of the covariance matrix. The
CMA-ES repeatedly samples from N (m,σ2C) and up-
dates parameters σ2 (overall step-size), m (the mean) and
C (the covariance matrix) so that likelihood of successful
mutation steps increases under new parametrization.

Algorithm 1 aDTS-CMA-ES
Input: λ (population-size), ytarget (target value),

f (original fitness function), α (ratio of original-
evaluated points), C (uncertainty criterion)

1: σ ,m,C← CMA-ES initialize
2: A ← /0 {archive initialization}
3: while stopping conditions not met do
4: {xk}λ

k=1 ∼N
(
m,σ2C

)
{CMA-ES sampling}

5: fM 1← trainModel(A ,σ ,m,C) {model training}
6: (ŷ,s2)← fM 1([x1, . . . ,xλ ]) {model evaluation}
7: Xorig←select dαλebest points accord. to C (ŷ,s2)
8: yorig← f (Xorig) {original fitness evaluation}
9: A = A ∪{(Xorig,yorig)} {archive update}

10: fM 2← trainModel(A ,σ ,m,C) {model retrain}
11: y← fM 2([x1, . . . ,xλ ]) {2nd model prediction}
12: (y)i← yorig,i for all original-evaluated yorig,i ∈ yorig
13: α ← selfAdaptation(y, ŷ)
14: σ ,m,C← CMA-ES update
15: end while
16: xres← xk from A where yk is minimal
Output: xres (point with minimal y)

2.2 aDTS-CMA-ES

The aDTS-CMA-ES [3, 19, 21], utilizes a GP surrogate
model to estimate the fitness of a fraction of the popula-
tion. A pseudocode is given in Algorithm 1. The algo-
rithm expects an uncertainty criterion C for choosing so-
lutions for re-evaluation. In optimization based on Gaus-
sian processes, such criteria are conveniently defined on
the marginal GP posterior, which is a univariate Gaus-
sian distribution. One of the most prominent uncertainty
criteria is the probability of improvement, CPOI(x;T ) =
Pr( f (x)≤ T ), i. e., the posterior probability that the func-
tion value at a candidate solution x improves on a chosen
target T , typically set to the historically best fitness value.

The sampling in aDTS-CMA-ES is identical to that of
CMA-ES. The surrogate model is trained twice per gener-
ation. The first model is trained on a data set, which natu-
rally cannot contain any individuals from the current pop-
ulation. A fraction α of the population is selected accord-
ing to C , evaluated with the (expensive) fitness function
and included into the archive of individuals with known
fitness values. The model is retrained and used to predict
the remainder of the population. The fraction α is adapted
according to surrogate model performance.

3 Gaussian Processes

Let X be some input space of dimensionality D. Gaus-
sian process with a mean function µ : X → R and a co-
variance function k : X ×X → R, is a collection of ran-
dom variables ( f (x))x∈X such that every finite-variate
marginal ( f (xi))

N
i=1 follows a multivariate Gaussian distri-

bution N (µ(X),K(X ,X)), where µ(X) = (µ(xi))
N
i=1 and
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K(X ,X) = (k(xi,x j))
N
i, j=1. Both µ and k are parameter-

ized, but we omit their parameters for the sake of readabil-
ity.

3.1 Inference

Let y = {y1, . . . ,yN} be N i. i.d. observations at inputs
X = {x1, . . . ,xN}. A model with Gaussian likelihood and
GP prior is given by distributions y | f ∼N (f,σ2

n IN) and
f |X ∼N (µ(X),K(X ,X)). From now on, we assume µ =
0. Deterministic non-zero mean functions can be used by
simply substracting from y (see [22] for more on this). Let
us denote by θ the vector of hyperparameters consisting
of parameters of k and noise variance σ2

n .
The marginal likelihood of hyperparameters θ is (see

[22])

p(y |X ,θ) =
∫

p(y |X , f ,θ)p( f |θ)d f (1)

= ϕ(y |0,K(X ,X)+σnIN), (2)

where ϕ denotes the normalized multivariate Gaussian
density.

In the regression problem, we are interested in condi-
tional distribution f∗ |y,X ,X∗,θ for X∗ a set of N∗ test in-
puts. Since [yT fT

∗ ]
T |X ,X∗,θ follows a multivariate Gaus-

sian distribution, the distribution of f∗ |y,X ,X∗,θ is also a
multivariate Gaussian, in particular

f∗ ∼N (f̂∗,cov(f∗)), where (3)

f̂∗ = K(X∗,X)[K(X ,X)+σ2
n IN ]

−1y (4)
cov(f∗) = K(X∗,X∗)−

K(X∗,X)[K(X ,X)+σnIN ]
−1K(X ,X∗) (5)

3.2 Hierarchical Model

When the covariance function family is given, model
selection for GP regression is usually performed
by maximum marginal likelihood estimate θ̂ML =
argmaxθ log p(y |X ,θ), which is a non-convex optimiza-
tion problem. Computation of log marginal likelihood
takes O(N3) time due to a Cholesky decomposition of co-
variance matrix K(X ,X).

From a Bayesian perspective, especially if the number
of hyperparameters is large or if N is small, it might be
more appropriate to do inference with the marginal poste-
rior distribution of hyperparameters

p(θ |X ,y) =
p(y |X ,θ)p(θ)

p(y |X)
, (6)

where p(y |X ,θ) is the marginal likelihood (1), now play-
ing the role of the likelihood, and p(θ) is a hyper-prior.
Simulations from p(θ |X ,y) can be obtained by Bayesian
computation methods, such as Markov chain Monte Carlo.

Uncertainty criteria in Algorithm 1 can thus incorpo-
rate uncertainty of hyperparameter estimation in addition

to uncertainty about functions. In the current stage of re-
search, we compute the prediction conditioned on a Bayes
estimate θBayes = median({θs,s = 1, . . . ,S}), i. e., the me-
dian of the posterior sample.

4 Model Selection

If the probability of the true fitness function under GP
prior is low, the performance of the model will be poor.
For example, a GP with a neural network covariance fits
data from a jump function better compared to a GP with a
squared exponential [22] (more on covariance functions in
Subsection 4.1). Searching over GP models with different
covariances thus can be viewed as an automated construc-
tion of suitable priors. We select the model from a finite set
according to a criterion of predictive performance, since
this approach can easily be embedded into a combinatorial
search algorithm, such as in [5]. GPs can represent ran-
dom functions. The finite population of models included
in our approach is described in Subsection 4.1. Some im-
portant classes of functions, such as linear and quadratic
functions, neural networks and additive functions, are rep-
resented.

4.1 Model Population

The set of candidate GP models is shown in Figure 1. All
models have zero mean.

A covariance function k(x,x′) is stationary if it is a
function of a distance ‖x−x′‖. The squared exponential
(SE) [22] is a stationary covariance function that leads to
smooth processes [22].

A neural network (NN) covariance is a covariance of a
GP induced by a Gaussian prior on weights of an infinitely
wide neural network [18].

A dot product with a bias constant term models linear
functions. The quadratic covariance is such a linear covari-
ance squared. GPs with these covariances lead to Bayesian
variants of linear and quadratic regression, respectively.

Additive covariance functions [6] are sums of lower di-
mensional components. We include an additive covariance
function with a single degree of interaction – a superposi-
tion of one-dimensional squared exponentials.

Finally, we consider two cases of composite covariance
functions: a sum of a squared exponential and a neural net-
work; and a sum of a squared exponential and a quadratic.

4.2 Performance Criteria

We would like to select the surrogate model based on an
estimation of out-of-sample predictive accuracy.

An attractive estimate of the out-of-sample predictive
accuracy is cross-validation based on some partitioning of
the data set into multiple data sets called folds. However,
choosing among multiple GP models by cross-validation
in each generation of the evolutionary optimization can
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Figure 1: Rows: Used covariance functions. Columns 1–2: The covariance function on R centered at point 2 (Col. 1) and
three independent samples from the GP (Col. 2). Columns 3–5: The covariance function on R2 centered at [2 2]T (Col. 3)
and two independent samples from the GP (Col. 4 and 5).
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be considered prohibitive from the computational perspec-
tive.

In the remainder of this subsection we follow the ex-
position of model comparison from Bayesian perspective
given in [8]. We denote by q the true distribution from
which data y are sampled and we suppress conditioning
on X for simplicity.

A general measure of fit of a probabilistic model
y to data is the log likelihood or log predictive
density log p(y |θ) = log∏N

i=1 p(yi |θ). The quantity
−2log p(y |θ) is called deviance.

Akaike information criterion (AIC) [1] and related
Bayes information criterion (BIC) [23] are based on the
expected log predictive density conditioned on a maxi-
mum likelihood estimate θ̂ML,

elpdθ̂ = Eq(log p(ỹ | θ̂ML)), (7)

where the expectation is taken over all possible data sets
ỹ. Since expectation (7) cannot be computed exactly, it is
estimated from sample y. The AIC and BIC compensate
for the bias towards overfitting by substracting a correction
term, the number of parameters nθ and 1

2 nθ logN, respec-
tively.

For hierarchical Bayesian models, such as (6), it is not
always entirely clear, what the parameters of the model
are, since the likelihood can factorize in different ways.
The deviance information criterion (DIC) [24] is still
based on deviance, conditioned on a Bayes estimate θ̂Bayes,
but the effective number of parameters pDIC depends on
data. We define the DIC for the marginal likelihood (1), fo-
cusing on hyperparameters θ , although it could be defined
for the likelihood p(y | f ,θ), focusing on both f and θ .

We use the following definition of the effective number
of parameters (see [8]):

pDIC = 2varpost(log p(y |θ)),

which can be estimated by the sample variance of a poste-
rior sample. Using the effective number of parameters, the
DIC is

DIC =−2log p(y | θ̂Bayes)+2pDIC.

A probabilistic model is called regular if its parame-
ters are identifiable and its Fisher information matrix is
positive definite for all parameter values. The model is
called singular otherwise. The information criteria defined
above assume regularity. The Widely applicable informa-
tion (WAIC) [26] works also for singular models. The
WAIC is based on estimation of the expected log point-
wise predictive density

elppd =
N

∑
i=1

Eq(log ppost(ỹi))

=
N

∑
i=1

Eq(log
∫

p(ỹi |y,θ)p(θ |y)dθ .

The estimation of elppd from the sample is biased, so
again, an effective number of parameters must be added as
a correction. We use the following definition of the WAIC
(see [8]):

WAIC =−
N

∑
i=1

log ppost(yi)+
N

∑
i=1

varpost(log p(yi |θ)),

that is the negative log pointwise predictive density cor-
rected for bias by pointwise posterior variance of log pre-
dictive density.

The pointwise predictive density ppost(yi |y,θ) for the
GP model (1) is computed by integrating Gaussian likeli-
hood over the marginal posterior GP at ith training point:

p(yi |y,θ) =
∫

p(yi |y, fi,θ)p( fi |y,θ)d fi

= ϕ(yi | f̂i,σ2
n +var( fi)),

where ϕ denotes the Gaussian density and f̂i,var( fi) are
as in (3).

5 Experimental Evaluation

In this section, we describe preliminary experimental eval-
uation procedure of aDTS-CMA-ES that uses a GP model
with an automated selection of covariance function. Since
GPs are a nonparametric model, we opt for the WAIC,
which require a sample from distribution (6). We use
Metropolis-Hastings MCMC with an adaptive proposal
distribution [9] 2.

Algorithm 1 is updated in the following way: 3

1. In steps (5) and (10), all GPs from Figure 1 are
trained.

2. The predictive accuracy of all models is evaluated us-
ing the WAIC (4.2). The DIC (4.2) is also computed
for information, but not taken into account.

3. The model with the lowest WAIC is used for predic-
tion (steps (6) and (11)).

The hyper-priors are chosen as follows: log-normal
with mean log(0.01) and variance 2 for σ2

n ; and log-tν=4
with mean 0 for all other hyperpameters.

5.1 Setup

The proposed algorithm implemented in MATLAB is eval-
uated on the noiseless testbed of the COCO/BBOB (Com-
paring Continuous Optimizers / Black-Box Optimization
Benchmarking) framework [11,12] and compared with the
GP-based aDTS-CMA-ES and the CMA-ES itself.

2Using MATLAB implementation available at http://helios.
fmi.fi/~lainema/dram/

3The sources are available at https://github.com/repjak/

surrogate-cmaes/tree/modelsel
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The testbed consists of 24 functions, each defined ev-
erywhere on RD with the optimum in [−5,5]D for all di-
mensionalities D ≥ 2. Each test function has multiple in-
stances which are derived by various transformations of
input space or f -space. We run the algorithm on 5 in-
stances (1 . . . ,5) as opposed to 15 recommended instances
for the reason of increased computational demands of the
modified algorithm. For the same reason, only functions
of 10 variables (10D) are considered.

If not stated otherwise, all settings of the aDTS-CMA-
ES are as recommended in [3].

The CMA-ES results in BBOB format were down-
loaded from the BBOB 2010 workshop archive 4.

5.2 Results

Figure 2 gives the scaled best-achieved logarithms ∆log
f

of median distances to the functions optimum for the re-
spective number of function evaluations per dimension
(FE/D). Medians and the 1st and 3rd quartiles are calcu-
lated from 5 independent instances in case of the algorithm
with covariance selection according to the WAIC and from
15 independent instances otherwise. We observe that in
most cases, the WAIC-based algorithm mostly barely out-
performs the pure CMA-ES, which suggests the chosen
model is generally weak and the adaptivity mechanism ba-
sically turns off using the surrogate model. The functions
where the WAIC variant outperforms the aDTS-CMA-ES
(f21 and f22) are multi-modal and the interquartile range
is large.

In order to compare the considered information crite-
ria, we calculate the rank of each model under both WAIC
and DIC. Table 1 summarizes the average ranks over all
model selections performed on each benchmark function.
We observe that the DIC often prefers the additive model,
while the WAIC is more balanced in this respect. Surpris-
ingly the linear kernel has been very rarely selected even
on the linear function (f5) under both information criteria.
A similar observation holds for the quadratic kernel and
the quadratic functions (f1, f2).

6 Conclusion & Further Work

In this paper, we presented an algorithm for selecting a
GP kernel using Bayesian model comparison techniques.
Preliminary experiments for the model selection plugged
into the aDTS-CMA-ES algorithm were conducted on the
COCO/BBOB testbed. Due to the small number of exper-
iments performed so far, it is difficult to draw any serious
conclusions. The first obtained results may indicate im-
proper convergence of the MCMC sampler or that more
sophisticated covariance functions may be needed.

One direction of future research, beside analyzing and
repairing aforementioned deficiencies, is an extension of

4http://coco.gforge.inria.fr/data-archive/bbob/

2010/

the proposed algorithm into a combinatorial search over
kernels in flavor of [5,7], which is challenging due to com-
putational costs related to the need of repeated surrogate
model retraining.

One possible direction of research is a co-evolution of
a population of covariance functions alongside the pop-
ulation of candidate solutions to the black-box objective
function. Other related research area is applying surrogate
modeling to high-dimensional problems using algorithms
for variable selection via multiple kernel learning [2, 6].
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Figure 2: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 COCO/BBOB benchmarks
in 10D for algorithms aDTS-CMA-ES (green), aDTS-CMA-ES with WAIC-based model selection (red) and CMA-ES
(blue). The medians and quartiles for WAIC variant were calculated from 5 independent instances. In all other cases, 15
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Table 1: Average model ranks in 10D for each predictive performance criterion. The lowest value in bold.

Criterion WAIC DIC

Model SE NN LIN QUAD ADD SE+NN SE+LIN SE NN LIN QUAD ADD SE+NN SE+LIN

f1 3.64 4.01 6.94 4.17 2.73 3.25 3.27 5.57 4.68 6.65 3.11 1.55 4.07 2.37
f2 3.07 3.05 6.96 5.41 4.35 2.48 2.67 5.38 4.85 6.78 3.99 1.45 3.71 1.84
f3 2.94 3.20 6.75 5.99 4.14 2.45 2.53 4.37 4.63 6.74 5.40 1.40 3.11 2.36
f4 3.00 3.20 6.87 5.73 4.11 2.52 2.57 4.49 4.67 6.76 5.21 1.30 3.27 2.30
f5 3.69 3.60 6.78 4.41 2.69 3.28 3.56 6.75 4.16 4.71 3.25 3.48 3.00 2.66
f6 3.03 3.09 6.99 5.95 3.99 2.46 2.50 4.18 4.62 6.92 5.92 1.86 2.80 1.69
f7 3.15 3.09 6.92 5.86 3.91 2.49 2.58 4.35 4.87 6.90 5.37 1.54 2.99 1.98
f8 2.83 3.12 6.97 5.76 4.15 2.50 2.66 4.78 4.57 6.83 5.21 1.32 3.27 2.02
f9 2.86 3.14 6.97 5.69 4.14 2.63 2.57 4.86 4.57 6.79 5.05 1.32 3.37 2.04
f10 3.00 3.16 6.96 5.43 4.31 2.52 2.62 5.39 4.82 6.76 3.95 1.53 3.79 1.75
f11 3.01 3.09 6.97 5.53 4.24 2.57 2.60 5.21 5.17 6.80 3.66 2.14 3.87 1.16
f12 3.16 3.28 6.93 4.37 4.96 2.64 2.66 5.46 4.65 6.66 3.57 1.46 3.94 2.27
f13 2.93 2.98 6.98 5.83 4.42 2.37 2.50 4.87 4.47 6.88 5.23 1.24 3.06 2.25
f14 3.29 2.96 7.00 5.90 3.63 2.59 2.64 4.26 4.84 6.99 5.64 1.43 3.04 1.81
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Abstract: Many real-world problems belong to the area
of continuous black-box optimization, where evolutionary
optimizers have become very popular inspite of the fact
that such optimizers require a great amount of real-world
fitness function evaluations, which can be very expensive
or time-consuming. Hence, regression surrogate models
are often utilized to evaluate some points instead of the fit-
ness function. The Doubly Trained Surrogate Covariance
Matrix Adaptation Evolution Strategy (DTS-CMA-ES) is
a surrogate-assisted version of the state-of-the-art contin-
uous black-box optimizer CMA-ES using Gausssian pro-
cesses as a surrogate model to predict the whole distribu-
tion of the fitness function. In this paper, the DTS-CMA-
ES is studied in connection with the boosted regression
forest, another regression model capable to estimate the
distribution. Results of testing regression forest and Gaus-
sian processes, the former in 20 different settings, as a sur-
rogate models in the DTS-CMA-ES on the set of noiseless
benchmarks are reported.

1 Introduction

Real-world problems can be very costly in terms of various
resources, most often money and time. An important kind
of such problems are optimization tasks in which the ob-
jective function cannot be expressed mathematically, but
has to be evaluated empirically, through measurements,
experiments, or simulations. Such optimization tasks are
called black-box. Evolutionary algorithms have become
very successful in this optimization field. In case of lim-
ited resources, the number of empirical evaluations neces-
sary to achieve the target distance to the optimal value by
the optimization algorithm should be as small as possible.

Nowadays, the Covariance Matrix Adaptation Evolu-
tion Strategy (CMA-ES) [12] is considered to be the state-
of-the-art algorithm for continuous black-box optimiza-
tion. On the other hand, the CMA-ES can require many
function evaluations to achieve the target distance from
the optimum in problems where the fitness function is ex-
pensive. Therefore, several surrogate-assisted versions of
the CMA-ES have been presented during the last decade
(an overview can be found in [2, 20]). Such CMA-ES

based algorithms save expensive evaluations through uti-
lization of a regression surrogate model instead of the orig-
inal function on a selected part of the current population.

The local meta-model CMA-ES (lmm-CMA-ES) was
proposed in [16] and later improved in [1]. The algorithm
constructs local quadratic surrogate models and controls
changes in population ranking after each evaluation of the
original fitness.

In [18], the Doubly Trained Surrogate CMA-ES (DTS-
CMA-ES) was presented. It utilizes the ability of Gaus-
sian Processes (GPs) [21] to estimate the whole distribu-
tion of fitness function values to select most promising
points to be evaluated by the original fitness. The DTS-
CMA-ES was also tested [19] in a version where metric
GPs were replaced by ordinal GPs inspired by the fact that
the CMA-ES is invariant with respect to order preserving
transformations. However, up to our knowledge, there has
been no research into combining the DTS-CMA-ES with
the surrogate model capable to predict the whole proba-
bility distribution of fitness values, where the model was
not based on GPs. The ensembles of regression trees [4]
are also able to estimate the whole distribution of values.
They have been already utilized as surrogate models for
the CMA-ES in [3] using different evolution control strat-
egy than the DTS-CMA-ES.

In this paper, we use ensembles of regression trees as
surrogate models in the DTS-CMA-ES algorithm. Due to
an increasing popularity of gradient boosting [10], we train
the ensembles of regression trees, i. e., regression forests
(RFs), using such strategy. Up to our knowledge, this is
the first time the boosted RF regression is utilized for sur-
rogate modeling in the DTS-CMA-ES context. Therefore,
we investigate also the suitability of several different set-
tings of the employed regression method to this end. We
experimentaly compare the original DTS-CMA-ES with a
new version using RFs together with the original CMA-
ES on the noiseless part of the Comparing-Continuous-
Optimizers (COCO) platform [13, 14] in the expensive set-
tings with the limited budget of fitness evaluations.

The rest of the paper is organized as follows. Section
2 describes the DTS-CMA-ES algorithm. Section 3 gives
a short introduction into gradient boosting and regression
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Algorithm 1 DTS-CMA-ES [18]
Input: λ (population-size), ytarget (target value),

f (original fitness function), norig (number of original-
evaluated points), C (uncertainty criterion)

1: σ ,m,C←CMA-ES initialize
2: A←∅ {archive initialization}
3: while min{y ∣(x,y) ∈A} > ytarget do
4: {xk}λ

k=1 ∼N (m,σ2C) {CMA-ES sampling}
5: fM1← trainModel(A,σ ,m,C) {model training}
6: (ŷ,s2)← fM1([x1, . . . ,xλ ]) {model evaluation}
7: Xorig←select norig best points according to C(ŷ,s2)
8: yorig← f (Xorig) {original fitness evaluation}
9: A =A∪{(Xorig,yorig)} {archive update}

10: fM2← trainModel(A,σ ,m,C) {model retrain}
11: y← fM2([x1, . . . ,xλ ]) {2nd model prediction}
12: (y)k ← yorig,i for all original-evaluated yorig,i ∈ yorig
13: σ ,m,C← CMA-ES update (y,σ ,m,C)
14: end while
15: xres← xk from A where yk is minimal
Output: xres (point with minimal y)

tree algorithms. Section 4 contains experimental setup and
results. Section 5 concludes the paper and discusses future
research.

2 Doubly Trained Surrogate CMA-ES

The DTS-CMA-ES, introduced in [18], is a modification
of the CMA-ES, where the ability of GPs to estimate the
whole distribution of fitness function is utilized to select
the most promising points out of the sampled population.
The points selected using some uncertainty criterion C are
evaluated with the original fitness function f and included
into the set of points employed for the GP model retrain-
ing. The remaining points from the population are reeval-
uated using the retrained GP model. The core CMA-ES
parameters (σ , m, C, etc.) are computed according to the
original CMA-ES algorithm. The DTS-CMA-ES pseu-
docode is shown in Algorithm 1.

The only models capable to predict the whole fitness
distribution used so far in connection with the DTS-CMA-
ES were based on GPs.

3 Boosted regression forest

Regression forest [5] is an ensemble of regression decision
trees [4]. In the last decade, the gradient tree boosting [10]
has become very popular and successful technique for for-
est learning. Therefore, we will focus only on this method.

3.1 Gradient boosted regression trees

Let’s consider binary regression trees, where each obser-
vation x = (x1,x2, . . . ,xD) ∈ RD passes through a series of

binary split functions s associated with internal nodes and
arrives in the leaf node containing a real-valued constant
trained to be the prediction of an associated function value
y. A binary split function determines whether x proceeds
to its left or right child of the respective node.

The gradient boosted forest has to be trained in an addi-
tive manner. Let ŷ(t)i be the prediction of the i-th point of
the t-th tree. The t-th tree ft is obtained in the t-th itera-
tion of the boosting algorithm through optimization of the
following regularized objective function:

L(t) = N∑
i=1

l (yi, ŷ
(t−1)
i + ft(xi))+Ω( ft) , (1)

where Ω( f ) = γ Tf + 1
2

λ ∥w f ∥2
,

l is a differentiable convex loss function l ∶ R2 → R, Tf is
the number of leaves in a tree f , and w f are weights of
its individual leaves. The regularization term Ω is used to
control model complexity through penalization constants
γ ≥ 0 and λ ≥ 0.

The tree growing starts with one node (root) and a set
of all input data. Individual branches are then recursively
added according to the gain of split considering splitting
data SL+R into sets SL (left branch set) and SR (right
branch set). The gain can be derived using (1) as follows
(see [7] for details):

Lsplit = 1
2
[r(SL)+ r(SR)− r(SL+R)]− γ ,

r(S) = (∑y∈S g(y))2

∑y∈S h(y)+λ
, (2)

where g(y) = ∂ŷ(t−1) l(y, ŷ(t−1)) and h(y) =
∂ 2

ŷ(t−1) l(y, ŷ(t−1)) are the first and second order derivatives
of the loss function.

The tree growing is stopped when one of the user-
defined conditions is satisfied, e. g., the tree reaches the
maximum number of levels, or no node can be split with-
out dropping the number of points in any node under the
allowed minimum.

The overall boosted forest prediction is obtained
through averaging individual tree predictions, where each
leaf j in a t-th tree has weight

w(t)j = − ∑y∈S j
g(y)

∑y∈S j
h(y)+λ

, (3)

where S j is the set of all training inputs that end in the leaf
j. As a prevention of overfitting, the random subsampling
of input features or input points can be employed.

3.2 Split algorithms

The decision split function s can be found through numer-
ous algorithms developed since the original CART [4]. In
the following paragraphs, we survey some of them.
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Traditional CART [4] are based on searching axis-
parallel hyperplanes. To find the splitting hyperplane, the
value of each training point x = (x(1), . . . ,x(D)) in dimen-
sion x(d), d ∈ {1, . . . ,D} is considered as a threshold for
the dimension d defining the candidate hyperplane. The
full-search through all dimensions is done and the split-
ting hyperplane with the highest gain is selected.

In SECRET [9], the expectation-maximization algo-
rithm for Gaussian mixtures is utilized to find two clusters
and the regression task is transformed into classification
based on assignments of points to these clusters. Splitting
oblique hyperplane is provided through linear or quadratic
discriminant analysis.

Deterministic hill-climbing with effective randomiza-
tion is employed to find a most suitable linear hyperplane
in the algorithm OC1 [17]. Split-finding starts with a ran-
dom hyperplane or with a good axis-parallel hyperplane
found similarly to CART. Then the hyperplane’s direction
is deterministically perturbated in each axis to maximize
the split gain. Once no improvement is possible, a num-
ber of random jumps is performed as an attempt to escape
from local optima. In case of successful random jump,
deterministic perturbation is performed again.

In [15] (PAIR), the pairs of points are used to define a
projection for splitting the input space. For each pair of
points, a normal vector defining a direction is constructed.
The rest of training points is projected onto this vector
and the projected values are utilized as thresholds defin-
ing splitting hyperplanes orthogonal to constructed normal
vector. To reduce complexity, only the threshold halfway
between the defining pair can be considered.

A nonparametric function estimation method called
SUPPORT [6] is based on the analysis of residuals after
regression to find a split. At the beginning, polynomial
regression is performed on the training data. The points
under the curve (negative residuals) present the first class,
and the rest of points (positive or zero residuals) presents
the second class. Afterwards, distribution analysis is ap-
plied to find a split.

4 Experimental evaluation

In this section, we compare the performances of the DTS-
CMA-ES using the RFs as a surrogate model in several dif-
ferent settings to the original DTS-CMA-ES version, the
original CMA-ES, and the lmm-CMA-ES on the noiseless
part of the COCO platform [13, 14].

4.1 Experimental setup

The considered algorithms were compared on 24 noiseless
single-objective continuous benchmark functions from the
COCO testbed [13, 14] in dimensions D = 2,3,5, and 10
on 15 different instances per function. Each algorithm had
a budget of 250D function evaluations to reach the target

distance ∆ fT = 10−8 from the function optimum. The pa-
rameter settings of the tested algorithms are summarized
in the following paragraphs.

The original CMA-ES was employed in its IPOP-CMA-
ES version (Matlab code v. 3.61) with the following set-
tings: the number of restarts = 4, IncPopSize = 2, σstart = 8

3 ,
λ = 4+ ⌊3logD⌋. The remaining settings were left default.

The lmm-CMA-ES was utilized in its improved version
published in [1]. The results have been downloaded from
the COCO results data archive1 in its GECCO 2013 set-
tings.

The original DTS-CMA-ES was tested using the over-
all best settings from [2]: the probability of improve-
ment as the uncertainty criterion, the population size λ =
8+⌊6logD⌋, and the number of originally-evaluated points
norig = ⌈0.05λ ⌉.

Considering decision tree settings, the five splitting
methods from the following algoritms were employed:
CART [4], SECRET [9], OC1 [17], SUPPORT [6], and
PAIR [15]. Due to the different properties of individual
splitting methods, the number of Lsplit evaluations was
limited to 10D per node to restrict the algorithms which
test a great number of hyperplanes. For the same rea-
son, the number of tresholds generated by a projection of
points to a hyperplane was set to 10 quantile-based values
in CART, OC1, and to a median value in PAIR, and the
searching an initial axis-aligned hyperplane in OC1 was
limited to ⌈ 10D

3 ⌉ Lsplit evaluations.
The RFs as a surrogate model were tested using the

gradient boosting ensemble method. The maximum tree
depth was set to 8, in accordance with [7]. In addition, the
number of trees ntree, the number of points Nt bootstrapped
out of N archive points, and the number of randomly sub-
sampled dimensions used for training the individual tree
nD were sampled from the values in Table 1.

The DTS-CMA-ES in combination with RFs was tested
with the following settings: the probability of improve-
ment as the uncertainty criterion, the population size λ =
8+⌊6logD⌋, and the number of originally-evaluated points
norig with 4 different values ⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉, and⌈0.4λ ⌉. The rest of DTS-CMA-ES parameters have been
taken identical to the overall best settings from [2].

4.2 Results

Result from experiments are presented in Figures 1–4 and
also in Table 2. The graphs in Figures 1–4 depict the
scaled best-achieved logarithms ∆log

f of median distances
∆med

f to the functions optimum for the respective number
of function evaluations per dimension (FE/D). Medians
∆med

f (and in Figure 1 also 1st and 3rd quartiles) are cal-
culated from 15 independent instances for each respective
algorithm, function, and dimension. The scaled logarithms
of ∆med

f are calculated as

1http://coco.gforge.inria.fr/data-archive/2013/

lmm-CMA-ES_auger_noiseless.tgz
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Table 1: Experimental settings of RF: norig – number of
originally-evaluated points , ntree – number of trees in RF,
Nt , nD – number of tree points and dimensions. Split meth-
ods and norig are selected using full-factorial design, ntree,
Nt , and nD are sampled.

parameter values

norig {⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉, ⌈0.4λ ⌉}
split {CART, SECRET, OC1, SUPPORT, PAIR}

ntree {64,128,256,512,1024}
Nt ⌈{0.25,0.5,0.75,1} ⋅N⌉
nD ⌈{0.25,0.5,0.75,1} ⋅D⌉

∆log
f = log∆med

f −∆MIN
f

∆MAX
f −∆MIN

f
log10 (1/10−8)+ log10 10−8

where ∆MIN
f (∆MAX

f ) is the minimum (maximum) log∆med
f

found among all the compared algorithms for the particu-
lar function f and dimension D between 0 and 250 FE/D.
Such scaling enables the aggregation of ∆log

f graphs across
arbitrary number of functions and dimensions (see Fig-
ures 2, 3, and 4). The values are scaled to the [−8,0] in-
terval, where −8 corresponds to the minimal and 0 to the
maximal distance. This visualization was chosen due to
better ability to distinguish the differences in the conver-
gence of tested algorithms in comparison with the default
visualization used by the COCO platform.

We compare the statistical significance of differences
in algorithms’ performance on 24 COCO functions in 5D
for separately two evaluation budgets utilizing the Iman
and Davenport’s improvement of the Friedman test [8].
Let #FET be the smallest number of FE on which at least
one algorithm reached the target distance, i. e., satisfied
∆med

f ≤ ∆ fT , or #FET = 250D if no algorithm reached the
target within 250D evaluations. The algorithms are ranked
on each function with respect to ∆med

f at a given budget of
FE. The null hypothesis of equal performance of all algo-
rithms is rejected for the higher function evaluation budget
#FEs = #FET (p < 10−3), as well as for the lower budget
#FEs = #FET

3 (p < 10−3).
We test pairwise differences in performance utiliz-

ing the post-hoc test to the Friedman test [11] with the
Bergmann-Hommel correction controlling the family-wise
error. The numbers of functions at which one algorithm
achieved a higher rank than the other are enlisted in Ta-
ble 2. The table also contains the pairwise statistical sig-
nificances.

The graphs in Figures 2 and 3 summarize the perfor-
mance of five different split algorithms and four norig val-
ues from twenty different settings respectively. We found
that the convergence of DTS-CMA-ES is quite similar re-
gardless the split algorithm with slightly better results of
SECRET and SUPPORT – the algorithms utilizing classi-
fication methods to find the splitting hyperplane between

previously created clusters of training points. The results
also show that lower norig values provide better perfor-
mance in the initial phase of the optimization run and
higher values are more successful starting from the 100-
150 FE/D. Due to the presented results, the following
comparisons contain the performances of the DTS-CMA-
ES with norig = ⌈0.4λ ⌉ in combination with RF using SE-
CRET and SUPPORT as split algorithms.

As can be seen in Figures 1 and 4, the performance of
RFs is considerably worse than the performance of GPs
in combination with the DTS-CMA-ES and better than
the performance of the original CMA-ES. RF model pro-
vides faster convergence from approximitely 100 FE/D on
the regularly multimodal Rastrigin functions ( f3, f4, and
f15) where the RF apparently does not prevent the original
CMA-ES from exploiting the global structure of a func-
tion. The performance of RF-DTS-CMA-ES is noticably
lower especially on the elipsoid ( f1, f2, f7, and f10), Ras-
trigin ( f8, f9), and ill-condition functions ( f11−14), where
smooth models are much more convenient for regression.
On the other hand, RFs help the CMA-ES to convergence
especially on the multimodal functions f16−19, where the
performance of RF-DTS-CMA-ES is the best of all com-
pared algorithms.

5 Conclusions & Future work

In this paper, we have compared the RF model using gradi-
ent boosting as the ensemble method with the GP regres-
sion model, both used as surrogate models in the DTS-
CMA-ES algorithm. Different methods of space splitting
in regression trees were investigated.

The split algorithms SECRET and SUPPORT based on
the classification of the input points provide slightly bet-
ter performance as to the CMA-ES convergence than the
other algorithms tested. Moreover, the performance of
DTS-CMA-ES using RFs differs according to the num-
ber of originally-evaluated points: the lower their num-
ber, the sooner the algorithm converges, possibly to a lo-
cal optimum, which makes convergence to the global one
more difficult. We found that the RF model usually re-
duces the number of fitness evaluations required by the
CMA-ES, especially on multi-modal functions, where the
provided speed-up was the best among all compared al-
gorithms for a number of evaluations higher than approx-
imitely 110 FE/D.

A possible perspective for future research is to im-
prove RF models by implementing non-constant (linear,
quadratic) models to regression tree leaves, which could
make the RFs prediction more convenient for smooth func-
tions. Investigation of other split algorithms could also
bring interesting results. Another perspective for future re-
search is an automatical selection of the most convenient
surrogate model for the CMA-ES inside the algorithm it-
self.
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Figure 1: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 COCO benchmarks in 5D
for algorithms CMA-ES, DTS-CMA-ES, lmm-CMA-ES, and 2 RF settings of DTS-CMA-ES. Medians/quartiles were
calculated across 15 independent instances for each algorithm and are shown in the log10 scale.
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Figure 2: Scaled median distances ∆log
f of decision tree split algorithms averaged over all 24 COCO functions in 2D, 3D,

5D, and 10D for algorithms CART, SECRET, OC1, PAIR, and SUPPORT in combination with the DTS-CMA-ES and all
tested numbers of originally-evaluated points.

0 50 100 150 200 250
-8

-6

-4

-2

0

"
flo

g

 2D

RF 0.05 DTS
RF 0.1 DTS
RF 0.2 DTS

0 50 100 150 200 250
-8

-6

-4

-2

0
 3D

RF 0.4 DTS
CMA-ES
DTS-CMA-ES

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0

"
flo

g

 5D

0 50 100 150 200 250

Number of evaluations / D

-8

-6

-4

-2

0
 10D

Figure 3: Scaled median distances ∆log
f of the DTS-CMA-ES with RFs comparing different numbers of originally-

evaluated points averaged over all 24 COCO functions in 2D, 3D, 5D, and 10D for values ⌈0.05λ ⌉, ⌈0.1λ ⌉, ⌈0.2λ ⌉,
and ⌈0.4λ ⌉ summarized accross all tested splitting algorithms.
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Table 2: A pairwise comparison of the algorithms in 5D over the COCO for different evaluation budgets. The number
of wins of i-th algorithm against j-th algorithm over all benchmark functions is given in i-th row and j-th column. The
asterisk marks the row algorithm being significantly better than the column algorithm according to the Friedman post-hoc
test with the Bergmann-Hommel correction at family-wise significance level α = 0.05.

555DDD SECRET 0.4 DTS SUPPORT 0.4 DTS CMA-ES DTS-CMA-ES lmm-CMA-ES
#FEs⁄#FET

1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1

SECRET
0.4 DTS — — 11.5 11 23∗ 21∗ 8 6 5 8

SUPPORT
0.4 DTS 12.5 13 — — 24∗ 21∗ 7 7 7 8

CMA-ES 1 3 0 3 — — 3 4 1 3
DTS-
CMA-ES 16 18 17 17 21∗ 20∗ — — 14 14

lmm-
CMA-ES 19 16 17 16 23∗ 21∗ 10 10 — —
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Abstract: Due to many successful practical applications,
deep neural networks and convolutional networks have be-
come the state-of-art machine learning methods recently.
The choice of network architecture for the task at hand is
typically made by trial and error.

This work deals with an automatic data-dependent ar-
chitecture design. We propose an algorithm for optimiza-
tion of architecture of convolutional network based on
asynchronous evolution. The algorithm is inspired by and
designed directly for the Keras library which is one of the
most common implementations of deep neural networks.
The proposed algorithm is successfully tested on MNIST
and Fashion-MNIST data sets.

1 Introduction

Various architectures of deep neural networks (DNN) have
become the state-of-art methods in many fields of machine
learning in recent years. They have been applied to vari-
ous problems, including image recognition, speech recog-
nition, and natural language processing [7, 11].

Deep neural networks are feed-forward neural networks
with multiple hidden layers between the input and output
layer. The layers typically have different units depending
on the task at hand. Among the units, there are traditional
perceptrons, where each unit (neuron) realizes a nonlin-
ear function, such as the sigmoid function, or the rectified
linear unit (ReLU).

Convolutional networks (CNN) are family of DNN.
They typically have three types of layers – convolu-
tional layers, max-pooling layers, and dense (i.e. fully-
connected) layers. For the most common case of image
processing, convolutional layers perform convolution of
an input image to abstract high-level features. They are
defined by a set of learnable filters. Max-pooling layers
reduce the size of representation, their function is fixed
and they are not learnable. Dense layers are usually used
as the last layers of the network to perform the actual clas-
sification.

While the learning of weights (including filters) of the
CNN is done by algorithms based on the stochastic gradi-
ent descent, the choice of architecture, including a number
and sizes of layers, number and size of convolutional fil-
ters, size of pools in pooling-layers, and a type of activa-
tion function, is done manually by the user. However, the
choice of architecture has an important impact on the per-
formance of the CNN. Some kind of expertise is needed,

and usually a trial and error method is used in practice.
In this work we exploit a fully automatic design of

CNNs. We investigate the use of evolutionary algorithms
for evolution of a CNN architecture. There are not many
studies on evolution of CNN since such approach has
very high computational requirements. To keep the search
space as small as possible, we simplify our model focusing
on implementation of CNN in the Keras library [3] that is
a widely used tool for practical applications of DNNs and
CNNs.

The approach described in this paper extends our pre-
vious results for evolving DNNs limited to networks with
dense layers only [25, 24]. The proposed algorithm is eval-
uated on the MNIST and Fashion-MNIST data sets that are
both classification tasks of small gray-scale images.

The paper is organized as follows. Next Section reviews
related work. Section 3 describes the main ideas of our ap-
proach. Section 4 explains the main ideas of asynchronous
evolution. Section 5 summarises the results of our experi-
ments, and finally Section 6 brings conclusion.

2 Related Work

Neuroevolution represents an attempt to train a neural net-
work by means of evolutionary techniques [5]. In tradi-
tional neuroevolution, no gradient descent is usually in-
volved, and both architecture and weights of the network
undergo the evolutionary process. However, because of
large computational requirements the applications are lim-
ited to small networks.

There were quite many attempts on architecture opti-
mization via evolutionary process (e.g. [22, 1]) in previous
decades. Successful evolutionary techniques evolving the
structure of feed-forward and recurrent neural networks
include NEAT [20], HyperNEAT [19] and CoSyNE [6] al-
gorithms.

On the other hand, studies dealing with evolution of
deep neural networks and convolutional networks started
to emerge only very recently. The training of one DNN
usually requires hours or days of computing time, quite
often utilizing GPU processors for speedup. Naturally,
the evolutionary techniques requiring thousands of train-
ing trials were not considered a feasible choice. Never-
theless, there are several approaches to reduce the overall
complexity of neuroevolution for DNN. Still due to limited
computational resources, the studies usually focus only on
parts of network design.
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For example, in [14] CMA-ES is used to optimize hy-
perparameters of DNNs. In [10] the unsupervised convo-
lutional networks for vision-based reinforcement learning
are studied, the structure of CNN is held fixed, and only a
small recurrent controller is evolved. However, the recent
paper [17] presents a simple distributed evolutionary strat-
egy that is used to train relatively large recurrent network
with competitive results on reinforcement learning tasks.

In [16] automated method for optimizing deep learning
architectures through evolution is proposed, extending ex-
isting neuroevolution methods. Authors of [4] sketch a ge-
netic approach for evolving a deep autoencoder network
enhancing the sparsity of the synapses by means of spe-
cial operators. The paper [15] presents two versions of an
evolutionary and co-evolutionary algorithm for design of
DNN with various transfer functions. Finally, [21] pro-
poses genetic programming to evolve CNNs.

3 Our Approach

In our approach we use asynchronous evolution to search
for optimal architecture of CNN, while the weights are
learned by gradient based technique.

The main idea of our approach is to keep the search
space as small as possible, therefore the architecture spec-
ification is simplified. It directly follows the implementa-
tion of CNN in Keras library, where networks are defined
layer by layer. Layer is specified by its type – convolu-
tional, max-pooling, dense. Dense layers are defined by
a number of neurons, type of an activation function (all
neurons in one layer have the same type of their activation
function), and the type of regularization (such as dropout).
Convolutional layers are defined by number of filters, size
of the filter, and possibly the type of an activation function
and type of regularization. Max-pooling layers are defined
by the size of pool.

In this paper, we limit to networks that can be split into
two parts.The first part is a preprocessing part, it contains
only convolutional and max-pooling layers, and it is re-
sponsible for the preprocessing of the input and abstract-
ing high-level features. The second part is a classifier and
it consists of dense layers. Such architecture corresponds
to the original proposal of the LeNet architecture [12]
(Fig. 1).

3.1 Individuals

In order to apply genetic algorithm (GA) to the search for
an optimal CNN architecture, we have to be able to encode
the architecture by an individual of the GA.

Our proposal of encoding closely follows the CNN de-
scription and implementation in the Keras [3] model Se-
quential. The model implemented as Sequential is built
layer by layer, similarly the GA individual consists of
blocks representing individual layers.

I = (I1, I2),

I1 = ([type, params]1, . . . , [type, params]H1)

I2 = ([size,dropout,act]1, . . . , [size,dropout,act]H2)

where I1 and I2 are the convolutional and dense part, re-
spectively, H1, H2 is the number of layers in convolutional
and dense part, respectively. The blocks in convolutional
part encode type ∈ {convolutional,max− pooling}
type of layer and params other parameters of the layer
(for convolutional layer it is number of filters, size of fil-
ter, and activation function; for max-pooling layer it is
only size of pool). The blocks in dense part code dense
layers, so they consist of size the number of neurons,
drop the dropout rate (zero value represents no dropout),
act ∈ {relu,tanh,sigmoid,hardsigmoid,linear} ac-
tivation function.

3.2 Genetic Operators

To produce new individuals in genetic algorithm we use
recombination operators crossover and mutation.

Crossover The crossover operator combines two parent
individuals and produces two offspring individuals. It is
implemented as one-point crossover, where the crossing
point is determined at random, but on the border of a block
only. The two parts of the individual are crossed over sep-
arately, so if parents are I = (I1, I2) and J = (J1,J2) we run
crossover(I1,J1) and crossover(I2,J2).

Let the two parents be:

Ip1 = (Bp1
1 ,Bp1

2 , . . . ,Bp1
k )

Ip2 = (Bp2
1 ,Bp2

2 , . . . ,Bp2
l ),

then, the crossover produces offspring:

Io1 = (Bp1
1 , . . . ,Bp1

cp1,B
p2
cp2+1, . . . ,B

p2
l )

Io1 = (Bp2
1 , . . . ,Bp2

cp2,B
p1
cp1+1, . . . ,B

p1
k ),

where cp1 ∈ {1, . . . ,k−1} and cp2 ∈ {1, . . . , l−1}.
Thus, only the whole layers are interchanged between

individuals.

Mutation The mutation operator brings random changes
to an individual. Each time an individual is mutated, one
of the following mutation operators is randomly chosen
(each of mutation operators has its own probability):

• mutateLayer - introduces random changes to one ran-
domly selected layer.

• addLayer - one randomly generated block is inserted
at random position. If it is inserted to the first part of
the individual, its either convolutional layer or max-
pooling layer; otherwise it is dense layer.
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Figure 1: Convolutional neural network [12].

• delLayer - one randomly selected block is deleted.

When mutateLayer is performed, again one of the avail-
able operators is chosen. For dense layers they are:

• changeLayerSize - the number of neurons is changed.
The Gaussian mutation is used, the final number is
rounded (since size has to be an integer).

• changeDropOut - the dropout rate is changed using
the Gaussian mutation.

• changeActivation - the activation function is changed,
randomly chosen from the list of available activa-
tions.

For max-pooling layers:

• changePoolSize - the size of pooling is changed.

For convolutional layers:

• changeNumberOfFilters - the number of filters is
changed. The Gaussian mutation is used, the final
number is rounded.

• changeFilterSize - the size of the filter is changed.

• changeActivation - the activation function is changed,
randomly chosen from the list of available activa-
tions.

3.3 Fitness

Fitness function should reflect a quality of the network
represented by an individual. To assess the generalization
ability of the network represented by the individual we use
a crossvalidation error. The lower the crossvalidation er-
ror, the higher the fitness of the individual.

Classical k-fold crossvalidation is used, i.e. the training
set is split into k-folds and each time one fold is used for
testing and the rest for training. The mean loss function on
the testing set over k run is evaluated.

For the classification tasks, categorical crossentropy is
used as the loss function.

Figure 2: Master-slave parallel computational model.

3.4 Selection

As a parental selection operator, the tournament selection
is used in our algorithm. It works as follows, in each turn
of the tournament, k individuals are selected at random,
and the one with the highest fitness—in our case the one
with the lowest crossvalidation error—is selected.

4 Asynchronous Evolution

In classical genetic algorithm the individuals are evalu-
ated in generations. In each generation, new individuals
are produced based on operators selection, mutation, and
crossover, their fitness is evaluated and they replace the
old generation. The fitness evaluations are independent
and can be done in parallel.

There are many approaches to parallelization of ge-
netic algorithms. In general, there are three classes
of parallel GA approaches – single population master-
slave model, single population fine-grained, and multi-
population coarse grained model (see [2, 9] for more de-
tails).

In our work we use the master-slave parallelization
method (Fig. 2). It works with single population of indi-
viduals, and the evaluations of individuals are performed
in parallel – the master stores the population and the slaves
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evaluate the fitness. The algorithm itself is same as for se-
rial GA, each individual may compete and mate with any
other.

The fitness evaluation is parallelized so that a fraction of
the population is assigned to each of the processors. Com-
munication occurs only when a slave receives an individ-
ual to evaluate and when a slave returns a fitness value.

The algorithm is normally defined as synchronous, i.e.
the master waits for the slaves to receive the fitness values
for all the population and only then it proceeds to the next
generation. Such synchronous master-slave algorithm has
exactly the same properties as a simple sequential algo-
rithm.

However, the disadvantage of such synchronous parallel
approach is that in general, not all fitness evaluations re-
quire same time. In our particular case, some individuals
represent large networks and require long time to evaluate,
on the other hand there might be very small networks that
are evaluated much faster. At the end of each generation,
there are processors that are already finished and waiting
for the ones evaluating large networks.

As a solution to this problem we have chosen to use
asynchronous evolution [18]. In asynchronous evolution
there is no notion of generations, but as soon as there is a
free processor, a new individual is generated and send for
evaluation. Such approach may significantly improve the
usage of computationally resources. The scheme of the
algorithm is presented in Alg. 1.

One of the features of asynchronous approach is that it
is naturally biased towards solution with faster fitness eval-
uation. In our case we consider this feature to be an advan-
tage, because we are more interested in smaller networks
with shorter learning time. As our practical experiments in
the next section imply, this feature is not harmless, it seems
in fact not sufficient and maybe a further discrimination of
larger networks in fitness function can be beneficial.

The (synchronous and asynchronous) master-slave ap-
proach can be easily and efficiently implemented both on
shared-memory and distributed-memory parallel comput-
ers. On a shared-memory multiprocessor, the population is
stored in memory and each slave process can access the in-
dividuals assigned to itself. On a distributed-memory com-
puter, the master process is responsible for storing the pop-
ulation, sending the individuals to other processes (slaves),
collecting the results and producing new generation by ge-
netic operators.

5 Experiments

For our experiments we have chosen the well known
MNIST data set [13] and Fashion-MNIST data set [26].

Each data set contains 70 000 images of 28× 28 pixel.
60 000 are used for training, 10 000 for testing. In MNIST,
there are images of handwritten digits (see Fig. 3), while
in Fashion-MNIST are images of fashion objects (Fig. 4).

Our implementation of the proposed algorithm is avail-
able at [23].

Algorithm 1 Asynchronous EA
procedure ASYNCEA(MINPOPSIZE,POPSIZE)

P← /0
while |P|< minPopSize do

if not node available then
wait()

end if
while node available do

ind← RandomIndividual()
evaluate(ind)

end while
evaluatedInd← getEvaluatedIndividual()
P← P∪{evaluatedInd}

end while
ind← produceIndividual()
evaluate(ind)
while termination criterion not met do

evaluatedInd← getEvaluatedIndividual()
P← P∪{evaluatedInd}

if |P|> popSize then
discard the worst individual from P

end if
ind← produceIndividual()
evaluate(ind)

end while
end procedure

We have run the algorithm with population of 30 indi-
viduals on 10 processors for one week.

When the best individual is obtained, the correspond-
ing network is built and trained on the whole training set
and evaluated on the test set, which was also done for the
baseline model designed by human. For both models, the
RMSProp algorithm for 20 epochs was used.

The resulting classification accuracy on the test set is
listed in Tab. 1 and Tab. 4 for MNIST and Fashion-MNIST
data sets respectively. The obtained accuracies can be fur-
ther improved (especially in case of Fashion-MNIST) by
tuning the parameters of RMSProp (default setup was used
in our case). On both datasets the obtained evolved net-
work gives competitive results to the baseline model.

In Tab. 2 and Tab. 3, there are listings of baseline and
evolved architectures for MNIST and Fashion-MNIST, re-
spectively. The onv #32 stands for convolutinal layer
with 32 filters, dense #128 stands for dense layer with
128 neurons, and pool stands for max-pooling layer, etc.

On the MNIST data set, the evolved architecture has
even less number of weights than the baseline model.
However, on the Fashion-MNIST the evolution was not
so successful and the evolved architecture is quite bloated.
The architecture complexity is not reflected in the fitness
function directly, but the asynchronous evolution should
tend to prefer smaller networks.

We have also compared the synchronous parallelization
with asynchronous one in terms of time requirements. We
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Figure 3: Example of MNIST data set samples.

Figure 4: Example of Fashion-MNIST data set samples.

model avg std min max
baseline 98.97 0.07 98.84 99.13
evolved 99.25 0.09 99.10 99.37

Table 1: Test accuracies on the MNIST dataset.

Baseline network
conv #32 kernelsize=3 activation=relu
conv #32 kernelsize=3 activation=relu
pool poolsize=2
dense #128 dropout=0.5 activation=relu
Trainable params: 600,810

Evolved network
conv #22 kernelsize=2 activation=tanh
conv #31 kernelsize=5 activation=linear
pool poolsize=3
conv #33 kernelsize=5 activation=relu
dense #143 dropout=0.4 activation=relu
dense #42 dropout=0.0 activation=tanh
Trainable params: 431,659

Table 2: Baseline and evolved network for MNIST.
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Figure 5: The fitness function through evolution.

Baseline network
conv #32 kernelsize=3 activation=leakyRelu
pool poolsize=2
conv #64 kernelsize=3 activation=leakyRelu
pool poolsize=2
conv #128 kernelsize=3 activation=leakyRelu
pool poolsize=2
dense #128 dropout=0.3 activation=leakyRelu
Trainable params: 356,234

Evolved network
conv #46 kernelsize=3 activation=relu
conv #15 kernelsize=3 activation=relu
conv #36 kernelsize=4 activation=relu
conv #13 kernelsize=3 activation=relu
conv #36 kernelsize=3 activation=relu
pool poolsize=2
dense #235 dropout=0.4 activation=hard_sigmoid
dense #130 dropout=0.3 activation=tanh
Trainable params: 1,714,219

Table 3: Baseline and evolved network for Fashion-
MNIST.

model avg std min max
baseline 91.64 0.37 90.77 91.97
evolved 92.32 0.52 91.07 92.86

Table 4: Test accuracies on the Fashion-MNIST dataset.

have run both algorithms on 5 processors for 4 days with
population size 20. The asynchronous version made 140
fitness evaluations, while the synchronous version 100 fit-
ness evaluations. So the asynchronous version may bring
quite important time saving.

6 Conclusion

We have proposed an algorithm for automatic design of
convolutional networks based on asynchronous evolution.
The algorithm was tested in experiments on two image
classification tasks, the MNIST and Fashion-MNIST data
sets. The evolved networks were compared to baseline
models, and they achieved competitive results (in terms of
slightly better classification accuracies). We have shown
that it is possible to automatically find solutions compara-
ble to those designed by human expert.

The main limitation of the presented algorithm is its
time complexity. The possibility to trade human expert
knowledge for computational resources should be seen as
an advantage in several scenarios. Our main motivation is
to develop an autonomous system capable of creating ma-
chine learning models without human intervention. This
may be useful for the cases where no expert is available or
a new task without prior experience is encountered. Also,
in critical cases where even a small performance gain is
necessary, our approach has demonstrated its usability.
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One direction of our future work is to try to lower
the number of fitness evaluations using surrogate mod-
elling [8] or to investigate other types of parallel evolution-
ary algorithms (such as multi-deme GA [9]). We also plan
to tune automatically the learning algorithm, i.e. search
for other hyper-parameters, such as the type of learning
algorithm, learning rates, etc.

Acknowledgment

This work was partially supported by the Czech Grant
Agency grant 18-23827S and institutional support of the
Institute of Computer Science RVO 67985807.

Access to computing and storage facilities owned by
parties and projects contributing to the National Grid In-
frastructure MetaCentrum provided under the programme
"Projects of Large Research, Development, and Innova-
tions Infrastructures" (CESNET LM2015042), is greatly
appreciated.

References

[1] J. Arifovic and R. Gençay. Using genetic algorithms to
select architecture of a feedforward artificial neural net-
work. Physica A: Statistical Mechanics and its Applica-
tions, 289(3–4):574 – 594, 2001.

[2] E. Cantú-Paz. A survey of parallel genetic algorithms.
CALCULATEURS PARALLELES, 10, 1998.

[3] F. Chollet. Keras. https://github.om/fhollet/keras,
2015.

[4] O. E. David and I. Greental. Genetic algorithms for evolv-
ing deep neural networks. In Proceedings of the Compan-
ion Publication of the 2014 Annual Conference on Genetic
and Evolutionary Computation, GECCO Comp ’14, pages
1451–1452, New York, NY, USA, 2014. ACM.

[5] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution:
from architectures to learning. Evolutionary Intelligence,
1(1):47–62, 2008.

[6] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accel-
erated neural evolution through cooperatively coevolved
synapses. Journal of Machine Learning Research, pages
937–965, 2008.

[7] I. Goodfellow, Y. Bengio, and A. Courville.
Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[8] Y. Jin. Surrogate-assisted evolutionary computation: Re-
cent advances and future challenges. Swarm and Evolu-
tionary Computation, 1(2):61 – 70, 2011.

[9] D. S. Knysh and Victor M. Kureichik. Parallel genetic al-
gorithms: a survey and problem state of the art. Journal of
Computer and Systems Sciences International, 49(4):579–
589, Aug 2010.

[10] J. Koutník, J. Schmidhuber, and F. Gomez. Evolving deep
unsupervised convolutional networks for vision-based re-
inforcement learning. In Proceedings of the 2014 An-
nual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’14, pages 541–548, New York, NY, USA,
2014. ACM.

[11] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 5 2015.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, Nov 1998.

[13] Y. LeCun and C. Cortes. The mnist database of handwritten
digits, 2012.

[14] I. Loshchilov and F. Hutter. CMA-ES for hyperpa-
rameter optimization of deep neural networks. CoRR,
abs/1604.07269, 2016.

[15] T. H. Maul, A. Bargiela, S.-Y. Chong, and A. S. Adamu.
Towards evolutionary deep neural networks. In Flaminio
Squazzoni, Fabio Baronio, Claudia Archetti, and Marco
Castellani, editors, ECMS 2014 Proceedings. European
Council for Modeling and Simulation, 2014.

[16] R. Miikkulainen, J. Zhi Liang, E. Meyerson, A. Rawal,
D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan,
N. Duffy, and B. Hodjat. Evolving deep neural networks.
CoRR, abs/1703.00548, 2017.

[17] T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolu-
tion Strategies as a Scalable Alternative to Reinforcement
Learning. ArXiv e-prints, March 2017.

[18] E. O. Scott and K. A. De Jong. Understanding simple asyn-
chronous evolutionary algorithms. In Proceedings of the
2015 ACM Conference on Foundations of Genetic Algo-
rithms XIII, pages 85–98, 2015.

[19] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based encoding for evolving large-scale neural
networks. Artif. Life, 15(2):185–212, April 2009.

[20] K. O. Stanley and R. Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary Com-
putation, 10(2):99–127, 2002.

[21] M. Suganuma, S. Shirakawa, and T. Nagao. A genetic pro-
gramming approach to designing convolutional neural net-
work architectures. CoRR, abs/1704.00764, 2017.

[22] B. u. Islam, Z. Baharudin, M. Q. Raza, and P. Nallagown-
den. Optimization of neural network architecture using
genetic algorithm for load forecasting. In 2014 5th Inter-
national Conference on Intelligent and Advanced Systems
(ICIAS), pages 1–6, June 2014.

[23] P. Vidnerová. GAKeras.
github.om/PetraVidnerova/GAKeras, 2017.

[24] P. Vidnerová and R. Neruda. Evolution strategies for
deep neural network models design. In Proceedings ITAT
2017: Information Technologies - Applications and Theory.
Aachen & Charleston: Technical University & CreateS-
pace Independent Publishing Platform, 2017 - (Hlaváčová,
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Abstract: Complexity of feedforward networks comput-
ing binary classification tasks is investigated. To deal with
unmanageably large number of these tasks on domains
of even moderate sizes, a probabilistic model character-
izing relevance of the classification tasks is introduced.
Approximate measures of sparsity of networks comput-
ing randomly chosen functions are studied in terms of
variational norms tailored to dictionaries of computational
units. Probabilistic lower bounds on these norms are de-
rived using the Chernoff-Hoeffding Bound on sums of in-
dependent random variables, which need not be identically
distributed. Consequences of the probabilistic results on
the choice of dictionaries of computational units are dis-
cussed.

1 Introduction

It has long been known that one-hidden-layer (shallow)
networks with computational units of many common types
can exactly compute any function on a finite domain [8].
In particular, they can perform any binary-classification
task. Proofs of theorems on the universal approxima-
tion and representation properties of feedforward networks
guarantee their power to express wide classes of functions,
but do not deal with the efficiency of such representations.
Typically, such arguments assume that the number of units
is unbounded or is as large as the size of the domain of
functions to be computed. For large domains, implemen-
tations of such networks might not be feasible.

A proper choice of a network architecture and a type
of its units can, in some cases, considerably reduce net-
work complexity. For example, a classification of points
in the d-dimensional Boolean cube {0,1}d according to
the parity of the numbers of 1’s cannot be computed by a
Gaussian SVM network with less than 2d−1 support vec-
tors [3] (i.e., it cannot be computed by a shallow network
with less than 2d−1 Gaussian SVM units). On the other
hand, it is easy to show that the parity function (as well as
any generalized parity, the set of which forms the Fourier
basis) can be computed by a shallow network with merely
d +1 Heaviside perceptrons [12].

The basic measure of sparsity of a network with a single
linear output is the number of its nonzero output weights.

The number of nonzero entries of a vector in Rn is called
“l0-pseudonorm”. The quotation marks are used as l0 is
not homogenous and its “unit ball” is unbounded and non-
convex. Thus, minimization of the number of nonzero en-
tries of an output-weight vector is a difficult nonconvex
optimization task. Minimization of “l0-pseudonorm” has
been studied in signal processing, where it was shown that
in some cases it is NP-hard [20].

A good approximation of convexification of “l0-
pseudonorm” is the l1-norm [17]. In neurocomputing, l1-
norm has been used as a stabilizer in weight-decay regu-
larization techniques [7]. In statistical learning theory, it
l1-norm plays an important role in LASSO regularization
[19].

Networks with large l1-norms of output-weight vectors
have either large numbers of units or some of the weights
are large. Both are not desirable: implementation of net-
works with large numbers of units might not be feasi-
ble and large output weights might lead to instability of
computation. The minimum of the l1-norms of output-
weight vectors of all networks computing a given function
is bounded from below by the variational norm tailored to
a type of network units, which is a critical factor in esti-
mates of upper bounds on network complexity [10, 11].

To identify and explain design of networks capable
of efficient classifications, one has to focus on suitable
classes of tasks. Even on a domain of a moderate size,
there exists an enormous number of functions representing
multi-class or binary classifications. For example, when
the size of a domain is equal to 80, then the number of
classifications into 10 classes is 1080 and when its size is
267, then the number of binary classification tasks is 2267.
These numbers are larger than the estimated number 1078

of atoms in the observable universe (see, e.g., [15]). Ob-
viously, most classification tasks on such domains are not
likely to be relevant for neurocomputing, as they do not
model any task of practical interest.

In this paper, we investigate how to choose dictionar-
ies of network units such that binary classification tasks
can be efficiently solved. We assume that elements of a fi-
nite domain in Rd represent vectors of features, measure-
ments, or observations for which some prior knowledge
is available about probabilities that a presence of each of
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these features implies the property described by one of the
classes. For example, when vectors in the domain repre-
sent ordered sets of medical symptoms, certain values of
some of these symptoms might indicate a high probabil-
ity of some diagnosis, while others might indicate a low
probability or be irrelevant.

For sets of classification tasks endowed with product
probability distributions, we explore suitability of dictio-
naries of computational units in terms of values of vari-
ational norms tailored to the dictionaries. We analyze
consequences of the concentration of measure phenom-
ena which imply that with increasing sizes of function do-
mains, correlations between network units and functions
tend to concentrate around their mean or median values.
We derive lower bounds on variational norms of functions
to be computed and on l1-norms of output-weight vec-
tors of networks computing these functions. To obtain the
lower bounds, we apply the Chernoff-Hoeffding Bound [5,
Theorem 1.11] on sums of independent random variables
not necessarily identically distributed. We show that when
a priori knowledge of classification tasks is limited, then
sparsity can only be achieved with large sizes of dictionar-
ies. On the other hand, when such knowledge is biased,
then there exist functions with which most functions on a
large domain are highly correlated. If some of these func-
tions is close to an element of a dictionary, then most func-
tions can be well approximated by sparse networks with
units from the dictionary.

The paper is organized as follows. In Section 2, we in-
troduce basic concepts on feedforward networks, dictio-
naries of computational units, and approximate measures
of network sparsity. In Section 3, we propose a proba-
bilistic model of classification tasks and analyze properties
of approximate measures of sparsity using the Chernoff-
Hoeffding Bound. In Section 4, we derive estimates of
probability distributions of values of variational norms and
analyze consequences of these estimates for choice of dic-
tionaries suitable for tasks modeled by the given probabil-
ities. Section 5 is a brief discussion.

2 Approximate measures of network
sparsity

We investigate computation of classification tasks repre-
sented by binary-valued functions on finite domains X ⊂
Rd . We denote by

B(X) := { f | f : X →{−1,1}}

the set of all functions on X with values in {−1,1} and by

F (X) := { f | f : X → R}

the set of all real-valued functions on X .
When cardX = m and X = {x1, . . . ,xm} is a linear or-

dering of X , then the mapping ι : F (X)→ Rm defined

as ι( f ) := ( f (x1), . . . , f (xm)) is an isomorphism. So, on
F (X) we have the Euclidean inner product defined as

〈 f ,g〉 := ∑
u∈X

f (u)g(u)

and the Euclidean norm ‖ f‖ :=
√
〈 f , f 〉. We consider

binary-valued functions with the range {−1,1} instead
of {0,1} as all functions in B(X) have norms equal to√

cardX .
A feedforward network with a single linear output can

compute input-output functions from the set

spanG :=

{
n

∑
i=1

wigi

∣∣∣wi ∈ R, gi ∈ G, n ∈ N

}
,

where G, called a dictionary, is a parameterized family
of functions. In networks with one hidden layer (called
shallow networks), G is formed by functions computable
by a given type of computational units, whereas in net-
works with several hidden layers (called deep networks), it
is formed by combinations and compositions of functions
representing units from lower layers (see, e.g., [2, 16]).

Formally, the number of hidden units in a shallow net-
work or in the last hidden layer of a deep one can be de-
scribed as the number of nonzero entries of the vector of
output weights of the network. In applied mathematics,
the number of nonzero entries of a vector w ∈Rn, denoted
‖w‖0, is called “l0-pseudonorm” as it satisfies the equa-
tion

‖w‖0 =
n

∑
i=1

w0
i .

The quotation marks are used because ‖w‖0 is nei-
ther a norm nor a pseudonorm. Minimization of “l0-
pseudonorm” is a difficult non convex problem as l0 lacks
the homogeneity property of a norm and its “unit ball” is
not convex.

Instead of the nonconvex l0-functional, its approxima-
tion by the l1-norm

‖w‖1 =
n

∑
i=1
|wi|

have been used as a stabilizer in weight-decay regulariza-
tion methods [7]. Some insight into efficiency of compu-
tation of a function f by networks with units from a dictio-
nary G can be obtained from investigation of the minima
of l1-norms of all vectors from the set

Wf (G) = {w = (w1, . . . ,wn) | f =
k

∑
i=1

wigi,gi ∈ G,n ∈ N}.

Minima of l1-norms of elements of Wf (G) are bounded
from below by a norm of f tailored to a dictionary G
called G-variation. It is defined for a bounded subset G
of a normed linear space (X ,‖.‖) as

‖ f‖G := inf
{

c ∈ R+

∣∣∣ f/c ∈ clX conv(G∪−G)
}
,
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where−G := {−g | g ∈G}, clX denotes the closure with
respect to the topology induced by the norm ‖ · ‖X , and
conv denotes the convex hull. Variation with respect to
Heaviside perceptrons (called variation with respect to
half-spaces) was introduced in [1] and extended to general
dictionaries in [9].

It is easy to check (see [13]) that for a finite dictio-
nary G and any f , such that the set Wf (G) non empty,
G-variation of f is equal to the minimum of l1-norms of
output-weight vectors of shallow networks with units from
G, which compute f , i.e.,

‖ f‖G = min
{
‖w‖1

∣∣∣w ∈Wf (G)
}
.

Thus lower bounds on minima of l1-norms of output-
weight vectors of networks computing a function f can be
obtained from lower bounds on variational norms. Such
bounds can be derived using the following theorem, which
is a special case of a more general result [10] proven using
Hahn-Banach theorem. By G⊥ is denoted the orthogonal
complement of G in the Hilbert space F (X).

Theorem 1. Let X be a finite subset of Rd and G be a
bounded subset of F (X). Then for every f ∈F (X)\G⊥,

‖ f‖G ≥
‖ f‖2

supg∈G |〈g, f 〉| .

So functions which are nearly orthogonal to all elements
of a dictionary G have large G-variations. On the other
hand, if a function is correlated with some element of G,
then it is close to this element and so can be well approxi-
mated by an element of G.

3 Probabilistic bounds

When we do not have any prior knowledge about a type of
classification tasks to be computed, we have to assume that
a network from the class has to be capable to compute any
uniformly randomly chosen function on a given domain.
Often in practical applications, most of the binary-valued
functions o a given domain are not likely to represent tasks
of interest. In such cases some knowledge is available that
can be expressed in terms of a discrete probability measure
on the set of all functions on X .

For a finite domain X = {x1, . . . ,xm} ⊂ Rd , a func-
tion f in B(X) can be represented as a vector
( f (x1), . . . , f (xm)) ∈ {−1,1}m ⊂ Rm. We assume that for
each xi ∈ X , there exists a known probability pi ∈ [0,1]
that f (xi) = 1. For p = (p1, . . . , pm), we denote by

ρp : B(X)→ [0,1]

the product probability defined for every f ∈B(X) as

ρp( f ) :=
m

∏
i=1

ρp,i( f ), (1)

where ρp,i( f ) := pi if f (xi) = 1 and ρp,i( f ) := 1− pi if
f (xi) = −1. It is easy to verify that ρp is a probability
measure on B(X).

When cardX is large, the set F (X) is isometric to a
high-dimensional Euclidean space and B(X) to a high-
dimensional Hamming cube. In high-dimensional spaces
and cubes various concentration of measure phenomena
occur [14]. We apply the Chernoff-Hoeffding Bound on
sums of independent random variables, which do not need
to be identically distributed [5, Theorem 1.11] to obtain
estimates of distributions of inner products of any fixed
function h ∈B(X) with functions randomly chosen from
B(X) with probability ρp.

Theorem 2 (Chernoff-Hoeffding Bound). Let m be a pos-
itive integer, Y1, . . . ,Ym independent random variables with
values in real intervals of lengths c1, . . . ,cm, respectively,
ε > 0, and Y := ∑m

i=1 Yi. Then

Pr(|Y −E(Y )| ≥ ε)≤ e
− 2ε2

∑m
i=1 c2

i .

For a function h ∈B(X) and p = (p1, . . . , pm), where
pi ∈ [0,1], we denote by

µ(h, p) := Ep
(
〈h, f 〉 | f ∈B(X)

)

the mean value of inner products of h with f randomly
chosen from B(X) with probability ρp, and by ho := h

‖h‖
its normalization. The next theorem estimates the distri-
bution of these inner products.

Theorem 3. Let X = {x1, . . . ,xm} ⊂ Rd , p = (p1, . . . , pm)
be such that pi ∈ [0,1], i = 1, . . . ,m, and h ∈B(X). Then
the inner product of h with f randomly chosen from B(X)
with a probability ρp( f ) satisfies for every λ > 0

i) Pr
(
|〈 f ,h〉−µ(h, p)|> mλ

)
≤ e−

mλ2
2 ;

ii) Pr
(
|〈 f ◦,h◦〉− µ(h, p)

m
|> λ

)
≤ e−

mλ2
2 .

Proof. Let Fh : B(X) → B(X) be an operator com-
posed of sign-flips mapping h to the constant function
equal to 1, i.e., Fh(h)(xi) = 1 for all i = 1, . . . ,m and
for all f ∈ F (X) and all i = 1, . . . ,m, Fh( f )(xi) = f (xi)
if h(xi) = 1 and Fh( f )(xi) = − f (xi) if h(xi) = −1. Let
p(h) = (p(h)1, . . . , p(h)m) be defined as p(h)i = pi if
h(xi) = 1 and p(h)i = 1− pi if h(xi) =−1. The inverse op-
erator F−1

h maps the random variable Fh( f ) ∈B(X) such
that

Pr(Fh( f )(xi) = 1) = p(h)i

to the random variable f ∈B(X) such that
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Pr( f (xi) = 1) = pi.

Since the inner product is invariant under sign flipping,
for every f ∈B(X) we have 〈 f ,h〉= 〈Fh( f ),(1, . . . ,1)〉=
∑m

i=1 Fh( f )(xi). Thus the mean value of the sum of random
variables ∑m

i=1 Fh( f )(xi) is µ(h, p). Applying to this sum
the Chernoff-Hoeffding Bound stated in Theorem 2 with
c1 = · · ·= cm = 2 and ε = mλ , we get

Pr
(
|

m

∑
i=1

Fh( f )(xi)−µ(h, p)|> mλ
)
≤ e−

mλ2
2 .

Hence

Pr
(
|〈 f ,h〉−µ(h, p)|> mλ

)
≤ e−

mλ2
2 ,

which proves i).
ii) follows from i) as all functions in B(X) have norms

equal to
√

m. 2

Theorem 3 shows that when the domain X is large, most
inner products of any given function with functions ran-
domly chosen from B(X) with a probability ρp are con-
centrated around their mean values. For example, setting

λ = m−1/4, we get e−
mλ2

2 = e−
m−1/2

2 which is decreasing
exponentially fast with increasing size m of the domain.

4 Dictionaries for efficient classification

Theorem 3 implies that when a dictionary G contains a
function h, for which the mean value µ(h, p) is large, then
most functions randomly chosen with respect to the proba-
bility distribution ρp are correlated with h. Thus most clas-
sification tasks characterized by ρp can be well approxi-
mated by a network with just one element h. A dictionary
G is also suitable for a given task when such function h
can be well approximated by a small network with units
from G.

It is easy to calculate the mean value µ(h, p) of inner
products of a fixed function h from B(X) with randomly
chosen functions from B(X) with respect to the probabil-
ity ρp.

Proposition 4. Let h ∈B(X) and p = (p1 . . . , pm), where
pi ∈ [0,1] for each i = 1, . . . ,m. Then for a function f
randomly chosen in B(X) according to ρp, the mean value
of 〈 f ,h〉 satisfies

µ(h, p) = ∑
i∈Ih

(2pi−1)+ ∑
i∈Jh

(1−2pi) ,

where Ih = {i ∈ {1, . . . ,m}|h(xi) = 1} and Jh = {i ∈
{1, . . . ,m}|h(xi) =−1}.

By Theorem 1, variation with respect to a dictionary of
a function is large when the function is nearly orthogonal

to all elements of the dictionary. For G := {g1, . . . ,gk}, we
define

µG(p) := max
gi,...,gk

|µ(gi, p)| .

The next theorem estimates probability distributions of
variational norms in dependence on the size of a dictio-
nary.

Theorem 5. Let X = {x1, . . . ,xm} ⊂ Rd , G =
{g1, . . . ,gk} ⊂ B(X), and p = (p1, . . . , pm) such that
pi ∈ [0,1], i = 1, . . . ,m. Then for every f ∈ B(X)
randomly chosen according to ρp and every λ > 0

Pr
(
‖ f‖G ≥

m
µG(p)+mλ

)
> 1− k e−

mλ2
2 .

Proof. By Theorem 3 (i), we get

Pr
(
|〈 f ,h〉−µ(h, p)|> mλ ∀h ∈ G

)
≤ ke−

mλ2
2 .

Hence,

Pr
(
|〈 f ,h〉−µ(h, p)| ≤ mλ ∀h ∈ G

)
> 1− ke−

mλ2
2 .

As |〈 f ,h〉−µ(h, p)| ≤mλ implies |〈 f ,h〉| ≤ µ(h, p)+mλ ,
we get

Pr
(
|〈 f ,h〉| ≤ µ(h, p)+mλ ∀h ∈ G

)
> 1− ke−

mλ2
2 .

So by Theorem 1

Pr
(
‖ f‖G ≥

m
µ(h, p)+mλ

∀h ∈ G
)
> 1− k e−

mλ2
2 .

Since by the definition, for every h ∈ G one has µG(p) ≥
µ(h, p), we obtain

m
µG(p)+mλ

≤ m
µ(h, p)+mλ

and so

Pr
(
‖ f‖G ≥

m
µG(p)+mλ

)
> 1− k e−

mλ2
2 .

2

Theorem 5 shows that when for all computational units
h in a dictionary G, the mean values µ(h, p) are small,
then for large m almost all functions randomly chosen ac-
cording to ρp are nearly orthogonal to all elements of the
dictionary G. For example, setting λ = m−1/4, we get a

probability greater than 1− ke−
m1/2

2 that a randomly cho-
sen function has G-variation greater or equal to m

µG(p)+m3/4 .
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Thus when for large m, µG(p)
m is small, G-variation of most

functions is large unless the size k of a dictionary G out-

weighs the factor e−
mλ2

2 .
Function with large G-variations cannot be computed by

networks that have both the number of hidden units and all
absolute vales of output weights small.

Corollary 1. Let X = {x1, . . . ,xm} ⊂ Rd , G =
{g1, . . . ,gk} ⊂ B(X), and p = (p1, . . . , pm) such that
pi ∈ [0,1], i = 1, . . . ,m. Then for every f ∈ B(X)
randomly chosen according to ρp, and every λ > 0,

Pr
(

min
{
‖w‖1 |w ∈Wf (G)

}
≥ m

µG(p)+mλ

)
>

1− k e−
mλ2

2 .

Corollary 1 implies that computation of most classifica-
tion tasks randomly chosen from B(X) with the product
probability ρp either requires to perform an ill-conditioned
task by a moderate network or a well-conditioned task by
a large network.

In particular, for the uniform distribution pi = 1/2 for
all i= 1, . . . ,m, for every h∈B(X) the mean value µ(h, p)
is zero. Thus for any dictionary G ⊂ B(X), almost
all functions uniformly randomly chosen from B(X) are
nearly orthogonal to all elements of the dictionary. So we
get the following two corollaries.

Corollary 2. Let X = {x1, . . . ,xm} ⊂ Rd and f ∈ B(X)
be uniformly randomly chosen. Then for every h ∈B(X)
and every λ > 0

Pr
(
|〈 f ,h〉|> mλ

)
≤ e−

mλ2
2 .

Corollary 3. Let X = {x1, . . . ,xm} ⊂ Rd and G =
{g1, . . . ,gk} ⊂B(X). Then for every f ∈B(X) uniformly
randomly chosen and every λ > 0

Pr
(
‖ f‖G ≥

1
λ

)
≥ 1− k e−

mλ2
2 .

When we do not have any a priori knowledge about the
task, we have to assume that the probability on B(X) is
uniform. Corollary 3 shows that unless a dictionary G is

sufficiently large to outweigh the factor e−
mλ2

2 , most func-
tions randomly chosen in B(X) according to ρp have G-
variations greater or equal to 1/λ . So for small λ and suf-
ficiently large m, most such functions cannot be computed
by linear combinations of small numbers of elements of
G with small coefficients. Similar situation occurs when
probabilities are nearly uniform.

Many common dictionaries used in neurocomputing are

relatively small with respect to the factor e−
m1/2

2 . For ex-
ample, the size of the dictionary of signum perceptrons

Pd(X) on a set X of m points in Rd is well-known since
the work of Schläfli [18]. He estimated the number of lin-
early separated dichotomies of m points in Rd . His upper
bound states that for every X ⊂ Rd such that cardX = m,

cardPd(X)≤ 2
d

∑
l=1

(
m−1

l

)
≤ 2

md

d!
. (2)

(see, e.g., [4]). The set Pd(X) forms only a small fraction
of the set of all functions in the set B(X), whose cardi-
nality is equal to 2m. Also other dictionaries of {−1,1}-
valued functions generated by dichotomies of m points in
Rd defined by nonlinear separating surfaces (such as hy-
perspheres or hypercones) are relatively small (see [4, Ta-
ble I ]).

5 Discussion

As the number of binary-valued functions modeling clas-
sification tasks grows exponentially with the size of their
domains, we proposed to model relevance of such tasks
for a give application area by a probabilistic model. For
sets of classification tasks endowed with product probabil-
ity distributions, we investigated complexity of networks
computing these tasks. We explored network complex-
ity in terms of approximate measures of sparsity formal-
ized by l1 and variational norms. For functions on large
domains, we analyzed implications of the concentration
of measure phenomena for correlations between network
units and randomly chosen functions.

We focused on classification tasks characterized by
product probabilities. To derive estimates of complexity of
networks computing randomly chosen functions we used
the Chernoff-Hoeffding Bound on sums of independent
random variables. An extension of our analysis to tasks
characterized by more general probability distributions is
a subject of our future work. To obtain estimates for more
general probability distributions, we plan to apply versions
of the Chernoff-Hoeffding Bound stated in [6], which hold
in situations when random variables are not independent .
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1 Faculty of Information Technology, Czech Technical University, Thákurova 7, Prague,Czech Republic
2 Institute of Computer Science, Czech Academy of Sciences, Pod vodárenskou věží 2, Prague, Czech Republic

Abstract: The recognition of emotional states in speech is
starting to play an increasingly important role. However,
it is a complicated process, which heavily relies on the
extraction and selection of utterance features related to the
emotional state of the speaker. In the reported research,
MPEG-7 low level audio descriptors[10] serve as features
for the recognition of emotional categories. To this end, a
methodology combining MPEG-7 with several important
kinds of classifiers is elaborated.

1 Introduction

The recognition of emotional states in speech is expected
to play an increasingly important role in applications such
as media retrieval systems, car management systems, call
center applications, personal assistants and the like. In
many languages it is common that the meaning of spoken
words changes depending on speakers emotions, and con-
sequently the emotional information is important in order
to understand the intended meaning. Emotional Speech
recognition is a complicated process. Its performance
heavily relies on the extraction and selection of features
related to the emotional state of the speaker in the audio
signal of an utterance. For most of them, the methodol-
ogy has already been implemented, and they have been ex-
perimentally tested and compared Berlin database of emo-
tional speech.

In the reported work in progress, we use MPEG-7 low
level audio descriptors[10] as features for the recogni-
tion of emotional categories. To this end, we elaborate a
methodology combining MPEG-7 with several important
kinds of classifiers. For most of them, the methodology
has already been implemented and tested with the publicly
available Berlin Database of Emotional Speech [1].

In the next section, the task of sentiment analysis from
utterances is briefly sketched. Section 3 recalls the nec-
essary background concerning MPEG-7 audio descriptors
and the considered classification methods. In Section 4,
the principles of the proposed approach are explained. Fi-
nally, Section 5 presents results of experimental testing
and comparison of the already implemented classifiers on
the publicly available Berlin database of emotional speech.

2 Sentiment Analysis from Utterances

Due to the importance of recognizing emotional states in
speech, research into sentiment analysis from utterances

has been emerging during recent years. We are aware of 3
publications reporting research with the same database of
emotional utterances as we used – the Berlin Database of
Emotional Speech, used in our research. Let us recall each
of them.

The research most similar to ours has been reported in
[12], where the authors also used MPEG-7 descriptors for
sentiment analysis from utterance. However, they used
only scalar MPEG-7 descriptors or scalars derived with
time-series descriptors using the software tools Sound
Description Toolbox [13] and MPEG-7 Audio Reference
Software Toolkit[2], whereas we are implementing also a
long-short-term memory network that will use directly the
time series. They also used only one classifer in their ex-
periments, a combination of a radial basis function net-
work and a support vector machine.

In [11], emotions are recognized using pitch and
prosody features, which are mostly in time domain. Also
in that paper, the experiments were performed, and the au-
thors used only one classifer, this time a support vector
machine (SVM).

The authors of [16] proposed a set of new 68 features,
such as some new based on harmonic frequencies or on
the Zipf distribution, for better speech emotion recogni-
tion. This set of features is used in a multi-stage classi-
fication. When performing the sentiment analysis of the
Berlin Database, the utterance classification to the con-
sidered emotional categories was preceded with a gender
classification of the speakers, and the gender of the speaker
was subsequently used as an additional feature for the clas-
sification of the utterances.

3 MPEG-7 Audio Descriptors

MPEG-7 is a standard for low-level description of audio
signals, describing a signal by means of the following
groups of descriptors[10]:

1. Basic: Audio Power (AP), Audio Waveform(AWF).
Temporally sampled scalar values for general use, ap-
plicable to all kinds of signals. The AP describes the
temporally-smoothed instantaneous power of sam-
ples in the frame,in other words it is a temporally
measure of signal content as a function of time and
offers a quick summary of a signal in conjunction
with other basic spectral descriptors. The AWF
describes audio waveform envelope (minimum and
maximum), typically for display purposes.
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2. Basic Spectral: Audio Spectrum Envelop (ASE),
Audio Spectrum Centroid (ASC), Audio Spectrum
Spread (ASS), Audio Spectrum Flatness (ASF).
All share a common basis, all deriving from the short
term audio signal spectrum (analysis of frequency
over time). They are all based on the ASE Descriptor,
which is a logarithmic-frequency spectrum. This de-
scriptor provides a compact description of the signal
spectral content and represents the similar approxi-
mation of logarithmic response of the human ear. The
ASE descriptor is an indicator as to whether the spec-
tral content of a signal is dominated by high or low
frequencies. The ASC Descriptor could be consid-
ered as an approximation of perceptual sharpness of
the signal. The ASS descriptor indicates whether the
signal content, as it is represented by the power spec-
trum, is concentrated around its centroid or spread
out over a wider range of the spectrum. This gives
a measure which allows the distinction of noise-like
sounds from tonal sounds. The ASF describes the
flatness properties of the spectrum of an audio signal
for each of a number of frequency bands.

3. Basic Signal Parameters: Audio Fundamental Fre-
quency (AFF) and Audio Harmonicity (AH).
The signal parameters constitute a simple paramet-
ric description of the audio signal. This group in-
cludes the computation of an estimate for the fun-
damental frequency (F0) of the audio signal. The
AFF descriptor provides estimates of the fundamen-
tal frequency in segments in which the audio signal
is assumed to be periodic. The AH represents the
harmonicity of a signal, allowing distinction between
sounds with a harmonic spectrum (e.g., musical tones
or voiced speech e.g., vowels), sounds with an inhar-
monic spectrum (e.g., bell-like sounds) and sounds
with a non-harmonic spectrum (e.g., noise, unvoiced
speech).

4. Temporal Timbral: Log Attack Time (LAT), Tempo-
ral Centroid (TC).
Timbre refers to features that allow one to distinguish
two sounds that are equal in pitch, loudness and sub-
jective duration. These descriptors are taking into
account several perceptual dimensions at the same
time in a complex way. Temporal Timbral descriptors
describe the signal power function over time. The
power function is estimated as a local mean square
value of the signal amplitude value within a running
window. The LAT descriptor characterizes the ”at-
tack” of a sound, the time it takes for the signal to
rise from silence to its maximum amplitude. This fea-
ture signifies the difference between a sudden and a
smooth sound. The TC descriptor computes a time-
based centroid as the time average over the energy
envelope of the signal.

5. Timbral Spectral descriptors: Harmonic Spec-

tral Centroid (HSC), Harmonic Spectral Deviation
(HSD), Harmonic Spectral Spread (HSS), Harmonic
Spectral Variation (HSV) and Spectral Centroid.
These are spectral features extracted in a linear-
frequency space. The HSC descriptor is defined
as the average, over the signal duration, of the
amplitude-weighted mean of the frequency of the
bins (the harmonic peaks of the spectrum) in the lin-
ear power spectrum. It is has a high correlation with
the perceptual feature of ”sharpness” of a sound. The
HSD descriptor measures the spectral deviation of the
harmonic peaks from the global envelope. The HSS
descriptor measures the amplitude-weighted standard
deviation (Root Mean Square) of the harmonic peaks
of the spectrum, normalized by the HSC. The HSV
descriptor is the normalized correlation between the
amplitude of the harmonic peaks between two subse-
quent time-slices of the signal.

6. Spectral Basis, which consists of Audio Spectrum
Basis (ASB) and Audio Spectrum Projection (ASP).

3.1 Tools for Working with MPEG-7 Descriptors

We utilized the Sound Description Toolbox [13] and
MPEG-7 Audio Analyzer - Low Level Descriptors Extrac-
tor [15] for our experiments. Both of them extract a num-
ber of MPEG-7 standard descriptors, both scalar ones and
time series. In addition, the SDT also calculates percep-
tual features such as Mel Frequency Cepstral Coefficients,
Specific Loudness and Sensation Coefficients. From this
descriptors calculate means, covariances, means of first-
order differences and covariances of first order differences.
The Total number of features provided by this toolbox is
187.

4 Employed Classification Methods

We have elaborated our approach to sentiment analysis
from utterances for six classification methods: k near-
est neighbors, support vector machines, multilayer per-
ceptrons, classification trees, random forests [7] and long
short-term memory (LSTM) network [5, 6, 8]. The first
five of them have already been implemented and tested (cf.
Section 5), the last and most advanced one is still being
implemented.

4.1 k Nearest Neighbours (kNN)

A very traditional way of classifying a new feature vector
x ∈X if a sequence of training data (x1,c1), . . . ,(xp,cp)
is available is the nearest neighbour method: take the x j
that is the closest to x among x1, . . . ,xp, and assign to x the
class assigned to x j, i.e., c j.

A straightforward generalization of the nearest neigh-
bour method is to take among x1, . . . ,xp not one, but k fea-
ture vectors x j j , . . . ,x jk closest to x. Then x is assigned the
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class c ∈C fulfilling

|{i,1≤ i≤ k|c ji = c}|= maxc′∈C|{i,1≤ i≤ k|c ji = c′}|.
(1)

This method is called, expectedly, k nearest neighbours, or
k-NN for short.

4.2 Support Vector Machines (SVM)

Support vector machines are classifiers into two classes.
This method attempts to derive from the training data
(x1,c1), . . . ,(xp,cp) the best possible generalization to un-
seen feature vectors.

If both classes, more precisely their intersections with
the set {x1, . . . ,xp} of training inputs, are in the space
of feature vectors linearly separable, the method con-
structs two parallel hyperplanes H+ = {x ∈ Rn|x>w +
b+ = 0},H− = {x∈Rn|x>w+b− = 0} such that the train-
ing data fulfil

ck =

{
1 if x>w+b+ ≥ 0,

-1 if x>w+b− ≤ 0,
k = 1, . . . , p, (2)

H+∩{x1, . . . ,xp} 6= /0,H−∩{x1, . . . ,xp} 6= /0. (3)

The hyperplanes H+ and H− alle called support hyper-
planes. Their common normal vector w and intercepts
b+,b− are obtained through solving the following con-
strained optimization task:

Maximize with respect to w,b+,b− the distance

d(H+,H−) =
b+−b−
‖w‖ (4)

on condition that the p inequalities (2) hold.

The distance (4) is commonly called margin. The
solution to this optimization task coincides with the
(w∗,b∗+,b

∗
−,α∗1 , . . . ,α

∗
p) of the Lagrange function

L(w,b+,b−,α1, . . . ,αp) = ‖w‖2 +
p

∑
k=1

αk(
,b+−b−

2
− ckx>k w)

(5)

where α1, . . . ,αp ≥ 0 are Lagrange coefficients
of the optimization task. Once the saddle point
(w∗,b∗+,b

∗
−,α∗1 , . . . ,α

∗
p) is found, the classifier is de-

fined by

φ(x) =

{
1 if ∑xk∈S α∗k ckx>xk +b∗ ≥ 0,
−1 if ∑xk∈S α∗k ckx>xk +b∗ < 0,

(6)

where b∗ = 1
2 (b
∗
++b∗−) and

S = {xk|α∗k > 0}. (7)

Due to the Karush-Kuhn-Tucker (KKT) conditions,

α∗k (
b∗+−b∗−

2
− ckx>k w∗) = 0,k = 1, . . . , p, (8)

all feature vectors from the set S lie on some of the su-
port hyperplanes (3). Therefore, they are called support
vectors. This name together with the observation that they
completely determine the classifier defined in (6) explains
why such a classifier is called support vector machine.

If the intersections of both classes with the training in-
puts are not linearly separable, a SVM is constructed sim-
ilarly, but instead of the set of possible fature vectors, now
the set of functions

κ(·,x) for all possible feature vectors x (9)

is considered, where κ is a kernel, i.e., a mapping on
pairs of feature vectors that is symmetric and such that for
any k ∈ N and any sequence of different feature vectors
x1, . . . ,xk, the matrix

Gκ(x1, . . . ,xk) =




κ(x1,x1) . . . κ(x1,xk)
. . . . . . . . . . . . . . . . . . . . . . .
κ(xk,x1) . . . κ(xk,xk)


 , (10)

which is called the Gramm matrix of x1, . . . ,xk, is positive
semidefinite, i.e.,

(∀y ∈ Rk) y>Gκ(x1, . . . ,xk)y≥ 0. (11)

The most commonly used kinds of kernels are the Gaus-
sian kernel with a parameter ς > 0,

(∀x,x′ ∈ Rn′) κ(x,x′) = exp
(
−1

ς
‖x− x′‖2

)
, (12)

and polynomial kernel with parameters d ∈ N and c≥ 0,

(∀x,x′ ∈ Rn′) κ(x,x′) = (x>x′+ c)d . (13)

It is known [14] that, due to the properties of kernels, if
the joint distribution of a sequence of different feature vec-
tors x1, . . . ,xk is continuous, then almost surely any proper
subset of the set of functions {κ(·,x1), . . . ,κ(·,xk)} is in
the space of all functions (9) linearly separable from its
complement.

However, the featre vectors x and xk can’t be simply re-
placed by the corresponding functions κ(·,x) and κ(·,xk)
in the definition (6) of a SVM classifier because a trans-
pose x> exists for a finite-dimensional vector, but not a for
an infinite-dimensional function. Fortunately, the trans-
pose occurs in (6) only as a part of the scalar product
x>xk. And a scalar product can be defined also on the
space of all functions (9). Namely, the properties of a
scalar product has the function that to the pair of func-
tions (κ(·,x),κ(·,x′) assigns the value κ(x,x′). Using this
scalar product in (6), we obtain the following definition of
a SVM classifier for linearly non-separable classes:

φ(x) =

{
1 if ∑xk∈S α∗k ckκ(x,xk)+b≥ 0,
−1 if ∑xk∈S α∗k ckκ(x,xk)+b≥ 0.

(14)
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4.3 Multilayer Perceptrons (MLP)

A multilayer percptron is a mapping φ of feature vectors
to classes with which a directed graph Gφ = (V ,E ) is as-
sociated. Due to the inspiration from biological neural net-
works, the vertices of Gφ are called neurons and its edges
are called connections. In addition, Gφ is required to have
a layered structure, which means that the set V of neu-
rons can be decomposed into L+ 1 mutually disjoint lay-
ers, V = V0∪V1∪·· ·∪VL,L≥ 2, such that

(∀(u,v) ∈ E ) u ∈ Vi, i = 0, . . . ,L−1 & v 6∈ Vi⇒ v ∈ Vi+1.
(15)

The layer I = V0 is called input layer of the MLP,
the layer O = VL its output layer and the layers H1 =
V1, . . . ,HL−1 = VL−1 its hidden layers.

The purpose of the graph Gφ associated with the map-
ping φ is to define a decomposition of φ into simple map-
pings assigned to hidden and output neurons and to con-
nections between neurons (input neurons normally only
accept the components of the input, and no mappings are
assigned to them). Inspired by biological terminology,
mappings assigned to neurons are called somatic, those
assigned to connections are called synaptic.

To each connection (u,v) ∈ E , the multiplication by a
weight w(u,v) is assigne as a synaptic mapping:

(∀ξ ∈ R) f(u,v)(ξ ) = w(u,v)ξ . (16)

To each hidden neuron v ∈Hi, the following somatic
mapping is assigned:

(∀ξ ∈ R| in(v)|) fv(ξ ) = ϕ( ∑
u∈in(v)

[ξ ]u +bv), (17)

where [ξ ]u for u ∈ in(v) denotes the component of ξ that
is the output of the synaptic mapping fu,v assigned to the
connection (u,v), in(v) = {u ∈ V |(u,v) ∈ E } is the in-
put set of v, and ϕ : R→ R is called activation function.
Though the activation functions, in applications typically
sigmoidal functions are used to this end, i.e., functions that
are non-decreasing, piecewise continuous, and such that

−∞ < lim
t→−∞

ϕ(t)< lim
t→∞

ϕ(t)< ∞. (18)

The activation functions most frequently encountered in
MLPs are:

• the logistic function,

(∀t ∈ R) ϕ(t) =
1

1+ e−t ; (19)

• the hyperbolic tangent,

ϕ(t) = tanh t =
et − e−t

et + e−t . (20)

To an output neuron v ∈ O , also a somatic mapping of the
kind (17) with the activation functions (19) or (20) can be
assigned. If it is the case, then the class c predicted for a
feature vector x is obtained as c = argmaxi(φ(x))i, where
(φ(x))i denotes the i-the component of φ(x). Alternatively
the activation function assigned to an output neuron can be
the step function, aka Heaviside function

ϕ(t) =

{
0 if t < 0,
1 if t ≥ 0.

(21)

In that case, the value (φ(x))c already directly indicates
whether x belongs to the class c.

4.4 Classification Trees (CT)

A classifier φ : X → C = {c1, . . . ,cm} is called binary
classification tree, if there is a binary tree Tφ = (Vφ ,Eφ )
with vertices Vφ and edges Eφ such that:
(i) Vφ = {v1, . . . ,vL, . . . ,v2L−1}, where L ≥ 2, v0 is the

root of Tφ , v1, . . . ,vL−1 are its forks and vL, . . . ,v2L−1
are its leaves.

(ii) If the children of a fork v∈ {v1, . . . ,vL−1} are vL ∈Vφ
(left child) and vR ∈Vφ (right child) and if v= vi,vL =
v j,vR = vk, then i < j < k.

(iii) To each fork v ∈ {v1, . . . ,vL−1}, a predicate ϕv of
some formal logic is assigned, evaluated on features
of the input vectors x ∈X .

(iv) To each leaf v ∈ {vL, . . . ,v2L−1}, a class cv ∈C is as-
signed.

(v) For each input x ∈X , the predicate ϕv1 assigned to
the root is evaluated.

(vi) If for a fork v ∈ {v1, . . . ,vL−1}, the predicate ϕv eval-
uates true, then φ(x) = cvL in case vL is already a leaf,
and the predicate ϕvL is evaluated in case vL is still a
fork.

(vii) If for a fork v∈ {v1, . . . ,vL−1}, the predicate ϕv eval-
uates false, then φ(x) = cvR in case vR is already a
leaf, and the predicate ϕvR is evaluated in case vR is
still a fork.

4.5 Random Forests (RF)

Random Forests are ensembles of classifiers in which the
individual members are classification trees. They are con-
structed by bagging, i.e., bootstrap aggregation of individ-
ual trees, which consists in training each member of the
ensemble with another set of training data, sampled ran-
domly with replacement from the original training pairs
(x1,c1), . . . ,(xp,cp). Typical sizes of random forests en-
countered in applications are dozens to thousands trees.
Subsequently, when new subjects are input to the forest,
each tree classifies them separately, according to the leaves
at which they end, and the final classification by the for-
est is obtained by means of an aggregation function. The
usual aggregation function of random forests is majority
voting, or some of its fuzzy generalizations.
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According to which kind of randomness is involved in
the costruction of the ensemble, two broad groups of ran-
dom forests can be differentiated:

1. Random forests grown in the full input space. Each
tree is trained using all considered input features.
Consequently, any feature has to be taken into ac-
count when looking for the split condition assigned
to an inner node of the tree. However, features actu-
ally occurring in the split conditions can be different
from tree to tree, as a consequence of the fact that
each tree is trained with another set of training data.
For the same reason, even if a particular feature oc-
curs in split conditions of two different trees, those
conditions can be assigned to nodes at different lev-
els of the tree.

A great advantage of this kind of random forests is
that each tree is trained using all the information
available in its set of training data. Its main disadvan-
tage is high computational complexity. In addition, if
several or even only one variable are very noisy, that
noise gets nonetheless incorporated into all trees in
the forest. Because of those disadvantages, random
forests are grown in the complete input space primar-
ily if its dimension is not high and no input feature is
substantially noisier than the remaining ones.

2. Random forests grown in subspaces of the input
space. Each tree is trained using only a randomly
chosen fraction of features, typically a small one.
This means that a tree t is actually trained with pro-
jections of the training data into a low-dimensional
space spanned by some randomly selected dimen-
sions it,1 ≤ ·· · ≤ it,dt ∈ {1, . . . ,d}, where d is the di-
mension of the input space, and dt is typically much
smaller than d. Using only a subset of features not
only makes forest training much faster, but also al-
lows to eliminate noise originating from only several
features. The price paid for both these advantages is
that training makes use of only a part of the informa-
tion available in the training data.

4.6 Long Short-Term Memory (LSTM)

An LSTM network is used for classification of sequences
of feature vectors, or equivalently, multidimensional time
series with discrete time. Alternatively, it can be also em-
ployed to obtain sequences of such classifications, i.e., in
situations when the neural network input is a sequence of
feature vectors and its output is a a sequence of classes.
Differently to most of other commonly encountered kinds
of artificial neural networks, an LSTM layer connects not
simple neurons, but units with their own inner structure.
Several variants of an LSTM have been proposed (e.g.,
[5, 6]), all of them include at least the following four kinds
of units described below. Each of them has certain prop-
erties of usual ANN neurons, in particular, the values as-

signed to them depend, apart from a bias, on values as-
signed to the unit input at the same time step and on val-
ues assigned to the unit output at the previous time step.
Hence, an LSTM network layers is a recurrent network.
(i) Memory cells can store values, aka cell states, for an

arbitray time. They have no activation function, thus
their output is actually a biased linear combination of
unit inputs and of the values from the previous time
step coming through recurrent connections.

(ii) Input gate controls the extent to which values from
the previous unit or from the preceding layer influ-
ence the value stored in the memory cell. It has a
sigmoidal activation function, which is applied to a
biased linear combination of unit inputs and of val-
ues from the previous time step, though the bias and
synaptic weights of the input and recurrent connec-
tions are specific and in general different from the
bias and synaptic weights of the memory cell.

(iii) Forget gate controls the extent to which the memory
cell state is supressed. It again has a sigmoidal acti-
vation function, which is applied to a specific biased
linear combination of unit inputs and of values from
the previous time step.

(iv) Output gate controls the extent to which the memory
cell state influences the unit output. Also this gate
has a sigmoidal activation function, which is applied
to a specific biased linear combination of unit inputs
and of values from the previous time step, and subse-
quently composed either directly with the cell state or
with its sigmoidal transformation, using another sig-
moid than is used by the gates.

5 Experimental Testing

5.1 Berlin Database of Emotional Speech

For the evaluation of already implemented classifiers, we
used the publicly available dataset ”EmoDB”, aka Berlin
database of emotional speech. It consists of 535 emotional
utterances in 7 emotional categories namely anger, bore-
dom, disgust, fear, happiness, sadness and neutral. These
utterances are sentences read by 10 professional actors, 5
males and 5 females [1], which were recorded in an ane-
choic chamber under supervision by linguists and psychol-
ogists) . The actors were advised to read these prede-
fined sentences in the targeted emotional categories, but
the sentences do not contain any emotional bias. A human
perception test was conducted with 20 persons, different
from the speakers, in order to evaluate the quality of the
recorded data with respect to recognisability and natural-
ness of presented emotion. This evaluation yielded a mean
accuracy 86% over all emotional categories.

5.2 Experimental Settings

As input features, the outputs from the Sound Description
Toolbox were used. Consequently, the input dimension
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was 187. The already implemented classifiers were com-
pared by means of a 10-fold cross-validation, using the
following settings for each of them:

• For the k nearest neighbors classification, the value
k = 9 was chosen by a grid method from 〈1,80〉. This
classifer was applied to data normalized to zero mean
and unit variance.

• Support vector machines are constructed for each of
the 7 considered emotions, to classify between that
emotion and all the remaining ones. They employ
auto-scaled Gaussian kernels and do not use slack
variables.

• The MLP has 1 hidden layer with 70 neurons. Hence,
taking into account the input dimension and the num-
ber of classes, the overall architecture of the MLP is
187-70-7.

• Classification trees are restricted to have at most 23
leaves. This upper limit was chosen by a grid method
from 〈1,50〉, taking into account the way how classi-
fication trees are grown in their Matlab implementa-
tion.

• Random forests consist of 50 classification trees,
each of them taking over the above restriction. The
number of trees was selected by a grid method from
10, 20,. . . ,100.

5.3 Comparison of Already Implemented Classifiers

First, we compared the already implemented classifiers on
the whole Berlin database of emotional speech, with re-
spect to accuracy and area under the ROC curve (area un-
der curve, AUC). Since a ROC curve makes sense only
for a binary classifier, we computed areas under 7 sepa-
rate curves corresponding to classifiers classifying always
1 emotion against the rest. The results are presented in Ta-
ble 1 and in Figure 1. They clearly show SVM as the most
promising classifier. It has the highest accuracy, and also
the AUC for binary classifiers corresponding to 5 of the 7
classifiers

Then we compared the classifiers separately on the
utterances of each of the 10 speakers who created the
database. The results are summarized in Table 2 for ac-
curacy and Table 3 for AUC averaged over all 7 emo-
tions. They indicate a great difference between most of
the compared classifiers. This is confirmed by the Fried-
man test of the hypotheses that all classifiers have equal
accuracy and equal average AUC. The Friedman test re-
jected both hypotheses with a high significance: With
the Holm correction for simultaneously tested hypothe-
ses [9], the achieved significance level (aka p-value) was
4 · 10−6. For both hypotheses, posthoc tests according to
[3, 4] were performed, testing equal accuracy and equal
average AUC between individual pairs of classifiers. For

Table 1: Accuracy and area under curve (AUC) of the im-
plemented classifiers on the whole Berlin database of emo-
tional speech. AUC is measured for binary classification
of each of the considered 7 emotions against the rest

Classifier Accuracy AUC emotion against the rest
Anger Boredom Disgust

kNN 0.73 0.956 0.933 0.901
SVM 0.93 0.979 0.973 0.966
MLP 0.78 0.977 0.969 0.964
DT 0.59 0.871 0.836 0.772
RF 0.71 0.962 0.949 0.920

Classifier AUC emotion against the rest
Fear Happiness Neutral Sadness

kNN 0.902 0.856 0.962 0.995
SVM 0.983 0.904 0.974 0.997
MLP 0.969 0.933 0.983 0.996
DT 0.782 0.683 0.855 0.865
RF 0.921 0.882 0.972 0.992

Table 2: Comparison between pairs of implemented clas-
sifiers with respect to accuracy, based on 10 independent
parts of the Berlin database of emotional speech corre-
sponding to 10 different speakers. The result in a cell of
the table indicates on how many parts the accuracy of the
row classifier was higher : on how many parts the accuracy
of the column classifier was higher. A result in bold indi-
cates that after the Friedman test rejected the hypothesis of
equal accuracy of all classifiers, the post-hoc test accord-
ing to [3, 4] rejects the hypothesis of equal accuracy of the
particular row and column classifiers. All simultaneously
tested hypotheses were corrected in accordance with Holm
[9]

classifier kNN SVM MLP DT RF
kNN 0:10 3.5:6.5 9:1 5:5
SVM 10:0 10:0 10:0 10:0
MLP 6.5:3.5 0:10 10:0 7:3
DT 1:9 0:10 0:10 0:10
RF 5:5 0:10 3:7 10:0

the family-wise significance level 5%, they reveal the fol-
lowing Holm-corrected significant differences between in-
dividual pairs of classifiers: both for accuracy and av-
eraged AUC: (SVM,DT), (MLP,DT), and in addition be-
tween (kNN,SVM), (SVM,RF) for accuracy.

6 Conclusion

The presented work in progress investigated the possibil-
ities to analyse emotions in utterances based on MPEG7
features. So far, we implemented only five classifica-
tion methods not using time series features, but only 187
scalar features, namely the k nearest neighbours classi-
fier, support vector machines, mutilayer perceptrons, de-
cision trees and random forests. The obtained results in-
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Table 3: Comparison between pairs of implemented classi-
fiers with respect to the AUC averaged over all 7 emotions,
based on 10 independent parts of the Berlin database of
emotional speech corresponding to 10 different speakers.
The result in a cell of the table indicates on how many parts
the AUC of the row classifier was higher : on how many
parts the AUC of the column classifier was higher. A result
in bold indicates that after the Friedman test rejected the
hypothesis of equal AUC of all classifiers, the post-hoc test
according to [3, 4] rejects the hypothesis of equal AUC of
the particular row and column classifiers. All simultane-
ously tested hypotheses were corrected in accordance with
Holm [9]

classifier kNN SVM MLP DT RF
kNN 2:8 0:10 10:0 4:6
SVM 8:2 5:5 10:0 9:1
MLP 10:0 5:5 10:0 9:1
DT 0:10 0:10 0:10 0:10
RF 6:4 1:9 1:9 10:0

dicate that especially support vector machines and multi-
layer perceptrons are quite successfull for this task. Statis-
tical testing confirms significant differences between these
two kinds of classifiers on the one hand, and decision trees
an random forests on the other hand.

The next step in this ongoing research is to implement
the long short-term memory neural network, recalled in
Subsection 4.6, because they can work not only with scalar
features but also with features represented with time series.
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Figure 1: ROC curve for all emotions on the whole Berlin database
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Abstract: One of the key preprocessing tasks in informa-
tion retrieveal from video is the segmentation of the scene,
primarily its segmentation into foreground objects and the
background. This is actually a classification task, but with
the specific property that it is very time consuming and
costly to obtain human-labelled training data for classifier
training. That suggests to use semisupervised classifiers to
this end. The presented work in progress reports the inves-
tigation of semisupervised classification methods based on
cluster regularization and on fuzzy c-means in connection
with the foreground / background segmentation task. To
classify as many video frames as possible using only a
single human-based frame, the semisupervised classifica-
tion is combined with a frequently used keypoint detec-
tor based on a combination of a corner detection method
with a visual descriptor method. The paper experimentally
compares both methods, and for the first of them, also clas-
sifiers with different delays between the human-labelled
video frame and classifier training.

1 Introduction

For the indexing of multimedial content, it is beneficial to
have annotations of actors, objects or any other informa-
tion that can occur in a video. A vital preprocessing task to
prepare such annotations is the segmentation of the scene
into foreground objects and the background.

Traditional methods, such as Gaussian mixture model-
ing, work on the pixel level and are time consuming on
higher resolution video [1]. Another simple method mod-
els the background through image averaging, however it
requires a static camera [6]. Our approach, on the other
hand, is based on the level of detected interest points, and
uses semi-supervised classification to assign those points
as belonging either to the foreground objects or to the
background.

In the next section, we introduce the key points detector
we employed for the detection of points of interest. Sec-
tion 3 recalls two methods of semi-supervised classifica-
tion we used in our approach. The approach itself is out-
lined in Section 4. Finally, Section 5 presents the results
of its experimental validation performed so far.

2 Scene Segmentation in the Context of
Video Preprocessing

In each frame of the video, a keypoint detector is used to
detect points of interest and compute their descriptors. In

our research, a combination of a corner detection method
FAST (Features from Accelerated Segment Test) with a
visual descriptor method BRIEF (Binary Robust Indepen-
dent Elementary Features) is used to this end, known as
ORB (oriented FAST and rotated BRIEF) [7]. Points of
interest detected in a frame are always attempted to match
those detected in the next frame. Such matching points are
searched in a two-step fashion:
(i) Only the points of interest in the spacial neighbour-

hood of the expected position are considered. That
position is based on last known interest point posi-
tion and its past motion (if available).

(ii) Among the points of interest resulting from (i), as
well as among all detected in the current frame for
which no information about their past motion is avail-
able, points in the previous frame are searched based
on the Hamming distance between the descriptors of
both points.

Whereas the dependence of matching success on the dif-
ference between positions of the points and on the move-
ment of the first point has a straightforward geometric
meaning, its dependence on the Hamming distance be-
tween their descriptors has a probabilistic character. In
[7], this dependence was investigated and was found that
if the Hamming distance between 256-bit binary descrip-
tors of the points is greater than 64, then the probability of
successful match is less than 5%.

If two points of interests in subsequent frames are con-
sidered matching, the point in the later frame is added to
the history vector of the point in the previous frame. In
this way, we get the motion description of each point of
interest.

3 Semi-supervised Classification

Traditional supervised classification techniques use only
labelled instances in the learning phase. In situations
where the number of availabe labelled instances is insuffi-
cient, labelling is expensive and time consuming, semi-
supervised classification can be employed, which uses
both labelled and unlabelled instances for learning.

In the reported research, we used the following two
methods for semisupervised classification.

3.1 Semisupervised Classification with Cluster
Regularization

The principle of this method, in detail described in [8],
consists in clustering all labelled and unlabelled instances
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and estimating, for the instance xk, k = 1, . . . ,N, its proba-
bility distribution qk on the set of clusters. In addition, the
following penalty function is proposed for the differences
between the pairs (qk,qn) of probability distributions of
the instances.

P(qk,qn) = sin
(π

2
(r(qk,qn)∗ s(qk,qn))

κ
)
,

k,n = 1, . . . ,N,k 6= n, (1)

where r(qk,qn) denotes the Pearson correlation coeffi-
cient between qk and qn, κ is a parameter controlling the
steepeness of the mapping from similarity to penalty, and
s(qk,qn) is a normalized similarity of the probability dis-
tributions qk and qn, defined

s(qk,qn) = 1− ‖qk−qn‖−dmin

dmax−dmin
(2)

using the notation

dmin = minQ, dmax = maxQ,

with Q = {‖qk−qn‖|k,n = 1, . . . ,N,k 6= n}. (3)

The results of clustering allow to assign pseudolabels
to unlabelled instances. In particular, the pseudolabel as-
signed for the j-th among the M considered clusters to an
unlabelled instance xn in a cluster Ψ is

ŷn, j =
exp
(
∑xk∈Ψ is labelled yk, j

)

∑M
i=1 exp

(
∑xk∈Ψ is labelled yk,i

) , (4)

where yk,i, i = 1, . . . ,M is a crisp or fuzzy label of the la-
belled instance xk for the class i. For uniformity of nota-
tion, the symbol ŷk, j, j = 1, . . . ,M can also be used for yk, j
if xk is labelled.

The penalty function (1) can be used as a regulariza-
tion modifier in some loss function L : [0,1]2 → [0,+∞)
measuring the discrepancy between the classifier outputs
F(xn) = ((F(xn))1, . . . ,(F(xn))M) for an instance xn, and
the corresponding labels (yn,1, . . . ,yn,M) or pseudolabels
(ŷn,1, . . . , ŷn,M):

E =
1
N

M

∑
j=1

(
∑

xn labelled
L((F(xn)) j,yn, j)+

∑
xn unlabelled

λ max(qn)

|φ(xn)| ∑
xk∈φ(xn)

P(qk,qn)L((F(xk)) j, ŷk, j

)
, (5)

where λ > 0 is a given parameter determining the tradeoff
between supervised loss and unsupervised regularization,
and the set of instances xk 6= xn with the highest value of
P(qk,qn) is denoted φ(xn).

In [8], the following design decisions have been made
for the loss function and the classifier in (5):

1. The employed loss function can be derived from
DKL ((ŷn,1, . . . , ŷn,M)‖F(xn)), the Kullback-Leibler
divergence, from classifier outputs to labels or pseu-
dolabels. If both the labels or pseudolabels and the

classifier outputs form probability distributions on
classes, then

DKL((ŷn,1, . . . , ŷn,M)‖F(xn)) =

=
M

∑
j=1

ŷn, j ln
(
(F(xn)) j

ŷn, j

)
,n = 1, . . . ,N. (6)

Therefore, the considered loss function is

L((F(xk)) j, ŷk, j) =

= ŷn, j ln
(
(F(xn)) j

ŷn, j

)
,n = 1, . . . ,N, j = 1, . . . ,M.

(7)

2. As a classifier, a multilayer perceptron with one hid-
den layer is used, such that the activation function g in
its hidden layer is smooth and includes no bias, and
its output layer performs the softmax normalization
of the hidden layer. Hence,

(F(x)) j =
exp(g(w>j·x))

∑M
i=1 exp(g(w>i· x)

. (8)

The weight vectors w1·, . . . , wM· in (8) are learned
through the minimization of the error function (5).

3.2 Semi-supervised Kernel-Based Fuzzy C-means

This method, in detail described in [9], originated from
the fuzzy c-means clustering algorithm [2]. Similarly to
the original fuzzy c-means, the method is parametrized by
a parameter m > 1. What makes this method more gen-
eral than the original fuzzy c-means, is its dependence
on the choice of some kernel K, i.e., a symmetric func-
tion on pairs (x,y) of clustered vectors, which has positive
semidefinite Gramm matrices (e.g., Gaussian or polyno-
mial kernels). In fact, the fuzzy c-means algorithm corre-
sponds to the choice K(x,y) = x>y.

First, the membership matrix U l is constructed, for clus-
tering nl labelled instances xl

1, . . . ,x
l
nl

into as many clusters
as there are classes, i.e., M. For j = 1, . . . ,M,k = 1, . . . ,nk,

U l
j,k =

{
1 if the instance xl

k is labelled with the class j
0 else.

(9)

From U l , the initial cluster centers are constructed as

v0
j =

∑nl
k=1 U l

j,kxl
k

∑nl
k=1 U l

j,k
, j = 1, . . . ,M. (10)

If for some t = 0,1, . . . , the cluster centers vt
1, . . . ,v

t
M are

available, such as (10), then they are used together with
the chosen kernel K to construct the membership matrix
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Uu,t for clustering nu unlabelled instances xu
1, . . . ,x

u
nu , as

follows:

Uu,t
j,k =

(1−K(xu
k ,v j))

− 1
m−1

∑M
i=1(1−K(xu

k ,vi))
− 1

m−1
,

j = 1, . . . ,M, k = 1, . . . ,nu. (11)

Finally, the cluster centers are updated, for t = 0,1, .. by
calculating

vt+1
j =

=
∑nl

k=1(U
l
j,k)

mK(xl
k,v

t
j)x

l
k +∑nl

k=1(U
u,t
j,k)

mK(xu
k ,v

t
j)x

u
k

∑nl
k=1(U

l
j,k)

mK(xl
k,v

t
j)+∑nl

k=1(U
u,t
j,k)

mK(xu
k ,v

t
j)

.

(12)

The computations (11)–(12) are iterated until at least
one of the following termination criteria is reached:
(i) ‖Uu,t −Uu,t−1‖ < ε, t ≥ 1, for a given matrix norm

‖ · ‖ and a given ε > 0;
(ii) a given maximal number of iterations tmax.

4 Proposed Approach

4.1 Overall Strategy

Our methodology for the segmentation of video frames
into foreground objects and background relies on the as-
sumption that the user typically assigns corresponding la-
bels to points of interest only in the first frame, and even
not necessarily to all detected points of interest.

No matter whether the considered method of semisuper-
vised classification is semisupervised classification with
cluster regularization or semi-supervised kernel-based
fuzzy c-means, the methodology always proceeds in the
following steps:

1. In the first frame, the user labels some of the points
of interest detected by the ORB detector.

2. Using the considered method of semisupervised clas-
sification, the remaining detected points of interest
are labelled.

3. Matching points detected in the next frame are as-
signed the same labels as the points to which they are
matched.

4. Using the considered method of semisupervised clas-
sification, the remaining points of interest detected in
the next frame are labelled.

5. Steps 3 and 4 are repeated till either the points of in-
terest in all frames have been classified or the scene
has been so much disrupted between two frames that
no points of interest could be matched between them
(in such a case, new labelling by the user is needed).

4.2 Implementation of Object Segmentation

The Cartesian coordinates ([p]1, [p]2) of a point p of in-
terest are expressed with respect to top left corner of the
frame, using as units the frame height and width. Due to
that, [p]1 and [p]2 are normalized to [0,1].

For a match between points of interest pk and pk+1 in
subsequent frames k and k+1, the following criteria have
been used:
(i) The point pk+1 must lie within the radius rp

k from the
estimated new position of the point p̂k

‖pk+1− p̂k‖< rp
k . (13)

Here, the estimated position p̂k is calculated as

p̂k =

{
pk + c1(pk− pk−1) if pk−1 is available,
pk else,

(14)

where c1 > 0, and the radius rp
k is calculated as

rp
k = (up

kW )2, (15)

where up
k quantifies the uncertainty pertaining to the

point pk in the k-th frame and W denotes the frame
width (in the units in which point positions are ex-
pressed). The uncertainty up is set to up

1 = c2 > 0
in the first frame and is then evolved from frame
to frame through linear scaling above a lower limit
c3 > 0:

up
k+1 =

{
max(c3,c4up

k ) if pk is matched,
c5up

k if pk is not matched,
(16)

where 0 < c4 < 1,c5 > 1.
Moreover, if the evolution (16) leads to up

k+1 > c6 for
some c6 > c3, then the point p is deactivated and not
any more considered for matching.

(ii) Hamming distance between the 256-bit binary de-
sciptors of the points is at most 64.

The choice of the real-valued constants in the criterion
(i) has been based on the resolution of the video (4K), on
the frame rate (25) and on the defaults in the ORB imple-
mentation based on [7]. They have been set to the follow-
ing values: c1 = 0.6,c2 = 0.02,c3 = 0.009,c4 = 0.9,c5 =
1.1,c6 = 0.03.

In each frame, the described implementation was used
to find 500 most interesting points. On a linux computer
with a 3.3 GHz Intel Xeon E3-1230 processor, this took
95.32 ms.

4.3 Implementation of Semi-supervised Classifiers

As input features for both classification methods, the
Cartesian coordinates ([pk]1, [pk]2) of the point in the k-th
frame and and the polar coordinates ([pk− pk−1]||, [pk+1−
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pk]ϕ) of its movement with respect to the previous frame
are used.

In the implementation of the semisupervised classifica-
tion with cluster regularization method described in 3.1,
we used k-means clustering for an initial clustering of all
instances. Although this method allows choosing the num-
ber of clusters independently of the number of classes,
we have set it to the same value for comparability with
semi-supervised kernel-based fuzzy c-means, i.e., to the
value 2 corresponding to the classes of foreground objects
and background. Hence, we performed k-means cluster-
ing with k = 2. Since the k-means algorithm does not
output a probability distribution on the set of clusters, we
employed a simple procedure proposed in [8] to transform
the original distances from an instance xn to cluster centers
v1, . . . ,vk, to a probability distribution qn, which assures
that xn more likely belongs to clusters to which centers it
is closer:

(qn)i =

1−
(

‖xn−vi‖
∑k

j=1 ‖xn−vi‖

)

k−1
. (17)

Consequently, for our case k = 2:

(qn)1 =
‖xn− v2‖

‖xn− v1‖+‖xn− v2‖
, (18)

(qn)2 =
‖xn− v1‖

‖xn− v1‖+‖xn− v2‖
. (19)

The remaining parameters pertaining to semisupervised
classification with cluster regularization were set as pro-
posed in [8]: λ = 0.2,κ = 2, |φ(xn)|= 10.

For the semi-supervised kernel-based fuzzy c-means
algorithm described in 3.2, we used a Gaussian kernel
function for updating the membership matrix K(x,y) =
exp(−‖x− y‖2/σ2), where the parameter σ is computed
as proposed in [9]:

σ =
1
M

√
∑N

n=1 ‖xn− v‖2

N
, (20)

where v is the center of all instances. The remaining pa-
rameters were set as follows: m = 2,ε = 0.001, tmax = 50.

5 Experimental Validation

5.1 Employed Data

For the validation of the proposed approach we prepared
12 short videos. In all videos, there is a yellow or blue bal-
loon as a foreground object and a green background. On
the background, there are a few small red sticky notes to
help detecting some key points. The videos were recorded
in a UHD resolution.

Here is a brief characterization of all employed videos:

• a handheld camera, both the foreground object and
the background are sharp,

• a handheld camera, only the foreground object is
sharp (2 videos),

• a static camera, only the background is sharp (2
videos),

• a static camera, only the background is sharp, the
foreground object is close to the camera,

• a static camera, only the foreground object is sharp, a
hand is interfering with the background (2 videos),

• a static camera, only the foreground object is sharp,
it is moving towards the camera,

• a static camera, only the foreground object is sharp,
it is moving away from the camera,

• static camera, only the foreground object is sharp, it
passes the scene multiple times (2 videos).

For the testing, labels were available for all points of inter-
est. Unfortunately, those labels were often unreliable.

5.2 Results and Their Analysis

On all the employed videos, we measured the quality of
classification by means of accuracy, sensitivity, specificity
and F-measure of both implemented classification meth-
ods.

For the fuzzy c-means method, the accuracy and speci-
ficity on the unlabelled data are illustrated for four partic-
ular videos in Figure 1.

For the cluster-regularization method, we compared the
values of the considered four quality meaures obtained
with five classifiers trained in each of the five first video
frames with respect to the delay between classifier training
and measuring its quality. The results of their comparison
are for three particular delays, 1 frame, 5 frames and 10
frames, summarized in Table 1. In addition, for delays up
to 50 frames, they are again illustrated for accuracy and
sensitivity on the four videos used already in connection
with the fuzzy c-means classifier, in Figures 2–5.

The figures (2)–(5) indicate that classifiers trained in a
later frame tend to have higher accuracy and specificity,
but in general, the differences between classifiers trained
in different frames are small. This is confirmed by the
Friedman test for delays 1, 5 and 10 frames between clas-
sifier training and measuring its quality and for all four
considered quality measures. The hypothesis of equality
of all five classifiers is rejected (p-value < 5%) only for
the delay 1 frame and the F-measure, and weakly rejected
(p-value < 10%) for the delay 1 frame and the sensitivity,
as well as for the delay 5 frames and the F-measure. A
posthoc test expectedly reveals that the equality of all five
classifiers was rejected mainly due to differences between
classifiers trained in the early and in later frames; in par-
ticular between those trained in the 1st and 4th frame (de-
lay 1, both sensitivity and F-measure), classifiers trained
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Table 2: Results of the Friedman test of the hypothesis
that for a given delay between classifier training and mea-
suring its quality, a given quality measure is equal for the
classifiers trained in each of the 5 first video frames, for
the 12 combinations of delays and quality measures con-
sidered in Table 1. The combinations for which the tested
hypotheseis was weakly rejected (p-value < 10%) are in
italic, the single combination for which it was rejected (p-
value < 5%) is in bold italic. All simultanously tested hy-
potheses were corrected in accordance with Holm [5]

Quality measure Delay p-Value
accuracy 1 1
accuracy 5 0.117
accuracy 10 1

sensitivity 1 0.052
sensitivity 5 0.428
sensitivity 10 0.238
specificity 1 1
specificity 5 1
specificity 10 0.25
F-measure 1 0.043
F-measure 5 0.089
F-measure 10 0.238

in the 1st and 4th frame (delay 1, F-measure) and classi-
fiers trained in the 1-3 frame and in the 5th frame (delay 5,
F-measure).

6 Conclusion

The presented research integrates two comparatively re-
cent approaches, the keypoint detector ORB, which is a
combination of a corner detection method with a visual
descriptor method, and two semi-supervised classifiction
methods. To our knowledge, this is the first time these ap-
proaches are used together for the task of scene segmenta-
tion into the foreground objects and the background.

On the other hand, this is a work in progress and the pre-
sented results are still rather preliminary, being obtained
on 12 artificially created videos with a quite simple scene
segmentation. Both approaches should be investigated in
the context of more complex segmentations and more re-
alistic scenes. To this end, however, especially the ORB
detector needs to be more deeply elaborated with methods
of semisupervised classification.
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Figure 1: The evolution of accuracy (top) and specificity
(bottom) of the c-means method on the unlabelled data for
four particular videos
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Figure 4: The evolution of accuracy (top) and specificity
(bottom) of the classifiers trained in each of the 5 first
video frames for a static-camera video, in which only the
foreground object is sharp and is moving towards the cam-
era

Figure 5: The evolution of accuracy (top) and specificity
(bottom) of the classifiers trained in each of the 5 first
video frames for a static-camera video, in which only the
foreground object is sharp and passes the scene multiple
time
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Abstract: A lightweight model for real-time monitoring
of the load of Hungarian highway traffic is presented in
the paper. The input data of the model are cell phone net-
work event records provided by Magyar Telekom Nyrt.,
the major Hungarian telecommunication company. The
output is a classification of the level of crowdedness of
the Hungarian highways inferred from the activity level of
the mobile telecommunication infrastructure. While pro-
cessing, a data-stream is flowing through a chain of sim-
ple but efficient data structures. For computing anomalies
against the usual behavior of the traffic at given segments
of the highway, so-called break-points, known from the
SAX representation of time-series, are utilized which re-
quire cheap computation. The model is implemented as
a server application able to feed a client web-based visu-
alization application implemented for demonstration pur-
poses. The experiments, performed on anonymized data
covering one month of cell phone records, show that the
presented model is computationally cheap, it efficiently
runs even on low-end hardware such that Raspberry Pi.
Keywords: Anomaly Detection, Mobile Data Analytics,
Visualization

1 Introduction

A method resulting from an industrial research project is
presented in this paper. The presented method has been de-
veloped for a specific and well-defined use case: inferring
the level of the mobility traffic load on Hungarian high-
ways from cell phone network data. The data have been
provided by the industrial partner, Magyar Telekom Nyrt.,
the major Hungarian telecommunication company, a sub-
sidiary of Deutsche Telekom AG.

Experimental outcomes are positive and promising as
the underlying core model is computationally light and
simple. The data structures used and the overall system
architectural-design could be, possibly, exploited for other
applications or use cases. More specifically, the presented
model can be used where there is the need to detect anoma-
lies in time series given a set of nodes and the logs pro-
viding quantitative information describing the activity of
such nodes over time. Even if the developed framework is
specifically build to infer information regarding the Hun-
garian highways mobility infrastructure through the anal-

ysis of the mobile telecommunication infrastructure, the
core model can be adapted to different scenarios and dif-
ferent data logs such as tower cell crowdedness or Internet
backbones nodes activity monitoring.

1.1 Related Work

Nowadays we are witnessing to a constant increasing
speed of networks, furthermore the capability to store and
process conspicuous amount of data can be performed at
affordable prices. This new scenario enables telecom op-
erators to store and process big quantities of logs triggered
by a countless number of events. Along the past years,
the research community proposed several models regard-
ing the possibility to infer or predict information regard-
ing the status of the mobility infrastructure analyzing the
mobile telecommunication event logs. Furthermore, the
evolution of new telecommunication technology standards
such as 5G will bring more efficient and accurate localiza-
tion techniques leading to more precise analysis and esti-
mations [7].

In [6], authors present quite a complex model able to
estimate the traffic flow making use of anonymized tem-
poral series of cell handover logs, building state diagrams
and using Markov Models in order to detect car accidents.

On the other hand, in [8], authors propose a framework
mining several heterogeneous data sources making use of
the MapReduce programming-model (more precisely us-
ing Apache Hadoop) in order to process big amounts of
data in a reasonable amount of time involving high-end
hardware and clusters of machines. The authors of this
contribution are able to estimate the traffic volume and the
speed of the traffic flow.

In [9], the authors provide a full overview of methodolo-
gies providing a possible list of necessary steps in order to
infer traffic information such that i) location data collec-
tion, ii) terminal classification in order to determine which
mobile terminals are located on the road and which means
of transport they are in, while iii) map matching phase in
order to link the extracted location data with the mobility
infrastructure, iv) the route determination process used to
determine the path of the vehicles while the last step is to
perform v) the estimation of the traffic state.

In order to estimate traffic flows the use of origin/des-
tination matrices have been tried out in [10] and [11],
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however, as pointed out in [6], these solutions might
be computationally expensive from the technical point
of view and hard to scale when the size of the user set
tends to grow. On the other hand, from the law regulation
perspective these solutions might see limitations on
real deployment scenarios due to privacy concerns and
strict regulations, especially the ones applying within the
European Union.

Within this contribution, a minimalistic approach to
traffic load detection is introduced exploiting just events
triggered by the active utilization of the User Equipments
(Calls, SMS and Mobile Data Usage) without involving
logs related to lower level signalling protocols such as
cell handover event logs. The aim of this research was
to discover at which extent and precision is possible to in-
fer reliable traffic analysis with minimalistic datasets and
minimal computing costs. A server application able to
feed a web-based visualization application has been im-
plemented for demonstration purposes. Experiments pro-
vided on real but anonymized data covering one month of
cell phone records show that the the presented model is
promising and is able to efficiently run even on low-end
hardware.

The rest of this paper is organized as follows: Section
2 gives a description of the available data and the proce-
dure utilized to match telecom data with geographical-map
data. In Section 3, a detailed description of the system ar-
chitecture and the core estimation model are provided. In
the Section 4 the process of traffic load classification is
described. The following Section 5 contains experimen-
tal results and measurements. Finally, in Section 6 some
conclusions and plans for future work are provided.

2 Data Sources and Framework
Initialization

An important part of the presented framework is its initial-
ization to the specific use case, such that highway traffic
load monitoring, in our case, what consists of understand-
ing the data and selecting the towers to be considered rel-
evant by the framework.

2.1 Telecom Data

The industrial partner has granted access to a dataset1 con-
taining several .csv (Comma Separated Values) files or-
ganized in a daily basis containing two main kinds of in-
formation such that

1Due to the signed non-disclosure agreement between the academic
and the industrial partner of the project, each sample of the data, e.g. the
Tables 1 and 2, presented in this paper are synthetic, i.e. contain fictive
information.

Call Detail Record (CDR) data concern the activity logs
of each user interacting with the network on a daily ba-
sis. A CDR is produced by a telephone equipment that
documents the details of a call or other telecommunica-
tions events (e.g. notifications, short message service or
signaling protocols) that involves the telecom provider in-
frastructure.

The dataset is composed by several files accounting a
size of 500GB. The entire information contained within
the dataset covers a range of 31 days, more precisely be-
tween 15th September 2016 and 15th October 2016, where
all the unique identifiers referencing to the users have been
anonymized on a daily basis. The overall number of logs
is around 200 million records per day.

In order to work with just the useful data all the un-
necessary information contained in the dataset such as the
nature of event logs and other information regarding cus-
tomer related data (e.g. phone and events identifiers) have
to be discarded by the framework.

At the end of this process, the CDR files contains three
kind of attributes as presented in Table 1, namely, the
Unique User Identifier (UUID) re-anonymized on a daily
basis (to prevent tracking of user movement across more
days), the date-time information related to the log event
and the Tower Identifier (TID) providing information from
which cell-tower the event has been triggered.

Cell Reference (CR) data provide informations about the
mobile radio-towers and their positioning within the Hun-
garian territory. As illustrated in the Table 2, CR data
contain three attributes, namely, the Tower Identifier (TID)
which connects the CDR data with the CR data, the Lat-
itude and the Longitude regarding the given tower. Due
to how the industrial partner gathered and anonymized
the data, process on which the authors were not involved,
some records contained within the CDR files hold UUIDs
with NULL value or in some cases hold inconsistent TIDs.
Namely some TIDs contained in the CDR logs do not
match any of the TIDs in the CR data. The UIIDs incon-
sistencies are uniformly spread over the locations while
for the inconsistent TIDs is not possible to draw any con-
clusion about the geographical regions affected. In case of
those inconsistent logs, it is not possible to get the subject
performing the action or the location of the event. For this
reason all the affected records, which are around 30% of
all the records, are affected and have to be handled (dis-
carded) by the framework during the on-line computation.

2.2 Geographic Maps Data

In order to get information about Hungarian highways the
research relied on OpenStreetMap2 (OSM) data. The open
project makes available data about roads, trails, cafes, rail-
way stations and other basic map features from all around
the world.

2https://www.openstreetmap.org/
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UUID date-time TID
6776554S3449 2016-09-15 13:30:41 10B32F03E10CB
777865354435 2016-09-15 00:27:50 10DA0232324BC
677655453449 2016-09-15 17:44:08 00443344DFFEA

Table 1: A synthetic CDR data sample with fictive UUID, date-time and TID data, for illustration purpose .

TID Latitude Longitude
6776554S3449 46.291311 17.366325
777865354435 46.282342 17.357244
677655453449 46.366745 17.364112

Table 2: A synthetic CR data sample with fictive TID, Lat-
itude and Longitude data for illustration purpose.

First of all information about the Hungarian country
borders have been extracted, then the data regarding only
highways has been kept obtaining a .json file containing
informations about each highway divided in several seg-
ments, where each segment contains information describ-
ing a small section of the highway (e.g.: name, type, speed
limit) and its location. The length of each highway’s sec-
tion depends on the topography of the area, the density of
the population and the radio-technology of the cell tow-
ers of the operator. The outcome of this phase, i.e. the
detected borders, can be observed in the Figure 6.

Detecting Relevant Towers In order to monitor the high-
ways infrastructure traffic and exclude irrelevant informa-
tion from the data model an additional filtering and select-
ing step has been performed. After this phase, only the
relevant towers that have a strict correlation with the high-
ways infrastructure have been kept.

The density of the cell tower placement and its spatial
characteristics represent a crucial issue in terms of space-
resolution within the developed monitoring system. Pro-
vided the mostly flat characteristics of the Hungarian land-
scape, is possible to assume that the cell towers displace-
ment is mostly not conditioned by the topographic proper-
ties of the surrounding areas but rather follows the density
of the population over the whole territory. This character-
istic of the cell towers placement is due to several factors
such as scalability, laws of physics and signal processing
theory. Figure 1 illustrates the density of the city of Bu-
dapest and its east country side area from which it is pos-
sible to observe that in rural areas cell towers are placed
close to the highway in order to provide the radio-signal to
travelers.

In order to detect cell towers which lead to the crowded-
ness status of that specific section of the highway, an ad-
hoc algorithm have been developed based on a QuadTree
[1] data structure. The generated tree contains all the co-
ordinates of the cell towers that are listed in the CR data.
Then, for every highway section the closest tower cell has
been found querying the tree structure. After this process,

Figure 1: Density of cell towers for Budapest Urban and
Eastern Rural Area, an illustrative example.

Figure 2: Relevant towers identification and towers com-
petence attribution, an illustrative example.

as shown in Figure 2, each highway section is linked to a
specific cell tower while all the towers not related with the
highways will not be considered by the framework while
processing.

3 The System Architecture

The framework has its roots in several components, i.e. the
following data structures (called dictionaries, according to
Python notation) and logical units.

3.1 Data Structures

Relevant Towers Dictionary (RTD) RTD is one of the
main data structure on which most of the others are based
on. In fact the RTD represents an HashMap having as keys
the identifiers (TID, see Table 2) of all the relevant towers
and as values the geographical coordinates of given towers
as strings. RTD is the result of the module for detection of
relevant towers, described above. This dictionary remains
constant in the framework and changes only if there are
changes in geographical locations of cell towers such that
a new tower is placed near the highways, for example.
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User at Relevant Towers Dictionary (URTD) URTD is
a HashMap and it has as keys all the UUIDs (Unique User
IDs, see Table 1) of the users whose previous logs were
triggered by relevant towers, namely, those logs who had
their TID appearing in the RTD keys, and, as values the
TID of the tower the given user has been related to for the
last time. At the startup of the system, this data structure is
empty and at the beginning of a new day, due to the UUID
re-anonymization on a daily basis, it is reinitialized.

Tower ID Counter Dictionary (TIDCD) TIDCD is a
HashMap and it has as keys (TIDs) all the relevant towers
while it has as values counters representing the number of
users whose last log have been related to that specific TID.

3.2 The Status Maintainer Module (SMM)

As soon as a log event is triggered, the SMM is delegated
to keep track of the last location of the user (attaching to
him/her the proper TID in the URTD) and increases or de-
creases the counter of the proper TID within the TIDCD
according to the situation. This module acts as a supervi-
sor moving the subscribers from a tower to another, keep-
ing the model up to date with the information provided by
the event logs. SMM is delegated to interpret and take de-
cisions based on the information provided from the logs
with the following functionality:

As soon as the application is started, both the URTD and
the TIDCD Hash Maps are empty. As the first incoming
log having a TID present in the RTD key-set is processed,
the SMM will fill the URTD with the UUID as key and the
TID as value, then, it will initialize the counter of the spe-
cific TID key within the TIDCD to 1. If a second log from
the same user will come but, this time, with a different and
relevant TID then the counter of the old TID (the last “lo-
cation” of the user) within the TIDCD will be decreased
by one unit and suddenly the corresponding URTD’s value
will be updated to the actual TID inferred from the log
querying the RTD and, finally, the corresponding TIDCD
value (for the actual TID the user is connected to) will be
increased. In the last case, if the subscriber’s handset will
trigger a log which is not related to a relevant tower, the
counter of the old TID within the TIDCD will be decreased
by one and the key within the URTD corresponding to the
specific UUID will be removed (the user has left the set
of towers delegated to monitor the highways mobility sta-
tus). All the event logs (records) containing a non-relevant
TID (user is not on a highway) and UUID not stored in
URTD (user was not on a highway before) are immedi-
ately discarded. Figure 3 provides an illustration of the
SMM logic.

3.3 The Evaluator Module (EM)

The EM is the core module of the framework, which is
responsible for classifying the status of the load of a spe-

cific highway segment. It uses as an evaluation model de-
scribed in the next section where the number of classes is
determined by a parameter.

The EM module is triggered every time a time frame
(a parameter of the framework) expires. At this point it
is time to evaluate the status of the whole system. At this
stage the EM iterates over all the TIDCD, computes all the
means and standard deviations using the past data neces-
sary to evaluate the actual status of all the relevant TIDs
and then finally classifies every segment of a given high-
way into one of the predefined classes. For example, in
case of 10 classes, the class 5-6 corresponds to normal
traffic, 7-8 to higher while 9-10 to very high traffic, 3-4
to lower and 1-2 to very low traffic on a given segment of
the highway.

3.4 The Notification Delegate Module (NDM)

The NDM is the part of the framework responsible to con-
stantly collect the result of the EM and update the clients
about the highways status sending all the needed informa-
tions as a json payload. While this process takes place,
an ID conversion is performed. In fact, the back-end and
the front-end of the framework, due to security reasons,
do not share the same internal IDs for representing the
TIDs. Once finished, the control is passed to the Noti-
fication Delegate Module responsible for communicating
with the client (described below).

4 Classification of the Traffic Load

In order to classify the load of a segment of highway, one
should consider the past data as a reference for the eval-
uation of the new entries. Given the topographic features
of the Hungarian landscape it is expected that the activity
of cell towers close to the highway have a low static noise
(in [6] authors highlights that systems relying on cell tele-
com logs for traffic estimations within urban areas could
suffer high loss of precision due to event logs triggered by
non-traveling users). In fact, in this specific case the ma-
jority of the event logs are generated mostly by travelers
and it is easily possible to observe that the number of trav-
elers in a given time-range tend to be similar for different
week-days.

Provided the latter observation, it is possible to build a
model such that in order to classify the load of a specific
road segment in a precise time-range of the day (e.g.: be-
tween 12:00 and 12:15) compares the value to be classified
against the values of load within the same time range of the
previous days. Here, a sort of seasonality of the traffic has
to be considered, e.g. there is more heavier load during the
rush hours while less traffic at nights.

An other, interesting phenomenon is that sometimes a
traffic anomaly can become normal with time. For ex-
ample, consider a longer construction work on a highway
causing the close of some parts (e.g. lanes) of the road. In
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Figure 3: The logic diagram of the Status Maintainer Module

the time of its appearance, since it is sudden for the traf-
fic, it is considered an anomaly and results in traffic jams.
However, with time, the traffic normalizes such that peo-
ple get used to it (e.g. start using alternative routes) and
the notion of heavy load changes.

All of the above observations lead to the straightforward
use of time-series for representing the given problem of
traffic load monitoring and classification.

4.1 Utilizing Breakpoints

The proposed model for classification of traffic load in var-
ious highway segments utilizes well-known concepts in
Symbolic Aggregate Approximation (SAX) of time series
[2, 3]. SAX makes use of Piecewise Aggregate Approx-
imation (PAA), a computationally very cheap method [4]
since it operates with arithmetic mean and standard devi-
ation, both very cheap operations.

SAX allows a time series of arbitrary length n to be re-
duced to a string of arbitrary length w, (w� n) with the
alphabet size a > 2 (the number of letters used to represent
the time-series using SAX). In this process the data is di-
vided into w equal sized “frames”. The mean value of each
frame is calculated and a vector of these values becomes a
reduced representation. For further details, refer to [2, 3].

Assuming that the distribution of the values over the
time-series follows a normal distribution, it is possible
to subdivide the time-series into so called breakpoints B.
Breakpoints are a sorted list of numbers B= (β1, · · · ,βa−1)
such that the area under a N(0,1) Gaussian curve from β1
to βi+1 = 1/a where β0 and βa are defined as−∞ and +∞,
respectively. The advantage of utilizing breakpoints is that

they do not need further computation but may be deter-
mined by simply looking them up in a statistical table, as
illustrated in the table 3 containing the breakpoints divid-
ing a Gaussian distribution in an arbitrary number (from 3
to 10) of regions.

The final key-concept of the proposed model is that it
does not represent the data in the past with a SAX repre-
sentation, however the system classifies a new entry using
the breakpoints generated making use of the data recorded
in past in a SAX-like fashion just performing a lookup on
a small table.

An efficient way to detect anomalies in time series is
that it is enough to compare the breakpoint determined for
the actual time frame to the breakpoints determined for
the corresponding time frame(s) in the past, for example,
the same time of the day before or the same time of the
same day a week before, etc. Depending on the number
of classes to which the framework should classify the new
entry in the dataset, the right column of the statistical table
has to be implemented in the system and then looked up.
In order to give a wider freedom of tuning, this value has
been kept as a parameter of the framework.

Historical Data Representation The data from the past
are stored in an efficient-to-load binary format making use
of Python’s Pickle module. Files are stored in a daily for-
mat in the form of a HashMap of arrays having as keys the
TIDs. Once loaded, the files are reshaped in MxN matri-
ces, one for each TID, where M is the number of time-
frames and N represents the number of days to consider in
the past. All the tests in this research were performed set-
ting the time frames at 15 minutes and considering the last
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a
βi 3 4 5 6 7 8 9 10
β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.43 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Table 3: Statistical table for determining the values of breakpoints

15 days in the past. This representation have been chosen
because once the system is running in real-time with a con-
tinuous data-stream then it is easy to shift the matrix data
and recompute all the means and standard deviations effi-
ciently. This shifting and re-computation operation would
be performed once per day at a given time (e.g. midnight)
exactly when the system is subject of a reinitialization or
when the log re-anonymization process is performed.

5 Experiments

Given the lack of open systems providing precise infor-
mation about the traffic flows over time we validated the
system over specific traffic congestions. The goal of the
experiment is to validate the method looking for a correla-
tion between the highways status and the telecommuni-
cation infrastructure. In order to validate the results of
the developed system authors asked the collaboration of
utinform3, a department of Magyar Közút Nonprofit Zrt.
whose responsibility is to collect information and moni-
toring the roads traffic. They gather information from het-
erogeneous data sources: the employees of the company
monitoring the highways, the county directorates and the
engineering departments employees. Utinform, in order to
cross-validate the crowd sourced data sets, is also coop-
erating with institutions such as police, disaster manage-
ment, and public transport which have their own feed to
post their information to the system. Furthermore, the sys-
tem has a crowd source interface, where people can submit
experienced traffic anomalies. The goal of utinform is to
provide fast and validated traffic information to the drivers
in whole Hungary.

The data received include information regarding traffic
congestions on all the Hungarian highways. The dataset
contained data from October the 1st to October the 14th,
2016 regarding congestions with a length of at least 3 kilo-
meters. Table 4 shows the validation data and the results
of the proposed framework.

Setting the number of classes to 10. We define a cor-
rect detection when there is at least 50% overlap (in terms

3http://utinform.hu/

of time) over the validation data with traffic classification
level equal to 9 or 10. With this setup eleven out of four-
teen (79%) congestions have been successfully detected.
The time series have been quantized with time windows
of 15 minutes, thus during the testing phase the classifica-
tion takes place each fifteen minutes.

It is interesting to note that the majority of the anoma-
lies are detected earlier than the data provided by utinform.
This can be a proof that the proposed solution is able to
spot congestions when these are shorter than three kilome-
ters. The outcome is similar for what concerns the end of
the congestions, in this case the proposed solution tends to
detect the end of an anomaly later than the validation data
set. Three congestions out of fourteen have not been de-
tected, however this can be due to at least two reasons: the
telecom operator (because of industrial secrecy concerns)
did not provide to us any detail regarding the range of an-
tennas or their direction, thus, there might be a chance of
inaccuracies along the phase of matching the geographi-
cal maps with the towers’ positions in order to define the
competence of each tower w.r.t. the highways segments.
Another reason could be due to data inconsistencies. In
fact, as mentioned in Section 2, one third of the data have
been dropped.

Figure 4 represents the classification value over time
slices of fifteen minutes for the highway segment suffer-
ing for the congestion described in Table 4 on row three.
The red (in black and white print: the dark) vertical line
represents the time slot when the anomaly is detected on
the validation set. Here, a congestion is defined when the
classification values are equal or greater than 9. On the
other end, Figure 5 represents the number of handsets (an
estimation of the number of travelers) involved in the con-
gestion.

The application framework have been completely devel-
oped in Python 3.6 and it have been demonstrated to be
very efficient. Although the system is designed to work
on-line receiving a stream of data in real-time, in order
to measure the performances of the model, we decided to
exclude the streaming and the networking module, finally
we tested the model in off-line mode. One log per time
is read and suddenly processed. With this approach we
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Cong. Start Time Cong. End Time Det. Start Time Det. End Time
11:00 11:40 10:30 12:15
06:35 07:45 07:15 07:45
09:30 22:10 09:00 00:00
17:55 09:05 none none
06:52 07:30 07:00 08:15
14:50 16:50 16:45 17:30
08:40 18:10 08:15 18:45
14:00 17:10 14:45 19:25
10:00 11:20 08:45 13:45
17:23 20:15 16:15 20:00
07:20 08:50 07:30 10:30
02:55 04:40 none none
15:00 16:00 15:15 16:15
06:45 07:25 none none

Table 4: Experimental Results indicating congestion (Cong.) start and end times as well as detection (Det.) start and end
times.

Figure 4: Classification values over time slices and the
time of a congestion (red/dark line), an illustrative exam-
ple.

maintained the architectural design of the framework and
no-delay straming process has emulated while at the same
time avoiding networking related delays. Running the ap-
plication on an Intel i7 6700K with 16GB of DDR4 RAM,
on average, manages to process the logs for an entire day
within less than 10 minutes with a peak of RAM con-
sumption of 32MB. Furthermore, the application frame-
work have been deployed on a Raspberry Pi 3 where
the running time needed to process an entire set of logs
representing one day is in around 1 hour, in average.

5.1 Visualization

First the communication interface need to be mentioned
between the back end and the front end part. The front end

Figure 5: Number of handsets involved in a congestion and
the time of the congestion (red/dark line), an illustrative
example.

is a web based application, it uses HTML and JavaScript,
which communications with the Python back end through
Web Sockets with .json files. At the initialization stage,
first the front end asks the back end for mapping of tower
IDs and highway sections, as it was mentioned before at
the geographic data section. After the initial step, the back
end is sending messages which the front end processes and
shows on the map. These messages are json files, con-
taining a list of objects with three attributes: ID, value,
anomaly. The ID stands for the tower IDs and the value is
an int from 0 to 9 showing the traffic load on that segment,
and the anomaly flag is giving information that this value
is the expected for the given time window or it is deviating
from the usual traffic load on that area. In order to keep the
low cost functionality of the system, the visualization had
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to be carefully built as well. An open-source JavaScript
library, LeafletJS4 was used to place layers on the par-
ticular highway segments. This library has relatively low
cost of handling layers and as it is expected from an ap-
plication where the traffic load is constantly changing this
was a critical feature. Each layer is a colored visualization
of the value given to the particular highway section, an ex-
ample can be seen on the Figure 6, where the spectrum is
from blue to red, representing the low to high traffic load.

Figure 6: The traffic load visualized on the highway seg-
ments, an illustrative example.

6 Conclusions

A lightweight traffic monitoring and traffic jam detec-
tion framework has been presented in this paper based on
HashMap data structures and methods for breakpoint de-
tection well-known in time series classification. The used
concepts require cheap computation and, basically, mini-
mal tuning phase opposite to the case of tuning the hyper-
parameters of machine learning algorithms. The few pa-
rameters of the framework such that the time window or
time frames as well as the number of breakpoints can be
set according to an available domain knowledge or user
expertise. However, to avoid false positives, it is recom-
mended to tune the presented framework before imple-
menting it into a production environment.

The SAX representation had already been used as a tool
for time series classification. However, the proposed dis-
cretization procedure is unique in that it uses an interme-
diate representation between the raw time series and the
symbolic strings. Furthermore the aim is not to classify
full time series as in [5] but rather to classify new incom-
ing single values.

The presented framework was tested using real data.
Due to the sensitive nature of the project the presented
framework was developed within, the authors cannot dis-
close the source code nor the data used in experiments, in
this time. Experiments show that the proposed framework
is promising and worth further development and adapta-
tion to other use-case scenarios.

4http://leafletjs.com
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An adaptable central pattern generator (CPG) that di-
rectly controls the rhythmic motion of multilegged robot
must combine plasticity and sustainable periodicity. This
combination requires an algorithm that searches the para-
metric space of the CPG and yields a non-stationary and
non-divergent solution. We model the CPG with the pi-
oneering Matsuoka’s neural oscillator which is (mostly)
non-divergent and provides constraints ensuring non-
stationarity. We embed these constraints into the CPG
formulation which we further implemented as a layer of
an artificial neural network. This enables the CPG to be
learnable by back-propagation algorithm while sustaining
the desirable properties. Moreover, the proposed CPG can
be integrated into more complex networks and trained un-
der different optimization objectives. In addition to the
theoretical properties of the developed system, its flexibil-
ity is demonstrated in successful learning of the tripod mo-
tion gait with its practical deployment on the real hexapod
walking robot.

1 Introduction

The movement of legged robots relies on synchronized
control of each its joint. Since these joints are part of
the same body, the velocity of each joint is dependent on
the position of all robot’s joints. The problem of generat-
ing such synchronized control signals gets harder with in-
creasing number of legs (or the number of joints per leg).
A widely used generator of such signals is a system of
interconnected Central Pattern Generators (CPGs). The
system based on CPGs can be described as two or more
coupled oscillators. CPGs appear in many vertebrates and
insects where they are responsible for controlling rhythmic
motions, such as swimming, walking or respiration [1, 2].
It also appears in biologically inspired robotics, where
CPGs are used for locomotion control of legged robots [3].

A CPG network can be modeled as a non-linear dy-
namic system with coupled variables. Such a non-linear
dynamic system is parameterized in the way that it con-
tains a stable limit cycle, but finding such a parametriza-
tion is difficult because an analytical description of the
high-dimensional non-linear dynamic system is hard or
impossible. Moreover, even a small change in the param-
eters can result in a sudden change of the system’s quali-
tative properties that can range from chaotic to stationary
and somewhere between is the desired periodic behavior.

Parameters of the CPG networks can be found ex-
perimentally (i.e., tuned manually or automatically by
evolutionary algorithms [4]) or they can be heuristically
designed. Such design-dependent methods make CPG
networks difficult to scale on other robotic bodies or
adapt to the locomotion control in different environments.
The scaling problem can be partially bypassed by pre-
computing a trajectory for each foot tip and employing in-
verse kinematics to determine the control signals for the
particular leg’s joints [5, 6]. However, the inverse kine-
matic depends on the robot’s body, and identification of
the parameters that have to be manually fine-tuned to en-
sure a proper behavior.

The motivation for the presented approach is to develop
a fully automatic CPG learning and this paper explores the
possibility of learning a CPG network modeled by Mat-
suoka’s neural oscillators [7] with back-propagation al-
gorithm (BP). To boost the BP algorithm that learns the
desired locomotion control for our multi-legged walking
robot, we propose two methods pruning the parameter
space of the CPG network.

The particular contributions presented in the paper are
considered as follows.

• A normalization layer that prunes the parameter
space from parametrization with stable stationary so-
lutions.

• An inductive learning method that exploits the struc-
ture of robot’s body and further reduces the searched
parametric space.

• Experimental evaluation of the proposed learning us-
ing real hexapod walking robot for which the pro-
posed CPG network learned by the designed algo-
rithm exhibits successful locomotion control follow-
ing tripod gait, where the developed CPG network
directly produces the control signal for each of 18 ac-
tuators of the robot.

2 Related Work

Different biomimetic approaches including CPGs [1], Re-
current Neural Networks [8] or Self-Adjusting Ring Mod-
ules [9] to produce rhythmic patterns have been studied
and deployed for locomotion control of robots [3] in recent
years. These approaches differ mainly in the complexity of
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the underlying model and have different levels of abstrac-
tion ranging from biomechanical models [10] simulating
membrane potentials and ion flows inside neurons, down
to a model of two coupled neurons in a mutual inhibi-
tion [11]. Amongst them, the CPGs based on Matsuoka’s
neural oscillator [7] are being used as the prevalent model.
Further details on the Matsuoka’s model are in Section 3
as we built on its properties [7, 12, 13] in our work.

Deployment of the CPG oscillators on legged robots is
also particularly difficult because of different kinematics
and dynamics of each robot. A different amount of post-
processing is used to translate the CPG outputs to joint
coordinates. Namely, approaches using inverse kinemat-
ics [5, 6] suffer from necessary hand fine-tuning of both
the parameters of CPG as-well-as kinematics. Besides, ex-
isting approaches are using the separate neural network as
motor control unit [11] or use CPG outputs directly as joint
angles [14]. Furthermore, CPGs can seamlessly switch be-
tween different output patterns, thus different gaits [15]
which further supports the direct joint control. In our
work, we use a dedicated output layer to shape the out-
puts of CPGs as we assume simple transformations of the
output signal are easier to learn by changing parameters of
the output layer while the gait change is in charge of the
CPG.

Parametrization of the oscillator can be found experi-
mentally, e.g., using evolutionary algorithms with fitness
function minimizing energy consumption [11], maximiz-
ing the velocity [4], or using parameter optimization [16].
Besides, a modified back-propagation algorithm has been
used on an adaptive neural oscillator in [17] to imitate an
external periodic signal by its output signal, but it fails
to sustain oscillations for complex waveforms. Further
works on the parameter constraining of CPGs to maintain
stable oscillations have been published [7,12,13,16]; how-
ever, to the best of our knowledge we are the first to teach
a network of CPGs to perform a locomotion gait of a hexa-
pod walking robot using back-propagation. Furthermore,
we propose two methods to prune the space of possible
CPG parameters.

3 Central Pattern Generator Network

The CPG network used in this paper is based on the Mat-
suoka’s neural oscillator [7]. Matsuoka’s neural oscillator
is a pair of symmetrically connected adaptive neurons, ex-
tensor, and flexor, that imitate the behavior of biological
neurons where after peaking, the neuron starts to repolar-
ize until its activation drops to resting potential. Features
of Matsuoka’s neurons were extensively studied; hence,
necessary conditions under which the neural network en-
ters the stable stationary state [7], effects of time-variant
tonic input [12], and approximation of oscillator’s funda-
mental frequency and amplitude [13] are well documented
in the literature. The description of the particular CPG
model used in this work is as follows.

Extensor neuron Flexor neuron

vei

uei

vfi

ufi

to other CPGs

wij wij

from other CPGs

cei cfi

β β

Ta
d

dt

Tr
d

dt

Ta
d

dt

Tr
d

dt

wfewfe

Figure 1: CPG unit connected to the CPG network.

3.1 CPG Model

The dynamics of the CPG network with N units can be
described by a set of equations

Tru̇e
i =−ue

i −w f eg(u f
i )−βve

i −
N

∑
j=1

wi jg(ue
j)+ ce

i , (1)

Tav̇e
i = g(ue

i )− ve
i , (2)

Tru̇
f
i =−u f

i −w f eg(ue
i )−βv f

i −
N

∑
j=1

wi jg(u
f
j )+ c f

i , (3)

Tav̇ f
i = g(u f

i )− v f
i , (4)

where the subscript i ∈ N denotes the particular CPG and
the superscript µ ∈ {e, f} distinguishes the extensor and
flexor neurons, respectively. Each tuple of the variables
ue

i ,v
e
i describes the dynamics of the extensor neuron. The

variable ue
i represents activation of the neuron and ve

i rep-
resents its self-inhibitory input, which makes this neuron
adaptive. Similarly u f

i ,v
f
i describe the dynamics of the

flexor neuron. The function g is a rectifier

g(x) = max(0,x) (5)

that is an activation function that adds non-linearity to the
system. Each neuron (i,µ) inhibits itself through the vari-
able vµ

i scaled by the parameter β > 0. The extensor-flexor
pair (i.e., the CPG unit) mutually inhibits itself through
the symmetric connection with the weight w f e > 0. Fi-
nally, the CPG units are inter-connected with the symmet-
ric inhibiting connections wi j ∈W for wi j ≥ 0 and wii = 0,
where W is a symmetric matrix. The only source of exci-
tation for this CPG network is the tonic input ce

i ,c
f
i (≥ 0)

which is given externally. In general, the tonic input may
be time-dependent and can be used to regulate the output
of the CPG network [12]. Tr and Ta (both > 0) are reac-
tion times for their respective variables. The structure of
the CPG unit is visualized in Fig. 1.

All the equations (1), (2), (3), and (4) are differentiable
except the cases when uµ

i = 0, since the rectifier is used as
the activation function. However, we assume this will not
cause any problems because the rectifier is used inside the
Rectified Linear Units (ReLU), which are widely used in
deep neural networks.
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Figure 2: The CPG network connected to the output layer
Out. Notice the output y is not fed back to the network.
Also notice that the self-inhibitory input u is not connected
to Out.

Note that except tonic inputs ce
i ,c

f
i , there are used only

inhibiting connections, because such a system is less prone
to become chaotic or divergent [13].

3.2 Output layer

In this work, we consider the self-inhibitory inputs ve,v f

as hidden variables, we do not work with them outside of
the CPG network. The output layer combines the activa-
tion variables ue,u f with the affine transformation

y =Woutu+bout , (6)

where u = (ue,u f ) and Wout ∈RN×2N ,bout ∈RN×1 are the
learnable parameters. The connection of the CPG network
and the output layer is illustrated in Fig. 2.

The main advantage of having Wout and bout as learnable
parameters are that the BP algorithm can scale and trans-
late the limit cycle formed by the CPG network. Here, we
assume that these transformations are easier to learn by
changing the parameters of the output layer than by chang-
ing parameters of the CPG network. It is because a change
of any parameter of the CPG network can generally cause
a non-linear change in the amplitude, frequency, and shift
of the generated signals [6]. Another advantage of the pro-
posed output layer is that it can develop complex signals
as it can combine outputs from different CPGs.

4 Proposed Locomotion Control Learning

In this section, we propose the normalization layer and in-
ductive learning method adapted to learning a CPG net-
work for a hexapod walking robot, see Fig. 3a. Each leg
of the robot has three joints called coxa, femur, and tibia
(see Fig. 3b) for which an appropriate control signal has
to be generated to control the locomotion of the robot. In
the total, the robot has 18 controllable joints and depend-
ing on the control signals; the robot can move with various
motion gaits [18], e.g., tripod, quadruped, wave, and pen-
tapod. During the locomotion, each leg is either in a swing
phase to reach a new foothold or in the stance phase in
which it supports the body. The motion gait prescribes the

(a)

Coxa Fe
m
ur

T
ib
ia

θC

θF

θT

(b)

Figure 3: (a) Hexapod robot with the numbered legs. (b)
Schema of the leg. Each leg consists of three parts – Coxa,
Femur, and Tibia.

order in which the swing and support phases alternate for
individual legs; hence, all the legs must work in coordina-
tion to simultaneously achieve the desired behavior. The
hexapod walking robot is thus used for benchmarking the
proposed learning method, where the CPG network has to
learn to generate control signals that realize the locomo-
tion control of the robot with the tripod motion gait.

4.1 Normalization layer

The proposed normalization layer is based on early exper-
iments with randomly parametrized CPG networks which
in most cases ends up oscillating or converges to a static
behavior. The static behavior is caused by the stable fixed
points that may appear in the corresponding dynamic sys-
tem. Therefore, we propose to employ a sufficient condi-
tion for the CPG network to be free of stable fixed points.

Condition. For a CPG network of N units, if all the values
of the tonic input cµ

i , where i ∈ N and µ ∈ {e, f}, are from
the range [cmin,cmax] and

w f e <
cmin

cmax
(1+β )−max

i∈N

(
N

∑
j

wi j

)
, (7)

w f e > 1+Tr/Ta (8)

then the CPG network has no stable fixed point.

Proof. First, we state adapted theorem from [7].

Theorem. Assume that for some i and k (i 6= k)

ci(1+β )−
2N

∑
j

ai jc j > 0, (9)

ck(1+β )−
2N

∑
j

ak jc j > 0, (10)

aik > 1+Tr/Ta, (11)

then the CPG network has no stable fixed point. The term
{ai j}= A(2N,2N) is a matrix of the form

A =

[
W w f eI

w f eI W

]
(12)
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and c = (ce,c f ), where I is the identity matrix of the same
dimensions as W.

Since the CPGs should act as independent units, it is
intuitive that each extensor-flexor neuron pair (a CPG) is
able to oscillate on its own. Thus, a weaker form of the
theorem is used, where the following conditions must hold
for each i-th CPG:

ce
i

c f
i

(1+β )− 1

c f
i

N

∑
j

wi jce
j > w f e (13)

c f
i

ce
i
(1+β )− 1

ce
i

N

∑
j

wi jc
f
j > w f e (14)

w f e > 1+Tr/Ta. (15)

Now, we can focus on the effect of the tonic input c. For
any parametrization W,β ,Tr,Ta,w f e we can find a vector
c that would break these conditions. Let’s relax the prob-
lem by clipping the values of c into the range [cmin,cmax]
where cmin > 0. Then, it must become independent on the
mutable c vector to simplify the system of conditions. This
can be done by substituting c with such c−i that minimizes
the left side expression of (13) or (14) for the i-th CPG.
W.l.o.g. we consider finding c−i just for (13) as

c−i = argmin
c∈[cmin,cmax]2N

ce
i

c f
i

(1+β )− 1

c f
i

N

∑
j

wi jce
j. (16)

Since all the parameters are positive and wii = 0, the min
argument in (16) decreases monotonically with decreasing
ce

i and increasing c f
j values. Thus, we can substitute these

variables with their respective extremes

c−i =





ce
j ∈ R+, j 6= i

ce
i = cmin

c f
j = cmax, j 6= i

c f
i = c′i

(17)

that leaves just c′i as the variable to minimize

F(c) =
cmin

c
(1+β )− cmax

c

N

∑
j

wi j, (18)

c′i = argmin
c f

i ∈[cmin,cmax]

F(c f
i ). (19)

Notice that now, we are searching a scalar value c′i that
minimizes the given expression.

The equation dF(c)
dc = 0 has a solution only if F has such

parameters β ,W,cmin, and cmax that make the function F
constant. Since it is unlikely that such a parametrization
will emerge during the learning, we consider F does not
have any local extremes in the range [cmin,cmax]. There-
fore, the minimization (19) can be simplified to

c′i = argmin{F(cmin),F(cmax)}. (20)

The condition (13) implies F > 0, because w f e must be
greater than zero and the following condition must hold
too

1+β >
cmax

cmin

N

∑
j

wi j. (21)

Now, we define variable ε > 0 that

1+β =
cmax

cmin

N

∑
j

wi j + ε (22)

and substitute the right side of (22) into F(cmin) and
F(cmax)

F(cmax) =
cmin

cmax
ε, (23)

F(cmin) = ε. (24)

Since cmin
cmax
∈ (0,1] and ε > 0, the expression F(cmax) al-

ways minimizes (20). Therefore

c′i = cmax. (25)

After substituting c′i into (17) and then c−i into (13) we
get

cmin

cmax
(1+β )−

N

∑
j

wi j > w f e. (26)

Finally, to make this condition independent on the i-th
CPG, we can choose such an inequality (26) that has the

largest value of the
N
∑
j

wi j expression

w f e <
cmin

cmax
(1+β )−max

i∈N

(
N

∑
j

wi j

)
. (27)

Combining (15) and (27) we get the desired (8) and (7).
�

We integrate the conditions (7) and (8) into the BP
framework by redefining the variables w f e and β as func-
tions

w f e(ŵ f e,Tr,Ta) = 1+Tr/Ta + exp(ŵ f e), (28)

β (β̂ ,w f e,w∗) = (w f e +w∗)
cmax

cmin
+ exp(β̂ )−1, (29)

where ŵ f e, β̂ ∈ R are new independent parameters and w∗

is defined as

w∗ = max
i∈N

(
N

∑
j

wi j

)
. (30)

Then, the max operator is approximated by the differen-
tiable smoothmax defined as

softmax(x) =
exp(x)

∑exp(x)
, (31)

smoothmax(x) = softmax(x)x. (32)
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Since all the parameters must be positive, other parameters
are defined as exponent of the underlying parameter as

Ta = exp(T̂a),

Tr = exp(T̂r), (33)
wi j = exp(ŵi j), i 6= j,

where T̂a, T̂r, ŵi j ∈ R. The weights wi j, i 6= j cannot reach
zero during learning, but they can approach it.

The BP algorithm learns the proposed new param-
eters T̂a, T̂r, ŵi j, ŵ f e, and β̂ that are later normalized
by (28), (29), and (33).

4.2 Proposed Architecture and Inductive Learning

We propose to divide the CPG network into smaller sub-
networks to reduce the search parameter space. These
sub-networks are independently learned and then merged
into larger sub-networks until a single final network re-
mains. The proposed learning of the CPG network is
performed in three phases. First, we learn a single CPG
to generate a signal for one joint which gives us the
shared parameters (w f e,Ta,Tr,β ). Then, six triplets of
CPGs are learned to generate a control signal for the par-
ticular leg. Therefore, for each leg k ∈ [1, . . . ,6], we
get parameters W k and W k

out ,bk
out . In the final phase,

we connect all six CPG sub-networks into one. We
choose to connect CPG sub-networks only by coxa-CPGs
as it is assumed this is enough for each CPG sub-
network to synchronize. Therefore, for the subspace ue =
(ue

coxa,1, . . . ,u
e
coxa,6,u

e
f emur,1, . . . ,u

e
tibia,1) (and similarly for

u f ), W ∈ R18×18 is organized as follows

W =




Wcoxa,coxa Wcoxa, f emur Wcoxa,tibia

Wf emur,coxa 0 Wf emur,tibia

Wtibia,coxa Wtibia, f emur 0


 ,

where Wi j, i 6= j is the matrix of the connections between
the i-th and j-th joints that can be expressed as

Wi j =




w1
i j 0 0

0 · · · 0
0 0 w6

i j


 ,

where the weights {wk
i j}=W k are taken from the matrices

parametrizing the previously learned CPG sub-networks.
For the rearranged vector u = (ue

1,u
f
1 , . . . ,u

e
6,u

f
6), the

term Wout ∈ R18×36 is composed of the matrices W k
out of

the previously learned CPG network that controls the k-th
leg

Wout =




W 1
out 0 0
0 · · · 0
0 0 W 6

out


 .

All the zeroes in the W and Wout matrices are unlearnable
constants imposing a structure onto the CPG network.

4.3 Objective Function

The utilized loss function of the CPG network is defined
as a positive distance of the output vector from the desired
one

L (y(t),d(t)) = ‖y(t)−d(t)‖ , (34)

where d(t) ∈ [0,1]18 is the target signal for each of 18
robot’s actuators at the time t.

During early evaluation of the proposed learning, we
observed that in many cases, the output signal has unde-
sired lower frequency harmonics. This caused the output
signal to fit the target signal only for a couple of the first
periods. We propose to address this issue by an additional
term to the objective function (34)

+‖r−ω‖ , (35)

where r ∈ R+ is a new hyperparameter and ω is an ap-
proximation of the fundamental frequency of the CPG os-
cillations that can be expressed as [13]

ω =
1
Ta

√
(Tr +Ta)β −Trw f e

Trw f e
. (36)

The hyperparameter r should be equal to the fundamen-
tal frequency of the desired signal. However, since (36)
is just an approximation; it might lead to undesired local
minima. Therefore, we propose to switch off the regu-
larization once the term (35) is lesser than a predefined
threshold.

5 Experimental evaluation

The proposed learning method has been experimentally
verified using rmsprop [19] algorithm, which is com-
monly used to learn recurrent neural networks. Since the
following experiments are meant to benchmark and map
problems of the CPG network learning, we use a constant
tonic input c = 1. Therefore, cmin = cmax = 1. The initial
state (ue

init ,ve
init ,u

f
init ,v

f
init) is set to ue

init = 0.1, u f
init =−0.1,

and v f
init = v f

init = 0. The target signal is formed of eighteen
sequences of joint angles that were recorded for a course
of five tripod gait cycles. The hexapod robot was driven by
a default regular gait based on [20], which is suitable for
traversing flat terrains, and it uses the inverse kinematics
for following the prescribed triangular leg foot-tip trajec-
tory. This 4.7 seconds long record of all joint signals is
sampled to 2350 equidistant data points, and each signal
is further normalized in the range [0,1], smoothed using
Gaussian convolution to filter out signal peaks, and finally
downsampled by the factor of 3.

Preliminary experiments have shown that the process of
learning profoundly depends on initial parameters and in
some runs, the BP algorithm seems to stuck in local min-
ima from which the learning becomes very slow. This ob-
servation is consistent with [17]. The performance of the
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Figure 4: Squared signal errors of the first leg (a) and body
(b) caused by perturbations. The perturbations have been
introduced only at the start by adding a constant value to
all the trajectory components. For the leg CPG network
(a) after 500 iterations, the errors vanished except for +0.9
perturbation. The body CPG network (b) does not recover
even after 500 iterations except for +0.3 perturbation.

BP algorithm has been improved by adding the regulariza-
tion term (35). After that, the learning is performed in the
three following consecutive steps.

First, each single CPG unit is learned to generate the
sinusoid sin(t/2) that has the same frequency as the fun-
damental frequency of the desired control signal, which
is deterministically set to 3 Hz. The CPG is learned in
2000 epochs, each back-propagating a batch of size 50
data-points. Note that the number of the needed epochs
depends on the initial random parametrization.

Next, the parameters of the sinusoid generator is re-
trained to generate the desired joint control signals. The
generator of each joint control is learned with 2000
epochs. We experimented with the stability of the learned
limit cycle of the first leg by perturbing it, see Fig. 4a. Fi-
nally, the joints CPGs are connected as described in Sec. 4
with non-diagonal values of Wcoxa,coxa initialized to 0.5,
and learned with 4000 epochs. We experimented with the
stability of this final CPG network and results are depicted
in Fig. 4b.

A comparison of the desired control signal of the first
leg and the learned signal is depicted in Fig. 5. The learned
signal has a similar shape and the same frequency as the
original signal. Binding between different triplets of the
legs, the most difficult part is shown in Fig. 6. We can
see that the learned trajectory has a similar structure to the
desired limit cycles. The trajectory also stays within its
limit cycle; the trajectory was generated by six gait-cycles,
therefore, traveled the limit cycle multiple times.

44 45 46

0.25

0.50

co
x
a[

ra
d

]

−1.2 −1.0 −0.8 −0.6

0.25

0.50

44 45 46

−1.25

−1.00

−0.75

fe
m

u
r[

ra
d

]

1.2 1.4 1.6

−1.25

−1.00

−0.75

44 45 46

t[sec]

1.25

1.50

ti
b

ia
[r

ad
]

0.2 0.4 0.6

[rad]

1.25

1.50

Figure 5: Signals controlling the joints of the first leg.
Green ones are desired, and blue ones are generated by
the CPG network. The time evolution is on the left, while
projected phase-space trajectories are on the right. Each
row corresponds to one joint, i.e., coxa, femur, and tibia.
In the phase-space column, the variable pairs from the top
are coxa-femur, femur-tibia, and tibia-coxa.
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Figure 6: Synchronization of multiple legs. On the left,
the coxa-control trajectory for legs 1, 2, and 3 depicted in
Fig. 3a. The original trajectory moves almost diagonally
in the pictured cube and is “wrapped” by the learned tra-
jectory. On the right, the tibia-control trajectory for the
legs 1, 2, and 3.

We deployed the resultant CPG locomotion controller
on the real hexapod (see Fig. 3a) and compared with the
original controller [20] in 10 trials. The robot was re-
quested to crawl on flat surface for 10 s and then stop.
The velocity of the robot was estimated using an exter-
nal visual localization system based on tracking of visual
marker [21] running with 25 Hz. Moreover, the robot’s
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Figure 7: (a) Used experimental setup of the robot with
the tracking marker. (b) Visualization of the performed
trajectories using the proposed CPG locomotion control
and the reference controller.

stability was measured as smoothness of the locomotion
using an XSens MTi-30 inertial measurement unit (IMU)
attached to the robot trunk. The variances in vertical ac-
celeration (Accz) and the orientation (pitch and roll angles)
of the robot’s body are the selected indicators of the loco-
motion stability.

The recorded robot trajectories visualized in Fig. 7 show
that there is a transition effect for our CPG locomotion
controller at the beginning of the trajectory where the
CPG network starts to oscillate which makes the robot ini-
tial acceleration lower; however, the overall locomotion is
smoother, as the velocity deviation is smaller.

The quantitative results are listed in Table 1 as aver-
age values of the indicators. The results indicate that the
performance of the CPG locomotion controller is similar
to the implementation [20] based on inverse kinematics
(IKT).

Table 1: Experimental results

Unit IKT [20] CPG (Ours)

Velocity [m·s−1] 0.18±0.03 0.15±0.01
Accz var. [m·s−2] 18.31 23.03
Pitch var. ×10−3[rad] 0.14 0.23
Roll var. ×10−3[rad] 0.25 0.28

5.1 Lessons Learned and Discussion

During the experimental evaluation of the proposed learn-
ing of the CPG network, a couple of good practices how
to learn the sinusoid generator came up as follows.

1. It is better to learn the network in batches containing
at most two periods.

2. If the CPG network is restarted to the initial state, it
is good to ignore the transient states.

3. Since it is not important at which place the system
enters the limit cycle, it is suitable to phase-shift the
target signal; so, to minimize the distance from the
output signal.

Combination of sub-networks into one network has two
difficulties. The parameters (w f e,Ta,Tr,β ) must be the
same for the whole CPG network, but the sub-networks
are trained independently; so, they can end up with dif-
ferent parameters. In our case, the parameters are similar
because all the CPG sub-networks are based on one CPG
sub-network. Thus, the BP algorithm is able to adjust them
during the learning of the complete network. Another dif-
ficulty is the choice of the initial Wcoxa,coxa weights. The
higher the weights are, the stronger is the coupling be-
tween the legs. However, if the weight values are too high,
the constraint (7) would be violated. Therefore, we used
(7) to choose the initial Wcoxa,coxa weights.

Even though that the robustness is not the objective
of the learning algorithm, it is a property of single Mat-
suoka’s oscillator [22]. This property translated well into
our 3-unit CPG network (see Fig. 4a) where the network
can recover from perturbations. In the real world, robust-
ness helps quickly react to simple temporal events, e.g.,
servo errors, or feedback from the environment.

In this work, we chose a simple model with cmin =
cmax = 1, i.e., we have a constant tonic input. The time-
variant tonic input; however, introduces dynamic changes
as we can see in Fig. 8. In the future work, we would
like to use the tonic input to control the output of the CPG
network dynamically.

6 Conclusion

In this paper, we propose a new methodology for learn-
ing a CPG network modeled by symmetrically connected
neural oscillators. The method is based on a combination
of the back-propagation learning algorithm, normalization
layer, and regularization term, where the normalization
layer prunes the parameters spaces of the CPG network
from the undesired non-periodic results, and thus help to
speed up the learning process. The advantage of the pro-
posed solution over the previous work on the CPG-based
locomotion control is in the scalability of the method that
enables to create such a CPG network that can directly
control each actuator without the need to employ the in-
verse kinematics. The proposed method has been success-
fully deployed in the locomotion control of the real hexa-
pod walking robot.

The main properties of the proposed methodology arise
from the idea that the proposed CPG network for the hexa-
pod locomotion control is based on the architecture of the
CPG connections that imitates the structure of the robot.
The CPG is inductively learned by learning its parts and
merging them. Therefore, the proposed method is promis-
ing to be easily extendable to other multi-legged robot
bodies. Furthermore, since the proposed CPG network
is learnable by the back-propagation algorithm, it can be
integrated into more complex neural networks supporting
back-propagation, which is a subject of our future work.
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Figure 8: Output of three randomly generated CPG units
with cmin = 2;cmax = 4. After each 50 iterations of total
150 iterations, the tonic input is set to ce = c f = 2; ce =
2,c f = 4; ce = 2,c f = 8, respectively. Note that the last
setup violates the cmax constraint.
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Abstract. We present an on-going experiment aimed at im-
proving the results of Slovak PoS tagging by means of increas-
ing the size of morphological lexicon that is used for training 
the respective tagger(s). The frequency list of out-of-
vocabulary (OOV) word forms along with the tags and lemmas 
assigned by the guesser is manually checked, corrected and 
classified by students in the framework of assignments, so that 
valid lexical items candidates for inclusion into the morpho-
logical lexicon could be identified. We expect to improve the 
lexicon coverage by the most frequent proper names and for-
eign words, as well as to create an auxiliary lexicon contain-
ing the most frequent typos. 

1 Introduction 

“Crowdsourcing” is a relatively recent concept that en-
compasses many practices. This diversity leads to the blur-
ring of the limits of crowdsourcing that may be identified 
virtually with any type of Internet-based collaborative ac-
tivity, such as co-creation or user innovation [1]. In their 
paper, authors define eight characteristics typical for 
crowdsourcing as follows: 

• There is a clearly defined crowd (a) 
• There exists a task with a clear goal (b) 
• The recompense received by the crowd is clear (c) 
• The crowdsourcer is clearly identified (d) 
• The compensation to be received by the crowdsourcer is 

clearly defined (e) 
• It is an online assigned process of participative type (f) 
• It uses an open call of variable extent (g) 
• It uses the Internet (h) 

From this perspective, language data annotation per-
formed by students in the framework of the end-of-term 
assignments can well be considered “crowdsourcing”, even 
if only some of the above characteristics apply. It is also 
worth noting that, according to our experience, students 
appreciate the feeling that their work may be useful not 
only as a tool for classification. 

2 The Problem 

Slovak belongs to languages with more than one system 
for morphosyntactic annotation available, with two of them 
being actively used in our work

1
 . They have been devel-

oped (partially independently) in the framework of two 
different research projects. 

The Slovak National Corpus (SNC) [2] is using a system 
based on the new Czech MorphoDiTa tagger [3, 4] with a 
custom language model and a tool for guessing lemmas for 
unrecognized (out-of-vocabulary – OOV) lexical items; 

                                                           
1
 We are aware of (at least) two more systems for mor-

phosyntactic annotation of Slovak data that have been in-
dependently developed at Masaryk University in Brno and 
Charles University in Prague, respectively. These two sys-
tems, however, were not available for our work at the time 
of writing this paper. 

while the Aranea Project [5, 6] is using a more traditional 
TreeTagger [7, 8] with a custom language model, yet with-
out any functionality to guess lemmas for the OOV lexical 
items. Both systems are using the SNC tagset

2
 [9] – a fine-

grained positional tagset vaguely resembling the popular 
MULTEXT-East

3
 tagset utilized for several Slavic lan-

guages. 
Language models for both systems, however, have been 

trained on the same source data – the 1.2 M token Manually 
morphologically annotated corpus

4
  and the SNC Morphol-

ogy database
5
 covering approx. 100 K lemmas, yielding 

some 3.2 M inflected forms. This is why that, despite the 
fact that both systems do not produce exactly the same out-
put, they are (almost) identical

6
 in the amount of OOV 

items, that is rather high. 
As both Slovak annotation systems explicitly indicate the 

OOV status of every token within a corpus, an analysis of 
the situation can be conveniently performed by the corpus 
manager, such as NoSketch Engine

7
 [10]. In the SNC cor-

pora, the OOV status is indicated by the “XX” value pf the 
“prec” attribute – this value can be observed in 54.5 million 
cases of 1.37 Gigatoken prim-8.0-pubic-sane

8
 main corpus, 

which is 3.98% of all tokens. 
In the web-based Araneum Slovacum Maximum

9
, where 

the OOV state is indicated by the “0” value of the “ztag” 
attribute, the situation is even worse – 135.5 million OOVs 
out of 2.96 Gigatokens, i.e., 4.57%. This can be explained 
by the rather “low quality” of web data that, despite all 
efforts in cleaning and filtering the source texts, naturally 
contains lots of “noise” of different kinds. 

3 The Task 

The OOV lexical items observed in our corpora are of 
different nature. Besides the “true neologisms”, i.e., words 
qualifying for inclusion even into the traditional dictionary, 
proper nouns (such as personal and geographical names) 
and their derivates, we can find also items traditionally not 
considered as “words” – various abbreviations, acronyms 
and symbols, URLs or e-mail addresses, parts of foreign 
language quotations and – above all – all sorts of “typos” 
and “errors”. Inflected word forms apply to almost all pre-
viously mentioned categories, which makes the whole pic-
ture even more complex. 

                                                           
2
 https://korpus.sk/morpho_en.html 

3
 http://nl.ijs.si/ME/V4/ 

4
 https://korpus.sk/ver_r(2d)mak.html 

5
 https://korpus.sk/morphology_database.html 

6
 The differences are mainly caused by the fact that the 

TreeTagger-based system is also using word forms from 
the training corpus that were not present in the morphologi-
cal database (mostly proper nouns) to ammend the morpho-
logical lexicon, 

7
 https://nlp.fi.muni.cz/trac/noske 

8
 https://korpus.sk/prim(2d)8(2e)0.html 

9
 http://aranea.juls.savba.sk/aranea_about 
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In the following text we present an experiment aimed at 
amending the morphological lexicon used for training the 
language model(s) by a manually validated list of most 
frequent OOV items derived from an annotated web corpus. 
The annotation is to be performed by graduate students of 
foreign languages, in the framework of end-of-term as-
signment for the “Introduction to Corpus Linguistics” sub-
ject.  

Having only limited “human power” (two groups with 46 
students in total) at hand, we decided to follow the minimal 
two-fold setup (i.e., each item to be annotated by only two 
independent annotators) and make the task as simple as 
possible. This is why the annotators were not expected to 
check all the morphological categories provided by the 
respective tags, and they were asked to decide only on two 
parameters – lemma and word class (part of speech). 

4 The Data 

In the first step, we used data from the Araneum 
Slovacum Maximum 17.09  web corpus of approx. 3 Giga-
tokens that has been independently tagged both by the SNC 
MorphoDiTa and the Aranea TreeTagger pipelines, and 
subsequently merged into a single vertical file. Then, we 
converted the original SNC morphological tags to “PoS-
only” tags and produced a frequency list of all lexical items 
indicated as OOV by both taggers. This list has been further 
filtered to exclude word forms contained in the Czech mor-
phological lexicon

10
. After deleting the unused parameters, 

the resulting lists contained the frequency, word form, 
lemma assigned by the SNC guesser and PoS information 
derived from the tag assigned by TreeTagger (aTag, using 
the AUT

11
 notation). This decision has been motivated by 

an observation that TreeTagger is typically more successful 
in assigning morphological categories for unknown words 
than MorphoDiTa. 

As we naturally could expect to be able to process only 
the rather small part of the list, after some experimenting 
with various thresholds, we decided to pass into annotation 
only items appearing 50 or more times, yielding to 77,169 
items. This meant that each annotator would process ap-
proximately 3,300 items. 

The example of source data (after discarding the frequen-
cy information and adding a unique Id) is shown in Table 1. 

We can observe several phenomena here. The same lexi-
cal item is in some cases tagged as “foreign”, while as 
“noun” or “adjective” in the others, and lemma form as 
well as its capitalization is sometimes guessed correctly, 
while sometimes not. It can be also seen, that many table 
items will in fact have to be merged after correcting the 
annotation, producing less total of correct lines.  

The overall task for the annotators was to produce correct 
data for all lines in the table. To minimize the number of 
necessary keystrokes and to keep track of the changes, the 
data have been further modified to contain two newly add-
ed columns – Lemmb used as a template for correcting the 
value for Lemma (it is expected that most modifications 
will occur at the end of the respective string only) and bTag 
(to be filled only in case of wrong PoS assignment). 

                                                           
10

 https://lindat.mff.cuni.cz/repository/xmlui/handle/ 
11234/1-1836 

11
 http://aranea.juls.savba.sk/aranea_about/aut.html 

Table 1. Source Data 

Id Word Lemma aTag 
sk_11184 dvojťaţiek dvojťaţka Nn 
sk_11185 dvojťaţiek dvojťaţky Nn 
sk_11186 dvojťaţka dvojťaţka Nn 
sk_11187 Dvojťaţka dvojťaţka Nn 
sk_11188 Dvojťaţka Dvojťaţka Nn 
sk_11189 Dvojťaţka dvojťaţka Yx 
sk_11190 Dvojťaţka Dvojťaţka Yx 
sk_11191 dvojťaţkách dvojťaţke Nn 
sk_11192 dvojťaţke dvojťaţka Nn 
sk_11193 dvojťaţkou dvojťaţka Nn 
sk_11194 dvojťaţku dvojťaţka Nn 
sk_11195 dvojťaţky dvojťaţka Nn 
sk_11196 dvojťaţky dvojťaţky Av 
sk_11197 dvojťaţky dvojťaţky Nn 
sk_11198 dvojtisícovku dvojtisícovka Nn 
sk_11199 dvojtlačidlo dvojtlačidlo Nn 
sk_11200 dvojtraktovú dvojtraktový Aj 
sk_11201 dvojumývadlom dvojumývadlom Nn 
sk_11202 dvojumývadlom dvojumývadlom Yx 
sk_11203 dvojzákrutovej dvojzákrutovej Aj 
sk_11204 dvojzákrutovej dvojzákrutovej Yx 
sk_11205 dvojzápasovú dvojzápasový Aj 
sk_11206 dvojzónovú dvojzónový Aj 
sk_11207 dvolezite dvolezite Nn 
sk_11208 dvolezite dvolezite Yx 
sk_11209 Dvonča Dvonča Nn 
sk_11210 Dvonča Dvonč Nn 
sk_11211 Dvončom Dvonča Nn 
sk_11212 Dvončom Dvonč Nn 

 
As has been already mentioned, each item (line of the ta-

ble) has to be annotated by two independent annotators. We 
decided, however, not to split the data in a straightforward 
way, but to assign each alphabetical segment of the data to 
three annotators using a rule as follows: each triple of lines 
will be split into three tuples containing first and second, 
first and third and second and third lines, respectively. 
Moreover, the whole lot of data has been split to three 
parts, so that each annotator could get three different sec-
tions of the alphabet in his or her data. 

By applying this fairly “sophisticated” assignment 
scheme, we expected to improve the overall uniformity and 
quality of the output, as well as to prevent “collaboration” 
among students, as no two assigned lots were identical. 

An excerpt of the data from Table 1 assigned to a single 
annotator is shown in Table 2. 

 
Table 2. Data to Annotate 

Id Word Lemma Lemmb bTag aTag 
sk_11184 dvojťaţiek dvojťaţka dvojťaţka  Nn 
sk_11185 dvojťaţiek dvojťaţky dvojťaţky  Nn 
sk_11187 Dvojťaţka dvojťaţka dvojťaţka  Nn 
sk_11188 Dvojťaţka Dvojťaţka Dvojťaţka  Nn 
sk_11190 Dvojťaţka Dvojťaţka Dvojťaţka  Yx 
sk_11191 dvojťaţkách dvojťaţke dvojťaţke  Nn 
sk_11193 dvojťaţkou dvojťaţka dvojťaţka  Nn 
sk_11194 dvojťaţku dvojťaţka dvojťaţka  Nn 
sk_11196 dvojťaţky dvojťaţky dvojťaţky  Av 
sk_11197 dvojťaţky dvojťaţky dvojťaţky  Nn 

 
Note that the “missing” every third Id results from the 

assignment scheme. 

5 The Crowd Annotation  

The split data has been uploaded as excel spreadsheets to 
a shared Google disk and assigned randomly to the respec-
tive annotators. The task has been assigned in the middle of 
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the semester, after the students already got acquainted with 
the basic concepts of corpus morphosyntactic annotation 
and acquired the elementary querying skills.  

The instructions for annotating the data were as follows.  
(A) Only Lemmb and bTag columns may be modified. 
(B) If both Lemma and aTag values are correct, nothing 

has to be done.  
(C) If aTag value is wrong, the correct value should be 

inserted in bTag. 
(D) If Lemma value is wrong, it should be corrected in 

Lemmb. 
(E) If the word form is obvious typo (missing or super-

fluous letter, exchanged letters), or the word does not con-
tain the necessary diacritics, the correct lemma marked by 
an asterisk should entered in Lemmb. 

(F) If the correct word form cannot be reconstructed by 
simple editing operations, i.e., cannot be recognized (e.g., 

part of the word as a result of hyphenation), the value of 
bTag will be “Er” (error). 

(G) If the word form is obvious foreign word, the value 
of bTag will be “Yx”. 

(H) It is not necessary to evaluate whether the word form 
is “literary” – words of “lower” registers (such as slang) 
also have “correct” lemmas. 

The annotators were also instructed to check all “non-
obvious” items by querying the corpus and analyzing the 
respective contexts. The initial training was performed dur-
ing one teaching lesson in a computer lab, so that possibly 
all frequent problems could be explained.  

 

6 First Results and Problems 

Out of 46 students, 43 managed to complete the assign-
ments in time. Table 3 shows an example of the correctly 
annotated data. 

 
Table 3. Annotated Data 

Id Word Lemma Lemmb bTag aTag 
sk_11184 dvojťaţiek dvojťaţka dvojťaţka  Nn 
sk_11185 dvojťaţiek dvojťaţky dvojťaţka  Nn 
sk_11187 Dvojťaţka dvojťaţka dvojťaţka  Nn 
sk_11188 Dvojťaţka Dvojťaţka dvojťaţka  Nn 
sk_11190 Dvojťaţka Dvojťaţka dvojťaţka Nn Yx 
sk_11191 dvojťaţkách dvojťaţke dvojťaţka  Nn 
sk_11193 dvojťaţkou dvojťaţka dvojťaţka  Nn 
sk_11194 dvojťaţku dvojťaţka dvojťaţka  Nn 
sk_11196 dvojťaţky dvojťaţky dvojťaţka Nn Av 
sk_11197 dvojťaţky dvojťaţky dvojťaţka  Nn 
sk_11199 dvojtlačidlo dvojtlačidlo dvojtlačidlo  Nn 
sk_11200 dvojtraktovú dvojtraktový dvojtraktový  Aj 
sk_11202 dvojumývadlom dvojumývadlom dvojumývadlo Nn Yx 
sk_11203 dvojzákrutovej dvojzákrutovej dvojzákrutový  Aj 
sk_11205 dvojzápasovú dvojzápasový dvojzápasový  Aj 
sk_11206 dvojzónovú dvojzónový dvojzónový  Aj 
sk_11208 dvolezite dvolezite dôleţitý* Aj Yx 
sk_11209 Dvonča Dvonča Dvonč  Nn 
sk_11211 Dvončom Dvonča Dvonč  Nn 
sk_11212 Dvončom Dvonč Dvonč  Nn 

 
 
We can see that PoS information was corrected in four 

cases, lemma form in nine cases and its capitalization in 
two cases. One lexical item was marked as “error”, as it 
lacked all diacritics and used nonstandard spelling. 

The quick analysis, however, revealed that the annotation 
is much below the expected quality. We will discuss some 
of the issues. The basic statistics is shown in Table 4. 

 
Table 4. Results of Annotation 

 Count % % 
Assigned lines  77,169 100.00  
Lines annotated at least once 76,413 99.02  
Lines annotated twice 60,048 77.81 100.00 
Lines agreed on lemma 39,469 51.15 65.73 
Lines agreed on lemma and PoS 33,371 43.24 55.57 

 
The rather low values of the raw inter-annotator agree-

ment suggests that the resulting data has to be analyzed 
thoroughly before the procedure can be used within a simi-
lar larger-scale annotation attempt in the future.  

The quick analysis revealed some frequent issues – dif-
ferent treatment of (prototypically) proper names written in 
lowercase, assigning PoS information to symbols and for-
eign words, incoherent use of asterisks, etc. Some of these 
issues can be solved by an automated procedure but some 

will require more detailed instruction so that a correct an-
notation could be obtained. 

After merging the duplicate “fully agreed” items from 
the previous table, 27,135 unique lines were obtained. Ta-
ble 5 shows the word class distribution of the resulting da-
ta. 

 
Table 5. Annotated Data PoS Distribution 

PoS Count % 
Nn 20,043 73.86 
Aj 5174 19.07 
Pn 46 0.17 
Nm 27 0.10 
Vb 464 1.71 
Av 261 0.96 
Pp 8 0.03 
Cj 10 0.04 
Ij 42 0.15 
Pt 24 0.09 
Ab 185 0.68 
Xy 1 0.00 
Yx 490 1.81 
Er 343 1.26 
? 17 0.06 
 27,135 100.00 
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The values in the table basically follow our expectations: 
most unrecognized items belong to main content word clas-
ses – nouns and adjectives. Moreover, out of the 20,043 
words tagged as nouns, 14,190 (70.80%) begin with upper-
case letter, i.e., they are most likely proper nouns. 

The rather low value of the “Er” class can be explained 
by the observation that errors, despite their being frequent, 
rarely behave “paradigmatically”, i.e., a single correct word 
form can produce many different incorrect ones. 

7 Conclusions and Further Work 

There were several goals to be achieved by the annota-
tion. Firstly, we would like to produce a validated list of 
most frequent neologisms to be included in the morpholog-
ical lexicon; in this stage, we even do not expect to gener-
ate full paradigms for those lexical items. Secondly, we 
wanted to get the list of the most frequent typos and other 
types of errors that could also be used as a supplement to 
that lexicon, but also as source data for a future system for 
data normalization. And lastly, we also wanted to obtain a 
list of most frequent foreign lexical items appearing in Slo-
vak corpus data. 

Although the detailed analysis of the annotated data is 
yet to be performed, some conclusions can be seen already. 
They can be summarized as follows: 

(1) To minimize the consequences of students’ failed as-
signments, a three-fold setup would be probably better. 

(2) The Annotation Guidelines must be as precise as pos-
sible, showing not only the typical problems and their solu-
tions, but also the seemingly “easy” cases. One-page in-
struction, as it was in our case, is definitely not sufficient. 

(3) The most common errors were associated with the 
treatment of proper nouns. An automatic procedure based 
on frequencies of lower/uppercased word forms would 
most likely perform better. 

(4) The other common issue was the proper form of 
lemma for adjectives (it should be masculine and nomina-
tive singular). As the morphology of Slovak adjectives is 
fairly regular, a procedure to fix it automatically would be 
feasible. 

(5) One of the fairy frequent PoS ambiguity in our data 
was the “Nn”/“Yx” (noun/foreign) case. The manually an-
notated data, however, show that the real number of “for-
eigns” is rather low, yet in introduces a lot of noise into the 
annotation process. It would therefore be reasonable to sub-
stitute all tags for “foreigns” with that of “nouns” in the 
future annotation. 

In the near future, besides the new round of a similar an-
notation effort with an improved setup, we would like to 
combine its results with those obtained in the framework of 
the ensemble tagging experiment described in our other 
work [11]. 
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Malostranské náměstí 25, CZ-11800 Prague 1
mnovak@ufal.mff.cuni.cz

Abstract: Coreference is a basic means to retain coher-
ence of a text that likely exists in every language. How-
ever, languages may differ in how a coreference relation
is manifested on the surface. A possible way how to mea-
sure the extent and nature of such differences is to build
a coreference resolution system that operates on a parallel
corpus and extracts information from both language sides
of the corpus. In this work, we build such a bilingually
informed coreference resolution system and apply it on
Czech-English data. We compare its performance with
the system that learns only from a single language. Our
results show that the cross-lingual approach outperforms
the monolingual one. They also suggest that a system for
Czech can exploit the additional English information more
effectively than the other way round. The work concludes
with a detailed analysis that tries to reveal the reasons be-
hind these results.

1 Introduction

Cross-lingual techniques are becoming still more and
more popular. Even though they do not circumvent
the task of Coreference Resolution (CR), the research is
mostly limited to cross-lingual projection. Other cross-
lingual techniques remain a largely unexplored area for
this task.

One of the yet neglected cross-lingual techniques is
called bilingually informed resolution. It is an approach,
in which decisions in a particular task are made based on
the information from bilingual parallel data. Parallel texts
must be available when a method is trained, but also at
test time, that is when a trained model is applied to new
data. In real-world scenarios, the availability of parallel
data at test time requires the technique to apply a machine
translation service to acquire them (MT-based bilingually
informed resolution).

Nevertheless, for limited purposes it may pay off to use
human-translated parallel data instead (corpus-based bilin-
gually informed resolution). If it outperforms the mono-
lingual approach, it may be used in building automatically
annotated parallel corpora. Such corpora with more reli-
able annotation could be useful for corpus-driven theoret-
ical research.1 Furthermore, it can be also used for au-
tomatic processing. For instance, improved resolution on

1In case a cross-lingual origin of the annotation does not matter.

big parallel data might be leveraged in a weakly supervised
manner to boost the models trained in a monolingual way.

The present work is concerned with corpus-based bilin-
gually informed CR on Czech-English texts. Specifically,
it focuses on resolution of pronouns and zeros, as these are
the coreferential expressions whose grammatical and func-
tional properties differ considerably across the languages.
For instance, whereas in English most of non-living ob-
jects are referred to with pronouns in neuter gender (e.g.
“it”, “its”), genders are distributed more evenly in Czech.
Information on Czech genders thus may be useful to fil-
ter out English candidates that are highly improbable to be
coreferential with the pronoun. By comparison of its per-
formance with a monolingual approach and by thorough
analysis of the results, our work aims at discovering the
extent and nature of such differences.

The paper is structured as follows. After mentioning
related work (Section 2), we introduce a coreference re-
solver (Section 3), both its monolingual and cross-lingual
variants. Section 4 describes the dataset used in experi-
ments in Section 5. Before we conclude, the results of
experiments are thoroughly analyzed (Section 6).

2 Related Work

Building a bilingually informed CR system requires a par-
allel corpus with at least the target-language side annotated
with coreference. Even these days very few such corpora
exist, e.g. Prague Czech-English Dependency Treebank
2.0 Coref [14], ParCor 1.0 [9] and parts of OntoNotes 5.0
[19].

It is thus surprising that the peak of popularity for such
approach was reached around ten years before these cor-
pora had been published. Harabagiu and Maiorano [10]
present an heuristics-based approach to CR. The set of
heuristics is expanded by exploiting the transitivity prop-
erty of coreferential chains in a bootstrapping fashion.
Moreover, they expand the heuristics even more, follow-
ing mention counterparts in translations of source English
texts to Romanian with coreference annotation. Mitkov
and Barbu [13] adjust a rule-based pronoun coreference
resolution system to work on a parallel corpus. After pro-
viding a linguistic comparison of English and French pro-
nouns and their behavior in discourse, the authors distill
their findings into a set of cross-lingual rules to be inte-
grated into the CR system. In evaluation, they observe im-
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provements in resolution accuracy of up to 5 percentage
points compared to the monolingual approach.

As for more recent works, the authors of [5] address
the task of overt pronoun resolution in Chinese. Among
the others they propose an MT-based bilingually informed
approach. A model is built on Chinese coreference, ex-
ploiting Chinese features. These are augmented with En-
glish features, extracted from the Chinese texts machine-
translated to English. It allows for taking advantage of
English nouns’ gender and number lists, which according
to authors correspond to the distribution of genders and
numbers over Chinese nouns.

Experiments of Novák and Žabokrtský [17], the first
ones using bilingually informed CR on Czech-English
data, are most relevant to the present work. With the focus
on English personal pronouns only, their best cross-lingual
configuration managed to outperform the monolingual CR
by one F-score point. Taking advantage of a more devel-
oped version of their CR system, we extend their work in
several directions. First, we explore the potential of such
approach for a wider range of English coreferential expres-
sions. Next, we perform experiments in the opposite direc-
tion, i.e. Czech CR informed by English. And finally, we
provide a very detailed analysis of the results unveiling the
nature of the cross-lingual aid.

3 Coreference Resolution System

For coreference resolution we adopt a more developed ver-
sion of the resolver utilized in [17]. This new version
builds on the monolingual Treex CR system [15], and aug-
ments it with the cross-lingual extension presented in [17].
The difference between the current system and the sys-
tem in [17] lies mostly in that it can target a wider range
of expressions, it exploits a richer feature set and the pre-
processing stage analyzing the text to the tectogrammati-
cal representation is of higher quality. Instead of listing all
the changes, we briefly introduce the monolingual (Sec-
tion 3.1) and the cross-lingual component (Section 3.2) of
Treex CR from the scratch.2

3.1 Monolingual Resolution

Treex CR operates on the tectogrammatical layer. It is
a layer of deep syntax based on the theory of Functional
Generative Description [20]. The tectogrammatical repre-
sentation of a sentence is a dependency tree with rich lin-
guistic features consisting of the content words only. Fur-
thermore, some surface ellipses are restored at this layer.
It includes anaphoric zeros (e.g. zero subjects in Czech,
unexpressed arguments of non-finite clauses in both En-
glish and Czech) that are introduced in the tectogrammat-
ical layer with a newly established node.

2Please refer to [15] for more details on the monolingual component
of the system.

The tectogrammatical layer is also the place, where
coreference relations should be annotated. It is technically
represented as a link between two coreferential nodes:3 the
anaphor (the referring expression) and the antecedent (the
referred expression).

Each input text must be first automatically pre-
processed up to this level of linguistic annotation. The CR
system based on supervised machine learning then takes
advantage of the information available in the annotation.

Pre-processing. The input text must undergo an analysis
producing a tectogrammatical representation of its sen-
tences before coreference resolution is carried out. We
use pipelines for analysis of Czech and English available
in the Treex framework [18]. The analysis starts with a
rule-based tokenization, morphological analysis and part-
of-speech tagging (e.g. [21] for Czech), dependency pars-
ing to surface trees (e.g. MST parser [12] for English)
and named entity recognition [22]. In addition, the NADA
tool [3] is applied to help distinguish referential and non-
referential occurrences of the English pronoun “it”.

Tectogrammatical trees are created by a transformation
from the surface trees. All function words are made hid-
den, morpho-syntactic information is transferred and se-
mantic roles are assigned to tectogrammatical nodes [4].
On the tectogrammatical layer, certain types of ellipsis can
be restored. The automatic pre-processing focuses only on
restoring nodes that might be anaphoric. Such nodes are
added by heuristics based on syntactic structures. The re-
stored nodes include Czech zero subjects and both Czech
and English zeros in non-finite clauses, e.g. zero relative
pronouns, unexpressed arguments in infinitives, past and
present participles.

Model design. Treex CR models coreference in a way to
be easily optimized by supervised learning. Particularly,
we use logistic regression with stochastic gradient descend
optimization implemented in the Vowpal Wabbit toolkit.4

Design of the model employs multiple concepts that have
proved to be useful and simple at the same time.

Given an anaphor and a set of antecedent candidates,
mention-ranking models [6] are trained to score all the
candidates at once. On the one hand a mention-ranking
model is able to capture competition between the candi-
dates, but on the other hand features describe solely the
actual mentions, not the whole clusters built up to the mo-
ment. Antecedent candidates for an anaphor (both positive
and negative) are selected from the context window of a
predefined size.

No anaphor detection stage precedes the coreference
resolution. Unless another measure was taken, it would
lead to all occurrences of the pronoun “it” labeled as ref-
erential, for instance. Nevertheless, the model determines

3A mention is determined only by its head in tectogrammatics. No
mention boundaries are specified. Therefore, it is sufficient for a corefer-
ence link to determine only two nodes, the mentions’ head nodes.

4https://github.com/JohnLangford/vowpal_
wabbit/wiki
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whether the anaphor is referential jointly with selecting its
antecedent. This is ensured by adding a dummy candi-
date representing solely the anaphor itself. By selecting
this candidate, the model claims that the anaphor is in fact
non-referential.

Diverse properties of various types of coreferential rela-
tions (e.g. different referential scopes of personal and rela-
tive pronouns) encouraged us to model individual anaphor
types separately. A specialized model is build for (1) per-
sonal and possessive pronouns in 3rd person (and zero sub-
jects in Czech), (2) reflexive pronouns, (3) relative pro-
nouns, and (4) zeros in non-finite clauses. Treex CR runs
them in a sequence.

Features. The pre-processing stage enriches a raw text
with a substantial amount of linguistic information. Fea-
ture extraction stage then uses this material to yield fea-
tures consumable by the learning method. Features are al-
ways related to at most two nodes – an anaphor candidate
and an antecedent candidate.

The features can be divided into three categories.
Firstly, location and distance features indicate positions of
the anaphor and the antecedent candidate in a sentence and
their mutual distance in terms of words, clauses and sen-
tences. Secondly, a big group of features reflects (deep)
morpho-syntactic aspects of the candidates. It includes the
mention head’s part-of-speech tag and morphological fea-
tures (e.g. gender, number, person, case), (deep) syntax
features (e.g. dependency relation, semantic role) as well
as some features exploiting the structure of the syntactic
tree. Many of the features are combined by concatena-
tion or by agreement, i.e. indicating whether the anaphor’s
value agrees with antecedent’s one. Finally, lexical fea-
tures focus on lemmas of the mentions’ heads and their
parents. These are used directly or through the frequen-
cies collected in a large data of Czech National Corpus [1]
indexed in a list of noun-verb collocations. Furthermore,
all hypernymous concepts of a mention are extracted as
features from ontologies (e.g. WordNet [7]) and named
entity labels are also employed.

3.2 Cross-lingual Extension

The extension enables bilingually informed CR. Like the
monolingual CR, it addresses coreference in one target
language at a time. However, instead of data in single lan-
guage, it must be fed with parallel data in two languages.
Both language sides (Czech and English in this case) of
the data must be first pre-processed with the pipelines an-
alyzing the texts up to the diagrammatically layer. Fur-
thermore, to facilitate the access to important information
in the other language, the pre-processing stage also seeks
for alignment between tectogrammatical nodes. The bilin-
gually informed approach then augments the monolingual
features with those accessing the other side of the paral-
lel data. Design of the model remains the same as for the
monolingual approach.

Alignment. It is central for our cross-lingual approach to
have the English and Czech texts aligned on the level of
tectogrammatical nodes. The alignment is based on un-
supervised word alignment performed by MGIZA++ [8]
trained on the data from CzEng 1.0 [4], and projected to
the tectogrammatical layer. Furthermore, it is augmented
with a supervised method [17] addressing selected corefer-
ential expressions, including potentially anaphoric zeros.

Features. Cross-lingual features describe the nodes
aligned to the coreferential candidates in the target lan-
guage – the anaphor candidate and the antecedent candi-
date. To collect such nodes, we follow the alignment links
connected to these two candidates. For each of the nodes,
we take at most one of its aligned counterparts. In this
way, we obtain at most two nodes aligned to the pair of
potentially coreferential nodes, for which we can extract
cross-lingual features. If no aligned counterpart is found,
no cross-lingual features are added.

We extract two sets of cross-lingual features:

• aligned_all: it consists of all the features contained
in a monolingual set for a given aligned language;

• aligned_coref : it consists of a single indicator fea-
ture, assigning the true value only if the two aligned
nodes belong to the same coreferential entity. This
feature can be activated only if there exists a mono-
lingual coreference resolver for the aligned language.
We employ Treex CR and its monolingual models for
English and Czech, but any CR system, even a rule-
based one, could be used.

We do not manually construct features combining both
language sides. Nevertheless, such features are formed au-
tomatically by the machine-learning tool Vowpal Wabbit.

4 Datasets

We employ Prague Czech-English Dependency Treebank
2.0 Coref [14, PCEDT 2.0 Coref] to train and test our CR
systems. It is a Czech-English parallel corpus, consisting
of almost 50k sentence pairs (more on its basic statistics is
shown in the upper part of the Table 1). The English part
of the treebank is based on texts from the Wall Street Jour-
nal collected for the Penn Treebank [11]. The Czech part
was manually translated from English. All texts have been
annotated at multiple layers of linguistic representation up
to the tectogrammatical layer.

Although PCEDT 2.0 Coref has been extensively anno-
tated by humans, we strip almost all manual annotations
and replace it by the output of the pre-processing pipeline
(see Sections 3.1 and 3.2). The only manually annotated
information that we retain are the coreferential links.

We do not split the data into train and test sections.
All the experiments are conducted using 10-fold cross-
validation.
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Mention type Czech English
Sentences 49,208 49,208
Tokens 1,151,150 1,173,766
Tecto. nodes 931,846 838,212

Mentions (total) 183,277 188,685
Personal pron. 3,038 14,887
Possessive pron. 3,777 9,186
Refl. poss. pron. 4,389 —
Reflexive pron. 1,272 484
Zero subject 16,875 —
Zero in nonfin. cl. 6,151 29,759
Relative pron. 15,198 8,170
Other 132,577 126,199

Table 1: Basic and coref. statistics of PCEDT 2.0 Coref.

As mentioned in Section 3.1, our CR system consists
of four models targeting different types of mentions as
anaphors. In evaluation, we split the anaphor candidates to
even finer categories, namely: (1) personal pronouns, (2)
possessive pronouns, (3) reflexive possessive pronouns,
(4) reflexive pronouns, all four types of pronouns in the
3rd or ambiguous person, (5) zero subjects, (6) zeros in
non-finite clauses, and (7) relative pronouns (the statistics
of coreferential mentions is collected in the bottom part of
Table 1). Driven by the findings in an analysis of Czech-
English correspondences [16], these expressions are very
interesting from a cross-lingual point of view, as they often
transform to a different type or carry different grammati-
cal properties, when translated. We assume this aspect is
not so significant in case of nominal groups, for instance,
which represent the majority of remaining mentions. The
other types grouped under the category Other are demon-
strative pronouns, pronouns in 1st and 2nd person etc. This
category of anaphors is not targeted by our CR method.

5 Experiments

The following experiments compare the performance of
the monolingual and bilingually informed system. Both
systems are trained on the PCEDT dataset. All the design
choices (except for the feature sets) and hyperparameter
values are shared by both systems.

Evaluation measure. We expect different mention types to
behave differently in the cross-lingual approach. Standard
evaluation metrics (e.g. MUC [23], B3 [2]), however, do
not allow for scoring only a subset of mentions. Instead,
we use the anaphora score, an anaphor-decomposable
measure proposed by [15]. The score consists of three
components: precision, recall, and F-score as a harmonic
mean of the previous two. While precision expresses the
success rate of a system averaged over all mentions labeled

Mention type Czech English
monoling biling monoling biling

Personal 63.84
61.24 62.51 67.82

64.38 66.06 76.34
71.37 73.77 78.57

72.64 75.49
Possessive 71.93

71.51 71.72 75.73
74.85 75.29 80.07

79.54 79.81 81.46
81.00 81.23

Refl. poss. 85.61
85.42 85.52 87.70

87.04 87.36 — —
Reflexive 66.91

56.60 61.33 67.24
55.66 60.90 77.31

72.67 74.92 75.88
71.01 73.37

Zero subj. 73.18
55.46 63.10 78.88

57.64 66.61 — —
Zero nonfin. 78.98

41.51 54.42 81.52
42.63 55.98 71.48

54.62 61.92 73.31
54.75 62.68

Relative 81.51
79.94 80.72 83.48

81.62 82.54 83.47
76.23 79.69 85.76

77.13 81.21

Total 76.83
65.17 70.52 80.27

67.09 73.09 75.93
65.26 70.19 77.85

65.95 71.41

Table 2: Anaphora scores of monolingual and bilingually
informed coreference resolution.

by the system as anaphoric, recall averages over all true
anaphoric mentions. A decision on an anaphor candidate
is correct if the system correctly labels it as non-anaphoric
or the antecedent found by the system really belongs to the
same entity as the anaphor. In the following tables, we use
P
R F to format the three components of the anaphora score.

Bilingually informed vs. Monolingual CR. Table 2 lists
the anaphora scores measured on the output of 10-fold
cross-validation. In overall, cross-lingual models succeed
in exploiting additional knowledge from parallel data and
perform better than the monolingual approach. The F-
score improvement benefits mainly from a rise in preci-
sion, but recall also gets improved. In both languages,
personal and possessive pronouns are the types that ex-
hibit the greatest improvement. In Czech, the top-scoring
mention types include zero subjects, too. Nevertheless,
English as an aligned language seems to have a stronger
impact on resolution in Czech (the difference between the
systems is 2.5 F-score points) than Czech has on resolution
in English (the difference of 1.2 F-score points).

6 Analysis of the Results

The results of experiments undoubtedly show the superi-
ority of the cross-lingual CR over the monolingual one.
Here, we delve more into the comparison of these two
approaches. Firstly, we conduct a quantitative analysis
of resolvers’ decisions. It should show how many deci-
sion changes the switch to the cross-lingual approach in-
troduces for individual mention types and what is the role
of anaphoricity in these changes. Secondly, we inspect
randomly sampled examples in a qualitative analysis. We
attempt to disclose what are the typical examples when the
system benefits from the other language and, on the other
hand, if there is a systematic case when the cross-lingual
approach hurts.
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Mention type Anaph Non-anaph
Both X Both × M > C M < C Both X Both × M > C M < C

Personal pron. 55.99 26.96 5.05 8.34 1.15 2.08 0.13 0.32
Possessive pron. 66.51 20.09 4.47 7.75 0.03 1.05 0.03 0.08
Refl. poss. pron. 82.45 9.59 2.64 4.27 0.11 0.89 0.05
Reflexive pron. 36.21 13.54 3.70 2.93 28.75 10.39 1.88 2.60
Zero subject 34.12 13.44 2.79 4.29 34.16 5.22 1.12 4.86
Zero in nonfin. cl. 68.54 12.62 2.94 5.24 3.82 6.08 0.42 0.32
Relative pron. 70.13 13.12 2.59 4.22 8.20 1.40 0.17 0.18

Total 53.76 14.20 3.00 4.73 17.96 3.52 0.61 2.22

Table 3: Comparison of resolution by the monolingual and the cross-lingual CR in Czech (M = Monolingual, C = Cross-
lingual). The numbers are ratios (in %) of decision categories to which an anaphor candidate may fall.

6.1 Quantitative Analysis

Let us start with a quantitative analysis of improvements
and worsenings with respect to anaphoricity and type of
the anaphor candidate. Tables 3 and 4 show for Czech and
English, respectively, how often the cross-lingual system
(denoted as C) is better than the monolingual (denoted as
M). Each anaphor candidate falls to one of the four cate-
gories based on how C and M decided on the candidate:

• both decisions were the same and correct (Both X),

• both decisions were the same but incorrect (Both ×),

• M’s decision was correct while C’s decision was in-
correct (M > C),

• C’s decision was correct while M’s decision was in-
correct (M < C).

A decision is either assignment of the anaphor candidate to
a coreferential entity5 or labeling it as non-anaphoric. The
tables also distinguish if the candidate is in fact anaphoric
or non-anaphoric. Numbers in the tables represent pro-
portions (in %) of these categories aggregated over all in-
stances. Every row thus sums to 100%.

Conditioning on anaphoricity allows us to directly relate
this analysis to the anaphora scores shown in Table 2. Note
that while resolution on anaphoric mentions may have an
effect on both the precision and the recall component of
the anaphora score, resolution on non-anaphoric mentions
affects only the precision.

Changed decisions account for around 10% in both
Czech and English. More importantly, whereas we see
over 7% of decisions changed positively in Czech, it cor-
responds to 5.5% of decisions in English. This accords
with the extents of improvement observed on anaphora
score. In Czech, a difference between improved and wors-
ened decisions is only a bit higher for anaphoric mentions.
It means that the positive effect of English on resolution

5Some of the anaphors that were assigned to the same entity
(columns Both X and Both ×) may have been in fact paired with dif-
ferent antecedents by each of the CR algorithms. As our anaphora score
is agnostic to such changes, we do not distinguish such cases.

of Czech anaphoric mentions is about on par with its ef-
fect on resolution on non-anaphoric mentions. But con-
versely, Czech helps more in resolution of non-anaphoric
mentions.

Let us zoom in to the individual mention types. The
highest proportion of changed decisions appears for per-
sonal pronouns and zero subjects in Czech (14% instances)
and for reflexive pronouns in English (12%). Interest-
ingly, its effect on anaphora score cannot be more differ-
ent. Czech personal pronouns and zero subjects are the
mention types where the cross-lingual approach improves
the anaphora score the most. On the other hand, English
reflexive pronouns are the only mention type for which
the resolution deteriorates with cross-lingual features. The
systems’ decisions differ the least for Czech reflexive pos-
sessive (7%) and English relative pronouns (6%). Here,
we also observe a various effect on anaphora score. While
the resolution of Czech reflexive possessives is hardly im-
proved by English features, the small amount of changed
decisions on English relative pronouns suffices to achieve
one of the biggest improvements among English corefer-
ential expressions.

Anaphora scores in Table 2 have already shown that ba-
sic reflexive pronouns are the only mention type, where the
cross-lingual approach falls behind the monolingual one.
The quantitative analysis of changed decisions confirms
it, especially for anaphoric occurrences.

The gains of the Czech cross-lingual system on non-
anaphoric mentions can be attributed mostly to zeros. Also
thanks to the resolution on non-anaphoric mentions, the
highest margin between the proportion of improved and
worsened instances (5%) is observed on Czech zero sub-
jects. It leads to one of the biggest improvement in terms
of the anaphora F-score (see Table 2).

6.2 Qualitative Analysis

In the following, we scrutinize more closely what are the
typical cases, where the cross-lingual system makes a dif-
ferent decision.
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Mention type Anaph Non-anaph
Both X Both × M > C M < C Both X Both × M > C M < C

Personal pron. 61.57 21.97 3.12 4.02 5.60 2.35 0.49 0.88
Possessive pron. 76.17 15.65 3.14 4.49 0.01 0.51 0.01 0.01
Reflexive pron. 69.78 15.00 7.17 5.22 2.83
Zero in nonfin. cl. 44.10 16.74 3.82 3.83 16.55 11.08 1.26 2.61
Relative pron. 58.06 10.46 2.12 2.94 23.53 1.82 0.26 0.80

Total 54.46 16.87 3.35 3.84 12.81 6.31 0.77 1.60

Table 4: Comparison of resolution by the monolingual and the cross-lingual CR in English (M = Monolingual, C =
Cross-lingual). The numbers are ratios (in %) of decision categories to which an anaphor candidate may fall.

Let us start with a motivating example. Results in Ta-
ble 2 show that improvement of the bilingually informed
system on Czech personal and possessive pronouns and
zero subjects is twice as high than on their English equiva-
lents. This observation genuinely surprised us. We had ex-
pected the opposite. Our supposition was based on the fact
that Czech grammatical gender is more evenly distributed
over nouns. We assumed Czech gender could help filtering
out the English antecedent candidates whose Czech coun-
terparts do not match the pronoun’s counterpart. Although
this still may be true, obviously, there are even stronger
factors that operate in the opposite direction – from En-
glish to Czech.

Czech personal and possessive pronouns are the men-
tion types that considerably benefit from the cross-lingual
approach. Gender of the corresponding English pronoun
appears to play an absolutely decisive role. Many times,
gender of the Czech pronoun is masculine or feminine
while gender of the English pronoun is neuter, as it is in
Example 1. English pronoun’s gender thus serves rather
as an animacy feature, which cannot be reconstructed
solely from the Czech pronoun. The correct antecedent
is sometimes selected also with a help from the English
pronoun’s number.
(1) Oponentim.pl

opponents
soudcem.sg
of judge

Borkam.sg
Bork

zvolili
chose

bojištěn.sg
the battlefield

drželi
held

homn.sg
it

Oponenti soudce Borka zvolili bojiště, drželi ho a udrželi si ho.

Mr. Bork’s opponents chose the battlefield, held it and kept it.

The analysis also shows that English syntax, which is
more strict and thus easier to reconstruct, often helps in
determining the correct antecedent. Example 2 shows the
case, where neither English gender nor number could af-
fect the resolver’s decision. The correct decision is rather
a result of a clear structure, where the syntactic objects in
coordinated clauses very likely refer to the same entity.
(2) kdo

who
posbíral
collected

plánym.p
plans

skupinf.p
from groups

a
and

sesmolil
cobbled

jemfn.p
them

do
into

iniciativy
an initiative

Van de Kamp je ten, kdo posbíral plány různých radikálních
ekologických skupin a sesmolil je do jedné neohrabané
iniciativy. . .

Mr. Van de Kamp is the one who collected the plans from the
various radical environmental groups and cobbled them into a
single unwieldy initiative. . .

Some of the possessive pronouns benefit from another
syntax-related factor. Example 3 shows the case where the
correct decision was very likely affected by the fact that
the aligned English possessive pronoun (“its Opel line”)
is in a short context preceded by a construction with a
possessive adjective (“GM’s interest”). Not only the pos-
sessed objects does not have to be the same, but the posses-
sivity factor also suppresses the unclear gender agreement
in Czech (“jeho /its/” can be of masculine or neuter gender,
whereas “společnost /company/” is of feminine gender and
the gender of “GM” may be arbitrary).
(3) zájemm.s

interest
společnosti GMfm.s
GM-company’s

o
in

společnost Jaguarfm.s
Jaguar company

odráží
reflects

touhuf.s
a desire

pomocif.s
to help

zpestřit
diversify

produktym.p
products

této společnostif.s
of this company

na
in

trhum.s
market

s
with

vozym.p
cars

.

.
jehomn.s
its

série
line

Opel
Opel

Zájem společnosti GM o společnost Jaguar odráží touhu pomoci
zpestřit produkty této americké společnosti na rostoucím trhu s
luxusními vozy. Jeho série Opel má zavedený image. . .

GM’s interest in Jaguar reflects a desire to help diversify the U.S.
company’s products in the growing luxury-car segment of the
market. Its Opel line has a solid image. . .

Zero subjects is another Czech mention type for which
a large improvement of the cross-lingual approach is ob-
served. Anaphoric zero subjects benefit from the aspects
similar to those we mentioned for personal pronouns: gen-
der and number of the anaphor, more strict syntactic con-
straints in English etc. English gender may be even more
important here, as the gender of a subject zero is impossi-
ble to be recognized just from the form of the governing
verb, if the verb is in present tense.

While inspecting a sample of changed decisions for En-
glish personal and possessive pronouns, we do not wit-
ness many examples of clear influence by Czech gender or
number. As for the personal pronouns, influence of gender
or number is most often combined with the pure fact that
the English pronoun has an aligned counterpart in Czech.
For many of such pronouns, the option that the pronoun is
non-anaphoric can then be discarded. The strength of this
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aspect very likely accounts for the fact that the majority
of most confident decision changes were in fact labeled as
non-anaphoric by the monolingual system (e.g. in Exam-
ple 4). Czech language side of the data thus help correctly
label these pronouns as anaphoric.
(4) Compelled

Nucená
service
službaf.s

is
je

unconstitutional
protiústavní

It
∅f.s

is
Je

also
také

unwise
nerozumná

Compelled service is unconstitutional. It is also unwise and
unenforceable.

Nucená služba je protiústavní. Je také nerozumná a nevynutitelná.

Similarly, most of the improvements among English
possessive pronouns do not result from additional infor-
mation on gender and number from Czech. The cross-
lingual system rather takes advantage of the cases where a
reflexive possessive pronoun is a Czech counterpart of the
English possessive pronoun (see Example 5), or the cases
where the pronoun has no Czech counterpart at all. In all
these cases, the syntactic subject of the clause in which the
pronoun lies is a preferred antecedent.
(5) Digital Equipment Corp.

společnost Digital Equipment Corp.
announced
představila

its
svou

line
řadu

of computers
počítačů

The hottest rivalry in the computer industry intensified sharply
yesterday as Digital Equipment Corp. announced its first line of
mainframe computers. . .

Nejžhavější rivalita v počítačovém průmyslu se včera notně
přiostřila, když společnost Digital Equipment Corp. představila
svou první řadu centrálních počítačů. . .

Back to the Czech zero subjects. Many of these expres-
sions reconstructed during the automatic analysis are in
fact superfluous. It is usually a consequence of a parsing
error, when the real subject of a clause is not recognized
(e.g. the word “společnosti /companies/” in Example 6).
This error subsequently propagates to a wrong decision of
the monolingual resolver (the word “zpráva /report/” la-
beled as an antecedent). Any superfluous zero subject may
be correctly resolved in two ways: (1) labeling it as non-
anaphoric, or (2) linking it to the expression that plays the
same role in the sentence. We observe that 85% of the de-
cisions corrected by the cross-lingual system are fixed in
the former way. And a missing English counterpart of the
superfluous zero plays a significant role in such decisions.
(6) Avšak

But
zpráva
the report

uvádí
said

že
that

společnostisubj
companies

∅subj
–

platí
are paying

více
more

daní
taxes

Avšak zpráva uvádí, že ačkoliv společnosti platí více daní, mnoho
jich stále platí méně, než činí zákonná sazba.

But even though companies are paying more taxes, many are still
paying less than the statutory rate, the report said.

In a similar way, detection of English non-anaphoric ze-
ros in non-finite clauses can be boosted by Czech features.
If the zero is non-anaphoric, its governing clause usually
remains non-finite in Czech or it turns into a noun phrase.
For instance, in Example 7 the entity which performs the

act of “hiring” is not specified in the context of a given
sentence, which is emphasized by the use of the noun “ná-
bor” as a Czech translation of the participle. The auto-
matically parsed structure of such cases is the same: since
Czech non-subject zeros are rarely reconstructed by Treex
linguistic pre-processing, there is usually no counterpart
for the English zero to align with.
(7) Fear

Strach
of
z

AIDS
AIDS

hinders
komplikuje

∅actor
–

hiring
nábornoun

Fear of AIDS hinders hiring at few hospitals.
Strach z AIDS komplikuje nábor v několika nemocnicích.

The category of relative pronouns specified in terms of
automatically set attributes may contain lots of pronouns
that are in fact interrogative or fused. Such instances ac-
count for the majority of non-anaphoric English relative
pronouns, correctly discovered by the cross-lingual sys-
tem but not by the monolingual one.

Finally, we sought for the reasons of worsenings within
a category of Czech and English reflexive pronouns. The
worst decisions made by the cross-lingual method in
Czech are on the pronouns that ended up resolved as
non-anaphoric. Most of the time these incorrectly la-
beled pronouns have no alignment to English, thus no
cross-lingual features related to the anaphor can be acti-
vated. On the other hand, the English cross-lingual re-
solver makes the most serious mistakes by selecting a
wrong antecedent. In these cases, the pronouns are most
often aligned to their Czech counterparts and these coun-
terparts are actually often correct. Yet, the choice of
the English antecedent seems to be random, regardless
whether the Czech counterpart is labeled as coreferential
with its correct antecedent, or the counterpart is any of the
words sám or samotný, which should indicate emphatic
use of the English reflexive pronoun.

7 Conclusion

This work conducts experiments on bilingually informed
coreference resolution on Czech-English data. Comparing
this cross-lingual approach to a monolingual resolver, we
discovered that English helps more in resolution of Czech
expressions than vice versa. A quantitative analysis shows
that while English facilitates resolution of both Czech
anaphoric and non-anaphoric mentions, Czech primarily
helps to identify non-anaphoric mentions. The qualitative
analysis reveals main reasons for improvements and wors-
enings all over the mention types. The most surprising
finding is that the information on English gender seems to
be improving resolution of Czech coreference more than
vice versa. The animacy feature hidden in English gen-
der appeared to be stronger than more even distribution of
Czech genders across nouns.
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Abstract: In this work, we focus on three different NLP
tasks: image captioning, machine translation, and sen-
timent analysis. We reimplement successful approaches
of other authors and adapt them to the Czech language.
We provide end-to-end architectures that achieve state-of-
the-art results on all of the tasks within a single sequence
learning toolkit. The trained models are available both for
download as well as in an online demo.

1 End-to-End Training

Traditionally, solving tasks such as machine translation or
sentiment analysis required complex processing pipelines
consisting of tools which transformed one explicit rep-
resentation of the data into another, with the structure
of the internal representations defined by the system de-
signer. In machine translation, we would devise explicit
word alignment links, extract phrase tables, train a lan-
guage model, etc.; in sentiment analysis, we could label
the data with part-of-speech tags, decode their syntactic
structure, and/or assign them with semantic labels. All of
these more-or-less linguistically motivated internal repre-
sentations are not inherently required to produce the de-
sired output, but have been devised as clever and useful
ways to break down the large and hard task into smaller
and manageable substeps.

With the advent of end-to-end training of deep neural
networks (DNN), the need for most of this has been elim-
inated. In the end-to-end learning paradigm, there is only
one model, directly trained to produce the desired outputs
from the inputs, without any explicit intermediate repre-
sentations. The system designer now only has to design a
rather generic architecture of the system. It mostly does
not enforce any complex explicit representations and pro-
cessing steps, but rather offers opportunities for the DNN
to devise its own notion of intermediate representations
and processing steps through training.

This also means that similar architectures can be used
to solve very different tasks. Rather than by the nature of
the task itself, the structure of the DNN to use is mostly
determined by the structure of the input and output – e.g.
image inputs are processed by two-dimensional convolu-
tions, while text inputs are processed by one-dimensional
convolutions, recurrent units, and/or attentions; classifica-
tion can produce its output in one step, while text genera-
tion is better done iteratively using recurrent decoders; etc.

Thanks to that, a single general framework can be used
to solve many different tasks. One just needs to transform

the inputs and outputs into a suitable format, define an ad-
equate network structure, and let the system train for a few
weeks.

Sadly, the burden of hyperparameter tuning has not been
alleviated by DNNs, but rather made worse by the compu-
tational costliness of the training. However, with a bit of
experience, one is often able to propose a suitable archi-
tecture and hyperparameter values at the first attempt, al-
ready achieving very competitive results even without any
further tuning.

1.1 Our contribution

Most of the papers in the field only evaluate their se-
tups on English datasets. In our work, we try to rectify
this shortcoming by reimplementing existing state-of-the-
art approaches in the Neural Monkey framework [14] and
training them on existing Czech datasets.

Neural Monkey is an open-source toolkit for sequence-
to-sequence learning, implemented in the TensorFlow li-
brary [1]. The toolkit is designed to be easily extensible in
order to support fast prototyping of architectures for vari-
ous NLP tasks. It is freely available on GitHub1 under the
BSD license, allowing both non-commercial and commer-
cial use of the toolkit.

We decided to focus on three rather varied tasks – senti-
ment analysis, machine translation, and image captioning.
For each of the tasks, we reimplemented one or more ex-
isting state-of-the-art architectures within Neural Monkey
and trained it on available datasets. Our evaluations show
that we manage to reach or surpass state-of-the-art results
for all the three tasks.

As we wish to encourage other NLP researchers to focus
on Czech language, we make sure that our source codes,
our configuration files and our trained models are all freely
available to anyone interested to use them, to study them
and to build upon them. With our work, we hope to estab-
lish well-performing approaches for Czech NLP, as well
as to allow e.g. investigation of the internals of the trained
models to try to decipher in what ways language seems to
be implicitly captured in them. Moreover, we have created
a simple web-based demo that allows anyone to easily ap-
ply our models to any input data, intended to popularize
deep learning and its applications for the Czech audience.

1https://github.com/ufal/neuralmonkey
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2 Sentiment Analysis

The goal of the sentiment analysis tasks is to decide
whether a text expresses positive, neutral or negative judg-
ment on its topic, sometimes also a degree of the positivity
or negativity.

2.1 Architecture

We use a state-of-the-art architecture by Lin et al. [20].
The architecture processes the text with a bi-directional
LSTM network [15, 11]. After that the attention mecha-
nism is applied several times, each time with a different
trained query vector; this is usually referred to as the ar-
chitecture featuring multiple attention heads. This gives
us a set of context vector, each of them being a different
weighted average of the LSTM states.

For English, Lin at el. [20] achieved new state-of-the-art
results on the Yelp dataset2 which contains texts of restau-
rant reviews and the number of stars the users assigned
to the review. The goal of the prediction is an automatic
assignment of the stars.

After replicating the results on the English dataset, we
evaluated the same approach on a Czech dataset. We also
experimented with architectures based on processing the
input with a convolutional network or a recurrent network
followed by max-pooling in time [16].

All models use embeddings of size 300 and a classifier
with 100 hidden units. In the experiments with CNN, we
used kernels of size 3, 4 and 5 with output dimension 100.
The LSTM network used 300 hidden units in both direc-
tions. The self-attentive layer used 10 heads and a hidden
layer of 300 dimensions.

2.2 Dataset

The largest existing Czech dataset for sentiment analy-
sis is the CSFD CZ dataset [12], which is available on-
line3 under the CC-BY-NC-SA license. It consists of
91,379 movie reviews from ČSFD,4 a Czechoslovak film
database.

The textual reviews are on average 60 tokens long, and
bear a rating of 0 to 6 stars, which the authors of the dataset
mapped into three classes: negative (0-2 stars), neutral (3-
4 stars), and positive (5-6 stars). The three classes are
represented rather uniformly, each being assigned to 32%-
34% reviews.

We split off 2,000 reviews for validation and another
2,000 for testing (there is no official split of the dataset),
retaining the nearly uniform distribution of the classes, as
well as other characteristics of the dataset such as average
review length.

We use tokenization from the Moses MT toolkit [18]
and post-process the tokenization in order to normalize

2https://www.yelp.com/dataset/
3http://liks.fav.zcu.cz/sentiment/
4https://www.csfd.cz/

Setup Accuracy
Most frequent class 35.70 %
Maxpool on embeddings 80.3± .1 %
CNN + maxpool 79.2± .1 %
SAN on embeddings 80.1± .1 %
SAN on LSTM 80.8± .1 %
Lenc+ [19] 71.00 %
Brychcín+ [7] 81.53 %

Table 1: Quantitative evaluation of sentiment analysis

emoticons and repetitive vowels that are often used for em-
phasis. We use vocabulary of 50k tokens appearing at least
5 times in the training data.

2.3 Evaluation

The evaluation in Table 1 show that no matter which par-
ticular architecture we use, we achieve accuracies around
81 %. We hypothesize that this already approaches the
highest accuracy practically achievable on the dataset, and
that all of the model architectures are sufficiently powerful
to achieve this accuracy.

Similarly to our approach, Lenc and Hercig [19] ex-
periment with convolutional networks and max-pooling
[16], however due to a small vocabulary and limited input
length, they report scores which are ten percentage points
smaller than ours.

To the best of our knowledge, the best result on this
dataset has been reported for the “ME + sspace + Dir”
setup of Brychcín+ [7]; they report a ±0.3 confidence in-
terval for their accuracy, which our best result also falls
into. The authors use a complex setup combining a Max-
imum Entropy classifier with an unsupervised extension
that incorporates global context into the classification,
based on the assumption that reviews for the same target
(movie) tend to bear similar labels; this extension brings
them approximately +3 accuracy points. We do not in-
corporate this mechanism into our setup; in fact, our sys-
tem does not use the information about the identity of the
movie at all. This shows that our model is stronger in a re-
stricted variant of the task – predicting the sentiment solely
from the plain text.

3 Machine Translation

Machine translation (MT) is one of the most well-studied
problems from NLP. In general, the goal of MT is given
a sentence in a source language, generate a sentence in a
target language which as similar meaning as possible to
the source sentence.

3.1 Architecture

We use our implementation of the self-attentive archi-
tecture called the Tranformer [27]. Our implementation
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is compatible with the official implementation in Ten-
sor2Tensor [26] and we can thus take advantage of highly
optimized training procedure.

The architecture uses the encoder-decoder scheme [3].
Unlike the original sequence-to-sequence models which
were based on recurrent neural networks, the Transformer
model uses a stack of self-attentive and feed-forward lay-
ers.

In the self-attentive layers, we use the state as a query to
an attention over the remaining states of the layer and out-
put a weighted combination of the states. This is always
followed by a feed-forward layer. All layers are normal-
ized [2] and interconnected with residual connection [13]
to ensure better gradient flow during training.

The decoder uses also attention to the encoder after each
self-attentive layer. The decoder is autoregressive. In ev-
ery time step, a new word is generated and the stack of all
the layers applied on the text generated so far, including
the newly generated word.

We use hyper-parameters and training strategy proposed
by Popel and Bojar [23] who train the model in Ten-
sor2Tensor. A vocabulary of 32,000 subwords is shared
by the English encoder and Czech decoder. The network
uses 16 self-attentive heads and a hidden layer of dimen-
sion 1,024. It is trained using the Adam optimizer [17]
with the beta parameter set to 0.998 and the learning rate
to 0.2 with 16,000 warmup steps, using a batch size of
1,500 and checkpoint averaging.

3.2 Dataset

We use CzEng 1.75 [5] Czech-English parallel corpus in a
filtered version [23] which contains 57M pairs of parallel
sentence pairs.

The model is validated on WMT13 test set and evalu-
ated on WMT17 [6] test set from the news domain.

3.3 Evaluation

We evaluate the model on the WMT17 test set [6]. It is
a test set that was used for system comparison in an an-
nual competition in MT. Unlike the other 2 tasks which
are rarely solved for Czech, English-to-Czech translation
is annually evaluated within the WMT competition where
it serves as an example of a highly inflected language.

The quantitative results are in Table 3, examples of the
outputs in Table 2. As far as we know, this is the best
publicly reported MT system for English-to-Czech trans-
lation.

Our best performing model was obtained by training for
8 days on 8 GPUs.

4 Image Captioning

In image captioning, the task is to provide a short textual
description of a given image – i.e., the input for the task

5http://ufal.mff.cuni.cz/czeng/czeng17

is an image (a two-dimensional matrix of bits, where each
bit is represented by the values of its red, green and blue
channel), and the output is a caption (a sequence of words).

As the Czech image captioning dataset is very new, we
believe to be the first ones to train models for the image
captioning task for Czech.

4.1 Architecture

We re-implement an attentive architecture by Xu et al.
[29]. The model uses pre-trained convolutional map from
networks for image classification on the ImageNet dataset
[8], these are used as input to a RNN decoder with atten-
tion mechanism [3] originally introduced in context of MT.

Image features are extracted with Resnet50 v2 (8 × 8
× 2048) [13], captions are tokenized and truecased Moses
style [18]. We use an RNN decoder [3] with conditional
GRU [10] with dimensionality 1024, and our word em-
beddings have 500 dimensions. For Czech experiments,
we use a vocabulary of 5,521 tokens, i.e., tokens that ap-
pear at least four times in the training data. For English,
we use a vocabulary of 7,752 tokens appearing at least 5
times.

The model is optimized using the Adam optimizer [17]
with default parameters and mini-batch size 64. Because
we cannot rely on an extrinsic evaluation metric, we per-
form early stopping on reference captions perplexity.

At the inference time, we use a beam search of width 5
with length penalty 1.0 [28].

4.2 Dataset

We use a recently acquired Czech version of the Multi30k
dataset [9] which contains translations of the originally
English captions from the Flickr30k dataset [22].

The dataset uses 29,000 images for training, 1,014
for validation and 1,000 for testing. Unlike the original
Flickr30k dataset which contains 5 independent descrip-
tions for each image, we only have one Czech sentence
for each image.

This means we can have only have one reference sen-
tence for the evaluation which makes the evaluation less
robust than in case of English.

4.3 Evaluation

Image captioning is usually evaluated using metrics origi-
nally developed for machine translation.

There is only one reference in the dataset, while the
standard is to evaluate with BLEU [21] or METEOR [4]
score against 6 references. In MT, 4 references are the
standard [21], and 1 reference is typical in practice. In im-
age captioning, the captions are quite short, and there is
a much higher degree of freedom, which is why as many
as 6 references are typically used. With only 1 reference
available, BLEU cannot be reliably used here. However,
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source: The next chance won’t come until winter.
system output: Další příležitost přijde až v zimě.
reference: Další šance přijde až v zimě.

source: All private correspondence and images should remain private.
system output: Veškerá soukromá korespondence a obrazy by měly zůstat soukromé.
reference: Všechna soukromá korespondence a všechny soukromé obrázky by soukromé měly zůstat.

Table 2: An example of the outputs of the MT system.

cs output: Skupina lidí stojí ve sněhu.
cs reference: Skupina lidí stojící před iglú.

en output: A group of people are standing in front of a building.
en reference: A group of people wearing snowshoes, and dressed for

winter hiking, is standing in front of a building that looks
like it’s made of blocks of ice.
The people are quietly listening while the story of the ice
cabin was explained to them.
A group of people standing in front of an igloo.
Several students waiting outside an igloo.

Figure 1: An example of an output of the image captioning system.

model BLEU
Popel and Bojar [23] (ours) 23.8
WMT17 winner [25] 22.8
Google Translate [28] 20.8

Table 3: Qualitative evaluation of the MT model.

model BLEU METEOR chrF3
Xu et al. [29] 19.1 18.5 —
ours (English) 19.7 17.0 0.17
ours (Czech) 2.3 7.2 0.14

Table 4: Quantitative results of the image captioning mod-
els.

as more references are not available, we use the chrF3 met-
ric [24], which is based on character n-grams rather than
word n-grams, and has thus a higher chance of providing
at least somewhat useful evaluation scores (even though
we note that they are still very unreliable).

We believe our work to be the first to perform image
captioning in Czech language. As can be seen in Table 4,
the standard evaluation shows rather low scores for Czech.
However, when investigating the data, we found the pro-
duced image labels to be usually correct, even if rather
simple and generic. See Figure 1 for an example of an in-
put image together with its captions produced by our sys-
tem.

5 Conclusion

We implemented and trained models for English-to-Czech
machine translation, sentiment analysis of Czech texts,
and image captioning in Czech within Neural Monkey,
using approaches reported to be state-of-the-art for other
languages (typically English). We gathered and standard-
ized existing datasets, adapted the Neural Monkey toolkit
where necessary, and trained and tuned the tools. Our eval-
uation shows that the resulting tools reach or surpass state-
of-the-art for all three tasks. Both the source codes and the
trained models are available online under free licences.67

The tools are also available as an online demo.8

As a future work, we plan to add more tasks, especially
text summarization.
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[24] Maja Popović. chrF: character n-gram F-score for auto-
matic MT evaluation. In Proceedings of the Tenth Work-
shop on Statistical Machine Translation, pages 392–395,
Lisbon, Portugal, September 2015. Association for Com-
putational Linguistics.

[25] Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Ger-
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Abstract: This paper presents island models, methods, im-
plementation and experiments connecting stochastic opti-
mization methods and recommendation task (collaborative
one). Our models and methods are based on matrix fac-
torization. Parallel run of methods optimizes the RMSE
metric from an island model point-of-view.

This paper comments on architecture and some imple-
mentation decisions.

We dealt with two research hypotheses. First, whether
island models bring always improvement. We will show
that almost always yes. Second, whether evolutionary al-
gorithm does or does not always find the best solution.
This will be confirmed only on smaller data. Experiments
were provided on Movie Lens 100k and 1M data.

1 Introduction

This paper studies recommender systems, especially learn-
ing user/customer preferences. Main idea of this paper is
to connect this study to evolutionary island models. Here,
island models are a computational tool for matrix factor-
ization.

Instances of one stochastic optimization method run in
parallel on island models, searching the same state space.
Such a method traverses the state space of solutions. The
actual state they visit is influenced by (mutually indepen-
dent) stochasticity. Hence, different instances can visit dif-
ferent parts of the state space. Island model parallelization
is based on cooperation of methods during the computa-
tion.

This resembles ensemble and/or hybrid learning, where
different optimization methods are:

• run in parallel

• allowed to run in different state spaces

The solution (usually one of them) is chosen at the end by
an additional aggregation/decision method.

Using evolutionary computing for recommendation is
surveyed in the paper of Horvath [1]. This survey shows
that usage of evolutionary methods is quite frequent in rec-
ommendation systems (see also [2]). One of approaches is
model based. Our approach uses matrix factorization and
hence the model is constituted by factors. In [1] they men-
tion only one paper [3] where evolution individuals are
matrix factors. Authors of the article [3] provide results
on ML100k data on minimizing squared error depending

on size of population and probability of mutation (other
parameters are fixed).

In this paper, parameters of our methods were chosen
after experiments on sample data. We will try to improve
RMSE using parallelization. We will provide results on
both ML100k and ML1M data.

Main contribution of this paper is:

• Multiple island model brings statistically significant
improvement of recommendation in comparison to
single instance optimization.

• Our implementation is able to handle individuals
(matrix factors). Size of our individuals is several or-
ders bigger than usual in evolutionary computation.

This paper is organized as follows: Chapter 2 "Related
work" concerns recommender systems and matrix factor-
ization; evolutionary algorithms and island model. Chap-
ter 3 "Methods, models and parameters" sketches our view
of stochastic optimization methods; parameters and set-
tings of island model used in tests. Next section "Data"
describes realization of experiments and design of tests
and computing resources. Finally section 4 "Results" gives
both numeric and graphic presentation of our results and
discusses confirmation of our hypotheses. After conclu-
sions paper ends with Future work.

2 Related work

This section gives basic notation for recommender sys-
tems, evolutionary computation used and overviews some
relevant literature.

2.1 Recommender systems and matrix factorization

It was the Netflix price (announced in October 2006)
which excited public and changed the landscape of rec-
ommender systems area research.

The BellKor squad included Chris Volinsky and his
AT&T colleagues Robert Bell and Yehuda Koren, along
with four other engineers from the United States, Austria,
Canada and Israel (BellKor’s Pragmatic Chaos) on June
26, 2009, finally crossed the 10% finish line. Main in-
gredient of winning solution has been matrix factorization
(MF), see e.g. [4].

We focus on latent model based recommendation -
which is a part of collaborative filtering technique (Co),
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asked for in Netflix Price competition. Co was introduced
by [4].

Let us denote U set of user ids and I the set of item ids.
Input data can be viewed as partial function r : U ×I −→
P , here P is the preference scale (e.g. one to five stars
or real numbers). Alternative representation is in the form
of algebraic matrix R ∈P |U |×|I | with dimensions repre-
senting users and items respectively. Rating of user i ∈U
of an item j ∈I is content of corresponding cell of matrix
ri j ∈P . Usually this matrix is very sparse, so in practice
input data are represented in a form of a database table R
with schema R(uid = user id, iid = item id,rating). Al-
though implementation uses database table formal model
of [4] description is easier in the language of matrices. The
matrix R is factorized to lower dimensional representation

R≈ U× Iᵀ = R̂ (1)

where U ∈P |U |×d , I ∈P |I |×d are user and item la-
tent factors matrices and × is a matrix product. d is much
smaller than |U | and |I |. Approximation of R by R̂ is
measured by

e2
i j = (ri j− r̂i j)

2 =

(
ri j−

d

∑
k=1

uiki jk

)
(2)

here r̂i j will serve as approximation of value ri j.
Our main optimization method is SGD - stochastic gra-

dient descent method. For other approaches and dimen-
sions of research in recommender systems we reffer to [5].

2.2 Evolutionary algorithms

Evolutionary algorithms became popular after 1970,
thanks to John Holland [6] as a means for solving opti-
mization problems. The solution is represented as an indi-
vidual, the set of individuals forms the population. Evo-
lutionary algorithm is formed by phases: initialization,
selection (parent selection for next generation offspring),
crossover, mutation and evaluation of the whole popula-
tion. The stochastic computing of individuals seeks con-
vergence to the global optimum.

The contribution of evolutionary algorithms in the area
of recommender systems was reviewed by Horvath de Car-
valho in [1]. This review analyzed more than 65 research
papers using EC techniques for user recommendations. It
analyzed different approaches according to five aspects: (i)
recommendation technique used, (ii) datasets employed in
the experiments and (iii) evaluation methods used in the
experiments, (iv) baselines used to compare with the pro-
posed methods and (v) reproducibility of the research.

Most of nature-inspired algorithms reviewed in [1] find
application in solving partial problems such as feature
weighting extraction, model based approach, clustering
and function learning.

Computing latent factor models by using of evolution-
ary algorithms has emerged as a possible approach [3].
Available publications do not mention the parallelization

of evolutionary algorithms in combination with the com-
putation of latent factors.

Motivated by this, in our paper individuals are repre-
sented by concatenation of Uᵀ and Iᵀ (like a worm d-thick
and |U |+ |I | long)




u11 . . . u1|U | i11 . . . i1|I |
...

. . .
...

...
. . .

...
xd1 . . . ud|U | id1 . . . xd|I |




Figure 1: Individual represented by latent vector of users
and latent vector of items

In our experiments we use the RMSE as the fitness func-
tion

√√√√∑|U |i=1 ∑|I |j=1 e2
i j

|U | ∗ |I | (3)

2.3 Island model

Island models are one of approaches how parallelize opti-
mization algorithms. Their characterization is that there is
no central master and populations are distributed. Island
model consists of parallel algorithms enriched by send-
ing and accepting migrants. Migrants are individuals from
other islands population. The hope is that this propagation
of genetic material can speed up convergence and escape
from local optima trap.

Parameters of island model are frequency of sending-
receiving migrants and the way how the migrant is chosen
from local population (remember that parameters of meth-
ods are fixed and are chosen after experiments on a sample
data). Optimal choice of these parameters depends on the
type of optimization method and is subject of study. These
aspects of island models are studied in [7].

Specific type of island models, heterogeneous, were
used in the application of multi-criteria optimization by
Martin Pilát and Roman Neruda [8]. They designed a
new algorithm of MOGASOLS (Multiobjective Genetic
Algorithm with Single Objective Local Search) combining
multi-criteria genetic algorithm (MOGA) with a single-
criteria genetic algorithm (SOGA). It is proved that par-
allelization of time-consuming method MOGA achieves
worse results than parallel running MOGA and SOGA
methods. They were tested in NSGA-II [9] and IBEA [10]
algorithms. This was further developed in [11].

The first who come up with heterogeneous island mod-
els (HeIM), the way we understand them, was Martin Pilat
([11]). In these models, the islands may carry diverse com-
putational methods, differing not only in parameters but
also in the structure of the whole stochastic algorithm [11].
For the choice of optimal methods for the given problem is
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responsible the central planner, which replaces unsuccess-
ful method by more successful methods during the whole
computation. In publication [11] the original Balcar’s tool
[12] was used.

In this paper this tool is used with homogeneous islands
to find optimal user and item latent factor.

Then different optimization techniques are used to con-
verge with factor to optimal one. For illustration we give
formulas for stochastic gradient descent. Recall e2

i j, then
next generation values of user and item factors equal to

úik = uik +α
∂

∂uik
e2

i j
´ik j = ik j +α

∂
∂ ik j

e2
i j (4)

Note, that in our implementation we do not consider
normalization factor, this is left for future. Nevertheless,
some normalization effect is obtained by migration and
synergy of islands. α is not fixed, just bounded from
above. More on our system is in [12].

3 Methods, models and parameters

Island models where originally developed for paralleliza-
tion of evolutionary algorithms. In this paper we will use
also other stochastic optimization methods.

3.1 Stochastic optimization methods

Evolutionary algorithms try to balance trade off between
exploration and exploitation. This property should help
evolutionary algorithm to escape from local extremes and
simultaneously converge to optimal solution. For this abil-
ity they pay a higher time complexity because of parallel
development of bigger population. Because of this fact,
on some types of problems, the winners are other stochas-
tic optimization methods. An example is TSP solution by
hill climbing with 2-opt ([13]). So, this is the main rea-
son we consider several additional stochastic optimization
methods (see Table 1).

All these methods use the stochastic gradient descent.
A general link to description of stochastic optimization
methods is [14].

Our implementation of stochastic optimization methods
was changed in two ways. First, we had to create operators
to enable them to work with latent factor based individu-
als. Second, methods were modified for parallel run in is-
land models with migration. They were enriched with abil-
ity to cooperate. They receive individuals and enrich their
local population. Please notice, that only evolution and
differential evolution have bigger population. Remaining
methods have only one individual population. In this case
enrichment means replacement. They provide their solu-
tion from local population to neighboring islands. Meth-
ods manipulate incoming individuals in concordance with
basic algorithm idea. E.g. the tabu search method inserts
a newcomer to the tabu set.

Individual equals solution. Solution is represented by
pair of latent factors of users and items (Figure 1). Mul-
tiplying of these latent factor we get a matrix which rep-
resents our estimation of ratings. Length of first vector is
the number of users and the length of second vector equals
number of items. Size of the individual depends on size
of input problem. Width of latent vector is an optional pa-
rameter.

3.2 Parameters and settings of island model used in
tests

Now we describe island model - the environment in which
the above methods will be parallelized. It is the envi-
ronment which ensures dissemination of genetic material.
The main tool for this is the migration. This migration
does not mean only exchange of best solutions. We would
like to spread across the system (between islands) genetic
material which has the potential to contribute to further
improvement of population quality and to speed-up the
convergence. Migration is inspired by processes in nature
([15], [16]). Most of island models exchange migrants in a
synchronized way. In our system exchange of migrants is
not synchronized - so in fact our islands are more general.

Key parameter of island models , as nature shows ([17]),
is the frequency of migration and size of local populations.
The bigger the frequency of migration the bigger is the
chance that islands will help each other. On other side each
hardware and software is limited by data through put.

Matrix factorization needs migration of much bigger in-
dividuals than e.g. continuous optimization, where indi-
vidual is a point in an n-dimensional space. In this paper
we had to change architecture of model used in [11]. In
[11] input problems were TSP (traveling salesman prob-
lem of size cca. 1000 cities), BP (bin packing, one dimen-
sional with 1000 items), CO (continuous optimization, 10-
dimensional function) and vertex cover (1000 vertexes).
Solution of preference learning by matrix factorization on
island models is represented of much bigger individuals,
rough estimation of our state space is > #TSP20. Evolu-
tionary algorithms use incoming individuals in groups and
after a while. Hence, it is advantageous to store them in a
front. As far as individuals are big and memory is limited
we had to limit the size of fronts (see Table 2).

3.3 Data

We used data from the movie recommendation domain in
the experiments. The effectiveness of parallelization has
been verified on datasets ml-100k1 and ml-1m2. Datasets
are formed by movie evaluation (1-5 stars), for trials we
use the trinity (user, movie, rating).

The training set consists of four-fifths from the dataset,
the rest is the test set. Counting derivatives for SGD lever-

1http://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/
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Algorithms Tool Parameters
HillClimbing SGD random rating from each line numberOfNeighbors=10
RandomSearch generation of latent vectors
Evolution uniform crossover + SGD popSize=10, mutationRate=0.9,

crossRate=0.1,
parentSelector=CompareTwoRandomSelectors

BruteForce SGD according to the I-th rating
TabuSearch SGD random rating from each line tabuModelSize=50
Sim.Annealing SGD random rating from each line temperature=10000,

coolingRate=0.002
Diff.Evolution differential crossover popSize=50, F=0.25

Table 1: Methods and parameters

Parameter value
Number of iterations 50, period = 60 seconds
Number of islands 4 (AMD Opteron 6376)
Neighbors of method 3 (distributed to everyone)
Migration frequency 5 seconds

Table 2: Parameters of the island model

ages the training set. The test set is used to evaluate indi-
viduals.

3.4 Realization of the experiment

Our main idea is to increase stochasticity of searching the
state space (which is enormous for movie data). First
level of stochasticity is enabled by stochastic optimization
method. Second level is enabled by several independent is-
lands. The third level is attained by migration. Our system
enables all of these. Moreover, all of these run in parallel
with mutually assisting methods (not competitive).

In order to be able to obtain the best solution from such
a computation resource, the computation must be continu-
ously monitored (Figure 2). Solutions represent individu-
als that are unpredictably moving across the island model.
We can never know when and where the best solution will
appear (sometimes the best solution does not appear at the
end, see Figure 3).

Our implementation uses agent middle-ware Jade3 for
achievement of higher adaptivity of methods (in our three
levels of stochasticity).

Here we were facing main decision. Whether to prefer
higher adaptivity (based e.g. on Jade) or better use of ef-
fectiveness of specific hardware (based e.g. on C). From
pure experimental curiosity we went along the agent based
middle-ware framework direction.

The central brain of the multi-agent based system is a
manager of migration which directs the computation and
measures genetic material during evolution.

3http://jade.tilab.com/
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II.
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Method
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Manager 
(planner) 

Monitor 
(statistic) 

Figure 2: Architecture of system

The use of this system is the implementation of methods
as an agent, who can develop methods as adaptive com-
puting resources. The infrastructure of the system is made
up of two central points, by Agent-manager that manages
computation and by Agent-monitor, that monitors genetic
material in the system.

Software allows multiple ways of monitoring. The mon-
itor statistically processes the quality of the individuals.
Another way of observing what happens in the system is
to produce the pedigrees of an individual. The basic idea
is to enrich every individual of the pedigree that contains
information on the involvement of concrete islands in its
creation.

For our experiments, were used statistics that are com-
puted from each monitored individuals in one iteration of
planner. We will present the results as a measure of the
system, which is monitoring follow-planner-iterations.

Our evolutionary methods (Table 1) use uniform
crossover. In phase of mutation they apply stochastic gra-
dient descent on a randomly chosen rating.

Differential evolution combines 3 latent vectors (indi-
viduals which are models/solutions) LV1 which is a con-
catenation of Uᵀ

1 and Iᵀ1 , similarly LV2 and LV3. Result
of the differential operator is latent vector

LVnew = LV1 +F ∗ (LV2−LV3)

here F is 0.25.
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3.5 Test design and computing resources

Two pairs of tests were created, comparing single meth-
ods and island models, differing in the size of the input
Movieland dataset. The width of the latent vector was set
to 10 (best after initial experiments on smaller samples).
The tests run on all initial parameter settings (Table 3) 9
times. As far as our computations are nondeterministic
this makes difference (see Figures 4 and 5). These are
computationally demanding calculations.

Parameter value
Number of runs 9
Computing nodes AMD Opteron 6376, 64GB memory
Latent factor width 10
Datasets ml-100k, ml-1m

Table 3: Parameters of the test

4 Results

Our experiments validated two hypotheses. First is that
evolution does not necessary give best solution and sec-
ond that island models improve results. We will present
results for two datasets separately. We will show the best
solution of 9 runs and average of all runs (for distribution
see Figures 4 and 5).

On the smaller data set the winner is always Evolution
and Islands give always better solution.

On the bigger dataset the single island winner is simu-
lated annealing (in both minimum and average). In Islands
the winner is hill climbing (in both minimum and aver-
age). On bigger data we can not always observe advantage
brought by parallelization by islands and migration. This
can be observed especially by simulated annealing. One
possible explanation is that hill climbing does not risk that
much going in wrong direction as simulated annealing is
doing (sometimes). Bigger data bring bigger state space
and hence risk is necessary, but 50 iterations of the plan-
ner is probably not enough. In future research we will run
island models with more iterations.

5 Conclusions

We proved that island models are a good computing tool
for recommender systems. Our experiments have shown
following. Island models brought clear improvement on
smaller data set. On bigger data, it is also true except of
simulated annealing. Moreover on bigger data evolution
does not find best solution.

Our implementation is publicly available on Github4

and hence enables repeatability of our experiments (see
[1], requirement (v)).

4https://github.com/sbalcar/distributedea
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6 Future work

In our future work we plan to extend this to heterogeneous
island models. We also plan to develop new planners
which will be specifically designed for recommendation
domain. We would like to consider also islands with statis-
tical learning methods. Challenge is extension to content
based recommendation.
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Abstract. Extraction from web pages becomes a very popular 
way to acquire important data for better decision process. 
Acquisition of structured data from a new web portal requires 
an annotation of web pages of the portal to allocate the 
location and the type of the information. We present methods 
for semi-automatic annotation of e-shops' content, to create 
rules for extraction. The methods are implemented in Chrome 
extension named Exago. The aim of these methods is to 
generate XPaths and regular expressions. We use positive and 
negative examples to further specify which of the generated 
XPaths should be used for extraction. The annotation methods 
are tested on real data and the results show a high success 
rate. 

1 Introduction 

Web scraping is a complex process that consists of web 

pages annotation, crawling, data extraction and data 

processing. This kind of data acquisition is very valuable 

for decision process, because it can provide data from 

various sources and process them together. Project Kapsa 

[1] deals with extraction and unification of information 

from web pages, focusing on products on e-shops. The aim 

of the project is a creation and management of a collection 

of products which are offered by e-shops. In this paper, we 

focus on the first step of the web scraping process, the web 

pages annotation.  

The annotation has two main goals: recognition of 

relevant page on portal and identification of positions of 

relevant pages, where the data of our interest are.  

The positions of relevant data are usually specified by 

XPaths of HTML source or by regular expressions, which 

are used by extractor on each relevant page. It is also 

possible to extract data using a procedural script. Writing 

complex XPaths or regular expressions, as well as a 

creation of scripts is not an easy task. It requires the 

annotator to be an IT expert.  

Our goal is to make the annotation process of e-shops 

easier and possible for ordinary person. We would like to 

offer in our Chrome extension Exago[1] satisfactory results 

of web scraping with annotation made only by mouse 

clicking. 

2 State of the art 

Web annotation and extraction systems can be 

categorized to four groups [2]. Manual systems [3, 4] 

require programming in some (pseudo) language. 

Automatically constructed extractors [5, 6] create 

extraction system based on complete user annotation and 

examples of extracted data from several pages. 

Automatically constructed extractors with partial user 

support [7, 8] create extraction system without the need of 

extraction examples. Automatic extractors with no user 

support [9, 10] analyze repeating patterns on web pages, 

and extract every data that seem to be interesting. Our tool 

Exago can be included in automatically constructed 

extractors with partial user support. 

Currently there are more than 50 web scrapers available 

on the internet. We have tried to use all of them to product 

data extraction from two e-shops Alza.sk and Heureka.sk. 

The majority of them were not able to extract the product 

data. The web scrapers that are at least partially applicable 

to product data extraction are [11-28], so we examined 

these web scrapers more deeply. Majority of these tools 

provide the generation of one XPath by clicking on element 

on the page. Some tools hide this functionality and do not 

show the final XPath [12, 18, 19, 21, 22, 24, 25, 26], the 

others [11, 13, 15, 17, 20, 23, 27, 28] allow the 

modification of the XPath manually. The rest of them [14, 

16] provides manual insertion of XPath only. None of the 

tools provide regular expression generation, but some of 

them allow writing regular expressions manually.  

3 Methods for annotation 

Having an HTML element containing the relevant data 

we can easily create an XPath as a path from the root 

element. The XPath points to the target element and it is 

used during the extraction process on this page. However 

on the similar page (e.g. the page about different product on 

e-shop), the created XPath can be unsuccessful – either it 

finds no element or an element with different kind of data, 

because the HTML source tree can be slightly different 

(e.g. missing subtree, different highlighting of texts etc.) 

than the one of the annotated product. 

Fortunately, many XPaths can be created that point to the 

same element. The tree navigation of XPaths can be based 

on elements’ attributes, order of element between its 

siblings, various conditions and more. Choosing the right 

navigation of XPath increases the success rate of extraction 

considerably. The problem is that an unexperienced user is 

not able to choose the right XPath from the hundreds of 

possibilities. Therefore we provide semi-automatic XPath 

and regular expression generation and interactive selection 

of the right rules to make the annotation process easier. 

3.1 XPath generation 

XPath is a query language that is used to select nodes of 

XML DOM model. All browsers create a DOM model out 

of HTML file as the first step of page processing. XPath 

language provides various approaches to specify a starting 

node(s) and traversal of the DOM model. Creator of XPath 

expression can utilize tag names, tag attributes and their 

values, order of the elements, navigation functions, and 

conditions with build-in functions. Such variability allows 

many XPaths to localize the same node.  

Annotator’s goal is to specify the position of relevant 

data that can be universal for all pages of the same type 

(created from the same HTML template). In our case, we 
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focus primarily on pages, where the details of the products 

are located. Unfortunately, when the template is combined 

with the structured data of products, to create final detail 

pages, the differences between result pages eventuate in 

variety of HTML tree structures. They can vary in element 

attributes as well as in absence of whole subtrees. Such 

differences cause many XPaths, which work on one page, 

fail on other page. They can point to different or no nodes, 

while the corresponding data is still present somewhere on 

the page.  

It is impossible to know, which parts of the template are 

on all result pages, without complex analysis of pages, 

because the templates are not public. Therefore we don’t 

know which elements or attributes can be used as 

navigation points of universal XPath. Annotation experts 

usually examine various HTMLs of result pages and create 

the universal XPath manually.  

 

 
Fig. 1. Part of HTML source example  

 

Our approach generates several possible XPaths as 

possible candidates to final universal XPath. Consider that 

annotator wants to create an XPath leading to element with 

value “24FDX” in HTML source on Figure 1. In this 

example, the result of the method used for generating 

XPaths is a set of 36 different correct XPaths, which point 

to the same element. The shortest ones of them are listed 

below: 

 //tr[2]/td[2] 

 //tr[last()]/td[last()] 

 //tr[last()]/td[2] 

 //tr[2]/td[last()] 

 //tr[2]/*[@style="color:pink;"] 

 //tr[last()]/*[@style="color:pink;"] 

XPaths are generated gradually along the path from the 

clicked element to a specified root element occurs. If there 

is no root element specified, the root element of HTML 

document is chosen to be the element where generation 

stops. At every current element during the generation, all 

attributes, the name and the order between siblings of this 

element are combined to create different XPaths. 

The extractor process, which extracts the data from all 

similar pages, needs only one XPath per each value 

position. Our approach in Exago tool [1] chooses the 

shortest XPath as the result candidate by default. The 

annotation process is a process where annotator determines 

whether the candidate XPath is the most universal one, to 

be chosen for extraction. 

During the annotation process, the annotator can 

navigate to other similar page (e.g. the page about other 

product) and check out the success of the chosen XPath. 

There are three possibilities: 

1. The element is correctly found using the XPath and 

no changes need to be done. 

2. The XPath addresses no element and annotator can 

mark the correct element as the positive example. 

3. The XPath addresses different element and 

annotator can mark the addressed element as the 

negative example. 

When the annotator marks the positive or negative 

example, by clicking on an HTML element, the method for 

generating XPaths generates new set of XPaths to this 

element. Let this set of XPaths be named as B, and the 

original set as A. In case of the positive example, the new 

set of XPaths, that work fine on both pages is A∩B. In case 

of negative example, the new set is A-B.  

After some iterations of this procedure, the result set 

contains only XPaths that work on all pages. The annotator 

can choose any of them to be part of final extraction rule, 

or just keep the default one. As it was mentioned before, 

our Exago tool chooses the shortest XPath by default.  

3.2 Regular expression generation 

XPath is a very capable language at locating the whole 

element of HTML source. There are cases, when we want 

to extract a value only from a part of the element, or a value 

spreads across two or more elements. In this case, XPath is 

unusable. 

 

 
Fig. 2. Regular expression editor  

 

In Exago, we combine XPaths and regular expressions, if 

needed. XPath localizes the HTML part in which the 

regular expression can be used. It is also possible, that the 

XPath localizes more than one element, and regular 

<h1>Samsung 24FDX</h1> 

<h2>Specification</h2> 

<table id="product parameters">                          

   <tbody>                                         

       <tr>                

          <td style="color:powderblue;">Producer</td> 

          <td style="color:pink;">Samsung</td>                         

       </tr>                  

       <tr> 

          <td style="color:powderblue;">Model</td> 

          <td style="color:pink;">24FDX</td>                         

       </tr>                                  

   </tbody>                    

</table> 
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expression can be used in all of them to find out the target 

value.  

Regular expression is an effective tool for extraction of a 

substring based on complex conditions with quite 

complicated syntax. Sometimes, even IT experts have a 

hard time at constructing more complex regular 

expressions. 

In Exago, we created regular expression editor (Fig. 2) 

that generates multiple regular expressions using mouse 

events. . The process of generating regular expressions can 

be performed only by clicking on buttons in the editor and 

highlighting the text needed for extraction. Therefore, the 

editor allows a less experienced user to create regular 

expressions, and see the result. On the other hand, there is 

still a possibility to edit generated regular expressions or 

write custom ones.  

Our editor supports two approaches. First, user can select 

the target text and click on the first Generate button. Exago 

generates several regular expressions, collected in the 

combo box.  The method that generates the expressions 

tries to generalize the two most common text parts:  

 spaces and other whitespace characters are 

converted to expression \s or \s+, 

 numbers are converted to \d+ or \d+((\.|,)\d+)?, 

which covers also decimal numbers. 

The second approach to regular expression generation is 

selection of prefix and suffix of the target value and hitting 

the appropriate “Generate” button. In Figure 2, user 

selected text “unit-17220>” as the prefix and “</span>” as 

the suffix and generated the related regular expressions. 

Using the chosen regular expressions, a combined 

expression is created and written in the text field on the top 

of the screen. The result of the regular expression search is 

emphasized on the bottom with green background.  

4 Experiments 

In this section we analyze the accuracy of annotation of 

our new version of Exago. The new version is using the 

semi-automatic annotation based on positive and negative 

examples and generating regular expressions. The tests 

compare our approach with the usual approach of element 

localization used in other web scrapers and our previous 

version of Exago, i.e. generation of one XPath per value.  

This analysis has been done on 20 different e-shops. 

During the testing phase, every annotation has been 

realized only by clicking with mouse on HTML elements 

and Exago components. No manual editing of XPaths and 

regular expressions has been used, in order to compare the 

old and the new approach. The table on Table 1 shows the 

results of each annotation per e-shop ordered by success 

rate.  

We measure following aspects for both approaches:  

 successful annotation of elements – the number of 

successfully annotated elements or values compared 

Table 1. Annotation accuracy analysis 

URL of e-shop

Successful 

annotation of 

elements

Success rate
Use of regular 

expressions

Successful 

annotation of 

elements

Success rate
Use of regular 

expressions

gymbeam.sk 10 out of 14 71% No 11 out of 14 79% No

vivantis.sk 8 out of 12 67% No 10 out of 12 83% Yes

bestbuy.com 5 out of 14 36% No 12 out of 14 86% Yes

martinus.sk 8 out of 14 57% No 12 out of 14 86% Yes

nay.sk 10 out of 14 71% No 12 out of 14 86% Yes

insportline.cz 9 out of 14 64% No 12 out of 14 89% Yes

target.com 6 out of 9 67% No 8 out of 9 89% Yes

eshop.eta.cz 8 out of 11 73% No 10 out of 11 91% Yes

mall.sk 9 out of 11 82% No 10 out of 11 91% Yes

notino.sk 4 out of 11 36% No 10 out of 11 91% Yes

pantarhei.sk 8 out of 11 73% No 10 out of 11 91% Yes

obi.cz 3 out of 14 21% No 13 out of 14 93% Yes

andreashop.sk 9 out of 11 82% No 11 out of 11 100% No

decathlon.sk 12 out of 13 92% No 13 out of 13 100% No

hej.sk 9 out of 11 82% No 11 out of 11 100% No

heureka.sk 5 out of 12 42% No 12 out of 12 100% Yes

hornbach.sk 5 out of 10 50% No 10 out of 10 100% Yes

radioshack.com 9 out of 12 75% No 12 out of 12 100% No

rajdazdnikov.sk 0 out of 11 0% No 11 out of 11 100% Yes

zoohit.sk 5 out of 11 45% No 11 out of 11 100% Yes

Total 142 out of 240 59% - 221 out of 240 93% -

first genarated XPath our approach
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to the number of all elements or values that could be 

annotated, 

 success rate – percentage of correctly addressed 

elements and values among annotated elements and 

values 

 use of regular expressions – information about the 

use of generated regular expressions during 

annotation; with every use of regular expressions in 

Exago, regular expressions have been used in 

combination with XPaths. 

With the new approach, we have achieved success rate of 

100 % in 8 internet shops. In remaining 12 e-shops we have 

not been able to achieve the 100 % success rate because of 

the following reasons: 

 in 5 cases, the HTML structures of detail web pages 

in each e-shop have varied too much, 

 in 5 cases, lists of product parameters have been 

divided into more elements unrelated to each other, 

 in 3 cases, complications occurred during annotation 

of images that used dynamic styles of their 

presentation on a web page, 

 in 3 cases, we have not been able to annotate prices 

of products, because e-shops displayed sale prices in 

different elements compared to non-sale prices, 

whilst both of these prices have been present on a 

web page, 

 in 3 cases, we have not accomplished to annotate 

product ratings represented by pictures without any 

further information given, for example, amount of 

stars awarded. 

Success rate average of annotation of information about 

products has been 59% in the case of common approach. 

With the new version of Exago we have achieved the 

average success rate of 93%. This growth has been 

achieved with the help of generating regular expressions 

and the functionality of positive and negative examples. 

Some of the unsuccessful cases could be eliminated by 

manual editing of XPaths and regular expressions. For 

example, in the cases when internet shops presented more 

lists of product parameters, we would be able to manually 

create a regular expression that would address all types of 

elements representing these lists.  

5 Conclusions 

This paper deals with improvement of the commonly 

used data localization process in web annotation by 

implementing the semi-automatic annotation. We have 

created a plug-in module Chrome Extension named Exago 

containing this functionality. With the help of methods for 

generating XPaths, generating regular expressions and the 

functionality of positive and negative examples, we are 

able to annotate more information on detail web pages of 

products, compared to the previous version of Exago. 

During the annotation accuracy analysis, we have been 

comparing the common approach with the new one, and 

discovered that the success rate has grown from 59% to 

93%. We consider this result as notable, but there is still a 

room for improvement. One improvement could be creating 

a new component, which would be able to distinguish 

different types of detail web pages in one e-shop and use 

appropriate XPaths and regular expressions for annotation. 

Another improvement could be more intelligent 

generation of XPaths by which we would generate XPaths 

faster and reduce the generation of very similar XPaths.  

Designing methods for annotation of product ratings 

represented by pictures of stars or other objects would be 

also very benefiting. The solution to this problem could be 

counting matches of the regular expression addressing one 

star in the element containing these stars.  

Adding a sale price as a new type of known value 

component would enable us to annotate sale prices as well 

as non-sale prices and grow our success rate per e-shop. 

The new version of Exago could also be improved by 

solving a problem with image annotation, where images are 

being displayed in different dynamic styles. The solution 

could be some kind of a mechanism that would get all 

pictures from a detail web page, show them to the user, and 

the user would pick the image he wants. XPath addressing 

this image would be generated and used automatically.  
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Abstract. In this paper, we aim to present a novel application 

domain for recommender systems: police photo lineups. Photo 

lineups play a significant role in the eyewitness identification 

prosecution and subsequent conviction of suspects. Unfortunately, 

there are many cases where lineups have led to the conviction of an 

innocent persons. One of the key factors contributing to the 

incorrect identification is unfairly assembled (biased) lineups, i.e. 

that the suspect differs significantly from all other candidates. 

Although the process of assembling fair lineup is both highly 

important and time-consuming, only a handful of tools are 

available to simplify the task.  

We describe our work towards using recommender systems for the 

photo lineup assembling task. Initially, two non-personalized 

recommending methods were evaluated: one based on the visual 

descriptors of persons and the other their content-based attributes. 

Next, some personalized hybrid techniques combining both 

methods based on the feedback from forensic technicians were 

evaluated. Some of the personalized techniques significantly 

improved the results of both non-personalized techniques w.r.t. 

nDCG and recall@top-k.   

1 Introduction 

Evidence from eyewitnesses often plays a significant role 

in criminal proceedings. A very important part is the lineup, 

i.e., eyewitness identification of the perpetrator. Lineups 

may lead to the prosecution and subsequent conviction of the 

perpetrator. Yet there are cases where lineups can played a 

role in the conviction of an innocent suspect. This forensic 

method consists of the recognition of persons or things and 

thus is linked with a wide range of psychological processes 

such as perception, memory, and decision making. Those 

processes can be influenced by the lineup itself. In order to 

prevent witnesses from making incorrect identifications, the 

lineup assembling task is among the top research topics of 

the psychology of eyewitness identification [1, 4, 6, 9, 10]. 

The sources of error in eyewitness identifications are 

numerous. Some variables affecting error probability are on 

the side of the witness (e.g., level of attention, age or 

ethnicity) and the event (e.g., distance, lighting, time of the 

day) and in general cannot be controlled [6, 9]. Controllable 

variables include the method of questioning, identification 

procedure, interaction with investigators, and similar [9, 10].  

One of the principal recommendations for inhibiting 

errors in identification is to assemble lineups according to 

the lineup fairness principle [1, 5]. Lineup fairness is usually 

assessed on the basis of data obtained from "mock 

witnesses" - people who have not seen the offender, but 

received a short description of him/her. Lineup fairness 

measures a bias against the suspect and defining the 

assembled lineup as fair if mock witnesses are unable to 

identify a suspect based only on a brief textual description. 

See Figure 1 for an example of a highly biased lineup. 

Assembling photo lineups, i.e., finding candidates for 

filling the lineup for a particular suspect, according to the 

lineup fairness principle is a challenging and time-

consuming task involving the exploration of large datasets 

of candidates. In the recent years, some research projects [4, 

11] as well as commerce activities, e.g., elineup.org, aimed 

to simplify the process of eyewitness identifications. 

However, they mostly focused on the lineup administration 

and do not support intelligent lineup assembling.  

From the point of view of recommender systems, lineup 

assembling is quite specific task for several reasons. Users 

of the system are respected experts, who assemble lineups 

regularly, although, usually, not on a daily bases. Therefore, 

we can expect a steady flow of feedback from long-term 

users. Also, each lineup assembling task is highly unique, 

i.e., the same suspect hardly ever appears in multiple lineups. 

Thus, some popular approaches incorporating collaborative 

filtering [2] or “the wisdom of the crowd” cannot be applied 

in this scenario. Last, but not least, the relevance judgement 

is highly based on the visual appearance and/or similarity of 

the suspect and lineup candidate. 

In this paper, we describe our work in progress towards 

designing recommender systems aiding user to assemble fair 

lineups. In our previous work, we evaluated two non-

personalized, item-based recommending strategies [8]. 

Based on the initial evaluation of non-personalized methods, 

we propose a content-based personalized approach 

combining both non-personalized techniques, aiming to re-

 

Figure 1: Example of an extremely biased lineup. Lineup 

usually consists of four to eight persons and witness is 

instructed that suspect may or may not be among them. 

However in this case, suspect can be easily identified even 

by a mock witness knowing only a short description such 

as, “Vietnamese male, 50-70 years old.” 
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rank the list of proposed candidates according to the long-

term preferences of the user. 

 More specifically, main contributions of this paper are: 

 Proposed and evaluated hybrid personalized 

recommendation method. 

 Dataset of assembled lineups with both positive and 

negative training examples. 

To the best of our knowledge, our work is the first 

application of recommender systems principles on the lineup 

assembling task. 

 

2 Item-based Recommendations 

2.1 Dataset of Lineup Candidates 

Although there are several commercial lineup databases1, 

we need to approach carefully while applying such datasets 

due to the problem of localization. Not only are the racial 

groups highly different e.g., in North America (where the 

datasets are mostly based) and Central Europe, but other 

aspects such as common clothing patterns, haircuts or make 

up trends vary greatly in different countries and continents. 

Uunderlined datasets should follow the same localization as 

the suspect in order to inhibit the bias of detecting strangers 

or having the incorrect ethnicity in a lineup. We evaluated 

the proposed methods in the context of the Czech Republic. 

Although the majority of the population is Caucasian, mostly 

of Czech, Slovak, Polish and German nationality, there are 

large Vietnamese and Romany minorities which make 

lineup assembling more challenging. We collected the 

dataset of candidate persons from the wanted and missing 

persons application2 of the Police of the Czech Republic. In 

total, we collected data about 4,423 missing or wanted 

males. All records contained a photo, nationality, age and 

appearance characteristics such as: (facial) hair color and 

style, eye color, figure shape, tattoos and more. More 

information about the dataset may be found in [8]. 

2.2 Item-Based Recommending Strategies for Lineup 

Assembling 

In our previous work [8], we proposed two non-

personalized recommending strategies, where the list of 

proposed candidates is based on the similarity between the 

suspect and lineup candidates. We use the underlined 

assumption that the lineup fairness can be approximated 

through the similarity of the suspect and fillers, i.e. by filling 

lineups with candidates similar to the suspect, we ensure 

that lineups remain unbiased.  

Content-based Recommendation Strategy (CB-RS) 

leverages the collected content-based attributes of 

candidates. We employed the Vector Space Model [3] with 

                                                           
1 e.g., http://elineup.org 
2 aplikace.policie.cz/patrani-osoby/Vyhledavani.aspx 
3 The ordering of candidates proposed by each method 

was maintained, i.e., the randomness was applied on the 

binarized features, TF-IDF weighting and cosine similarity. 

CB-RS strategy was intended to be closely similar to the 

attribute-based searching, which is commonly available in 

lineup assembling tools.  

Recommendation Based on visual features (Visual-RS) 

leverages the similarity of visual descriptors received from a 

pre-trained CNN (VGG network for facial recognition 

problems, VGG-Face [7], in our case). More information is 

available in the previous work [8].  

2.3 Evaluation of Item-Based Recommenders 

To make this paper self-contained, let us briefly describe 

the results of non-personalized recommendation strategies.  

The evaluation was based on a user study of domain 

experts, i.e., forensic technicians, whose task was to select 

best lineup candidates out of the ones recommended by both 

techniques. More specifically, 30 persons were selected 

from the dataset to play the role of suspects. For each 

suspect, both non-personalized recommendation strategies 

proposed top-20 candidates that were merged into a single 

list3 and displayed together with the suspect to the domain 

experts. Domain experts selects the most suitable candidates; 

these were considered as positively preferred. Participants 

were instructed to maintain lineup fairness principles, they 

were allowed to produce incomplete lineups if no more 

suitable candidates were available, or select more candidates 

if they were equally eligible.  

The evaluation was performed by seven forensic 

technicians from the Czech Republic, with 202 assembled 

lineups and 800 selected candidates in total. Table 1 

illustrates overall results of the user study. One can observe 

that although Visual-RS clearly outperformed CB-RS, also 

the candidates recommended by CB-RS were selected quite 

often. Together with the surprisingly low size of the 

intersection (1.83%) between the lists of recommended 

candidates and relatively high level of disagreement among 

participants on the selected candidates, the results indicate 

that some merged, personalized strategy is plausible. 

Furthermore, as the mean rank of selected candidates was 

decision whether the next list item will be filled by CB-RS 

or Visual-RS method. 

Table 1: Evaluation results depicting the volume of 

selected candidates, the differences in volumes of selected 

candidates (p-value of paired t-test), the level of 

agreement among participants (Krippendorff’s alpha) 

and the average rank of the selected candidates. Note 

that candidates proposed by both strategies were 

excluded from results. 

 
Selected 

candidates 
P-value 

Level of 

agreement 

Average 

rank 

Visual-RS 466 / 58% 
1.2e-8 

0.178 8.2 

CB-RS 298 / 37% 0.138 8.9 
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relatively high for both methods (8, resp. 9 out of 20), there 

is a room for some re-ranking approach.  

3 Personalized Recommendations 

Based on the evaluation of non-personalized, item-based 

recommending techniques, we hypothesized that the 

proposed recommendations can be further improved by 

employing some content-based personalized techniques. We 

approach this task through state-of-the-art machine learning 

methods as follows.  

Suppose that for arbitrary user 𝑢, his/her previous 

interactions with the system are in the form of triples  

𝐹𝑢: {𝑟𝑢(𝑖, 𝑗)}, where 𝑖 is the suspect of some previously 

created lineup, 𝑗 is a recommended candidate and 𝑟𝑢 = 1 if 𝑗 

was selected to the lineup and 𝑟𝑢 = 0 otherwise. 

Furthermore, both 𝑖 and 𝑗 can be represented by three sets of 

attributes: 

 𝐴𝑐𝑏 are TF-IDF values of content-based attributes 

of each object. 

 𝐴𝑣𝑖𝑠 represents the visual descriptor based on the 

VGG-Face network.  

 The union of both sets: 𝐴𝑐𝑏 ∪ 𝐴𝑣𝑖𝑠 

Suppose that equations below represents scoring 

functions of the non-personalized recommending strategies. 

𝑠𝑐𝑏(𝑖, 𝑗) =
1

1 + ∑ |𝑎𝑖 − 𝑎𝑗|𝑎∈𝐴𝑐𝑏
 𝑠𝑣𝑖𝑠(𝑖, 𝑗) =

1

1 + ∑ |𝑎𝑖 − 𝑎𝑗|𝑎∈𝐴𝑣𝑖𝑠
  

Now, let us define a personalized classification / 

regression task4 with the train set examples constructed as 

follows. For each 𝑓 ∈ 𝐹𝑢, the output variable 𝑦 = 𝑟 and the 

list of dependent variables 𝐱𝐴 are constructed as a 

subtraction of suspect’s and candidate’s attributes for a set 

of attributes 𝐴:  ∀𝑎 ∈ 𝐴: 𝑥𝑎 ≔ |𝑎𝑖 − 𝑎𝑗|. 

Given an arbitrary classification method 𝑀, the model of 

user preferences 𝑚𝑢,𝐴 is trained by applying method 𝑀 on 

the per-user train set {(𝐱𝐴, 𝑦)}. When the user starts a new 

lineup task with some new suspect 𝑖,̅ the lineup candidates 

are ranked according to their probability to be selected in the 

lineup: 

 𝑟𝑗 ≔ 𝑃(𝑟𝑢(𝑖,̅ 𝑗) = 1|𝑚𝑢,𝐴). 

We would like to note that such recommendation scenario 

is quite challenging as we do not have any feedback from the 

current lineup and need to rely solely on the long-term user 

preferences (note the relation to the page zero problem or 

homepage recommendation problem). On the other hand, 

quite complex learning methods can be used, because the 

time-span between two consecutive lineup assembling 

performed by the same forensic technician tends to be rather 

large.  

Following preference learning methods were evaluated5:  

                                                           
4 Please note that although the classification is a natural 

choice due to the binary output variable, the final output of 

the method should be ranking of candidates. Thus, we also 

evaluate several regression-based machine learning methods 

 Non-personalized similarity based on the 𝐿1 

distances (baseline) 

 Linear regression (denoted as LM in the evaluation) 

 Lasso regression (Lasso) 

 Decision tree (Dec. tree) 

 Gradient boosted tree (GBT) 

As the initial evaluation of the proposed method was only 

partially successful (machine learning methods were to able 

significantly improve the baseline only in the case of 

𝐴𝑐𝑏attribute set), we further proposed a hybrid approach 

integrating two components:  

 Predictions of a selected machine learning method 

on 𝐴𝑐𝑏 attribute set. 

 Predictions based on a non-personalized 𝐿1 

distance metric applied on 𝐴𝑣𝑖𝑠 attribute set. 

Both prediction techniques are aggregated via 

probabilistic sum, i.e., 𝑟𝑗 ≔ 𝑟𝑗
𝑐𝑏 + 𝑟𝑗

𝑣𝑖𝑠 − 𝑟𝑗
𝑐𝑏 × 𝑟𝑗

𝑣𝑖𝑠. This 

approach is denoted as hybrid in the evaluation. 

3.2 Evaluation of Personalized Recommendations 

The main goal of the personalized recommendations 

evaluation is to clarify, whether the long-term user 

preferences, i.e., collected during some previous lineups 

assembling, can be utilized to improve the list of 

recommended candidates for the current lineup.  

In order to confirm this hypothesis, we performed an off-

line evaluation on the dataset of assembled lineups collected 

during the evaluation of item-based recommendations. The 

resulting dataset contained in total 7659 records (800 

positive and 6859 negative), i.e., in average 1094 records per 

user. Proposed methods were evaluated based on the 10-fold 

cross-validation protocol applied on the lineups. 

Hyperparameters of the methods were learned via grid-

search on an internal leave-one-lineup-out protocol. 

For each tested lineup, each recommending method re-

ranks objects originally displayed to the forensic technicians 

according to the computed relevance 𝑟𝑗 (selected candidates 

should appear on top of the list). We measure normalized 

discounted cumulative gain (nDCG), recall at top-10 and 

recall at top-5 (rec@10, rec@5 resp.) of the list and report 

on the average results for all evaluated users and lineups. 

Table 2 depicts results of the off-line evaluation. We can 

observe that both linear model and gradient boosted trees 

improved over the baseline method in case of the 𝐴𝑐𝑏 

attributes set. Therefore, we evaluated the hybrid approach 

with both methods. Both hybrid methods outperformed the 

best baselines w.r.t. nDCG and rec@5 metrics, while GBT 

hybrid provides the best performance w.r.t. all evaluated 

metrics. 

and in case of classification method, we use positive class 

probability score as ranking. 
5 We use the methods’ implementation from sci-kit 

package, http://scikit-learn.org. 
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Table 2: Results of the personalized recommendation 

methods. Note that 𝐴𝑣𝑖𝑠 based machine learning 

approaches did not improve the baseline and were 

omitted for the sake of space. 

Method Attributes nDCG    rec@10 rec@5 

Baseline 𝐴𝑐𝑏 0.4088 0.1796 0.0805 

Baseline 𝐴𝑣𝑖𝑠 0.4990 0.3837 0.1725 

Baseline 𝐴𝑐𝑏 ∪ 𝐴𝑣𝑖𝑠 0.4201 0.2432 0.1090 

LM 𝐴𝑐𝑏 0.4605 0.2949 0.1413 

Lasso 𝐴𝑐𝑏 0.3816 0.1255 0.0484 

Dec. tree 𝐴𝑐𝑏 0.3842 0.0871 0.0611 

GBT 𝐴𝑐𝑏 0.4563 0.2728 0.1451 

LM hybrid 𝐴𝑐𝑏 ∪ 𝐴𝑣𝑖𝑠 0.4995 0.3693 0.2003 

GBT hybrid 𝐴𝑐𝑏 ∪ 𝐴𝑣𝑖𝑠 0.5205 0.3843 0.2042 

4 Conclusions 

The main aim of this work in progress was to analyze the 

applicability of recommender systems principles in the 

problem of photo lineup assembling. Although the photo 

lineup assembling task is both important and time-

consuming task, state-of-the-art tools do not provide 

intelligent search API beyond simple attribute search and to 

the best of our knowledge, apart from our work, there are no 

papers utilizing recommending principles in the lineup 

assembling task. 

After the initial evaluation of item-based recommending 

algorithms, we proposed several variants of content-based 

personalized recommending algorithms utilizing long term 

preferences of the user. The off-line evaluation confirmed 

that long-term preferences can be used to improve the final 

ranking of candidates, however, only in case of content-

based attributes.  

Proposed approaches remained ineffective in the case of 

visual descriptors, so one direction of our future work is to 

further analyze this problem and providing solutions suitable 

also for visual descriptors. Siamese networks merging both 

content-based and visual descriptors seems particularly 

suitable for the task. Another option is to use visual 

descriptors as a base for short-term user preferences, i.e., the 

ones expressed in the current lineup and refine the 

recommended objects based on the already selected 

candidates.  

Textual description of the suspect also plays an important 

role in the lineup assembling, as forensic technicians often 

tries to select candidates that match mentioned, highly 

specific, features, e.g., scars, skin defects, specific haircut 

etc. Another direction of our future work would aim to 

incorporate searching for these specific features in a “guided 

recommendation” API. Selecting specific regions of interest 

within the suspect’s photo seems to be a suitable initial 

strategy. 

Finally, the long term goal of our work is to move from 

the recommendation of candidates to the recommendation of 

assembled lineups and to provide a ready-to-use software for 

forensic technicians.  
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Abstract: This work is a brief summary of a master the-
sis that focuses on design and implementation of a frame-
work that uses computers of website visitors as comput-
ing nodes through web browsers. It contains an analysis
of the Web environment, summarization of previous ap-
proaches and projects, design and implementation of the
framework. The work describes the solution of computing
node failure, reaction to slow computing node, possibili-
ties of controlling the load of the framework on a website
visitor’s computer, strategies for work distribution and se-
curity of the framework. At the end of the work, the ex-
periment results and proposal of improvements are listed.

1 Introduction

Nowadays, web technologies and web services are an in-
separable part of human life. We are using web browser
for communication, entertainment, shopping and a many
other activities. A lot of web users have powerful de-
vices but they don’t use their full power often. Thus, in
the world, there is huge computing potential that is idle.
Framework presented in this work is able to utilize this
computing power.

In section 2 there is a summarization of previous works
and current project in the field of distributed computation
in web browsers. Analysis of web environment and frame-
work requirements are content of section 3. Section 4 is
focused on design of the framework. Finally, experiment
results are presented in section 5.

2 Related works

Utilizing idle power via the Internet to create distributed
computer is not a new idea. According to [1] the first
project about this topic was Great Internet Mersenne
Prime Search [2] that started in 1996. A few years later
projects SETI@Home [3] that was focused on the Search
for Extraterrestrial Intelligence and Folding@home [4]
that was using computers of volunteers for medical re-
search was launched. After that BOINC (Berkeley Open
Infrastructure for Network Computing) [5] was created. It
is probably the biggest and the best known platform for
volunteer computing. All of mentioned projects are still
alive. In order to join a computation in these projects a
volunteer have to install some additional software.

Since 2007 several works related to utilizing computa-
tion power using web browser have been published. They

were focused on various types of computing tasks. For
instance projects [6], [7], [8] and [9] were using web
browsers for simulated evolution. Work [10] was focused
on image processing. Machine learning in web browsers
was the topic of [11]. Authors of [12] created web search
engine using web browsers. In [13] and [14] map reduce
frameworks were presented. There were also works that
were focused on creating general framework: [15], [16],
[17]. Architecture of most of presented works was client-
server.

Developers of commercial project Computes are trying
to create distributed decentralized supercomputer from all
kind of devices.

There are also several commercial tools for mining alt-
coins.

Published works are usually just proof of concept and
authors don’t deal with every aspect of systems. For in-
stance security is often omitted. The main contribution of
this work is to create complex framework that could be
deployed.

3 Analysis

The web has several major characteristics. One of them is
diversity. Web users are using various browsers of various
versions. Each user has different device, different connec-
tion speed etc.

Another strong aspect of the Web is dynamics. Web
technologies are still evolving and continuously new tech-
nologies are emerging. Also web browsing is very dy-
namic. According to [18] users often stay on a page just
for 10-20 seconds.

The Web is free and open. Everyone can join and pub-
lish and consume data.

And the last but not least aspect is its’ enormous size.
[19] and [20] states that the Web has more than 3.7 billions
users and this number is getting bigger every year.

These aspects of the Web have impact on the frame-
work requirements. Dynamic browsing will cause fre-
quent computing node failures. The framework have to be
able to detect failure and solve the situation. The frame-
work also should be able to work with computing nodes
of different performance. Security mechanisms should be
involved on server side and on client side as well. Frame-
work also have to ensure correctness and reliability of
tasks results.

S. Krajči (ed.): ITAT 2018 Proceedings, pp. 161–167
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4 Design

4.1 Computational model
The framework is focused on types of tasks in which server
sends work to client, client processes the work and sends
the result back to the server. There is no communication
between clients and no communication between client and
server regarding the computation but distributing works
and receiving results. Framework user can define divid-
ing and merging functions. In case that a task has too big
data the framework will use dividing function in order to
automatically recursively divide the data and create partial
subtasks called works. Works are then distributed to the
client. Results of works from clients are then merged by
framework using merging function. Described model is
shown in figure 1.

In order to compute a tasks there will be a lot of mes-
sages between clients and the server. Speed of commu-
nication depends on connection quality. It might be time
consuming. Therefore, the framework is more suitable for
computing intensive tasks rather than data intensive tasks.

4.2 Users
Users of the framework are divided into two groups. Users
from the first group are creators of task prototypes. A task
prototype consists of definition of code that should be ex-
ecuted in client and optional dividing and merging func-
tion. This group of users should know the framework -
its’ advantages, disadvantages and some technical details
in order to create effective code for the framework.

The second group are common users. They use frame-
work for computations. They don’t need to know anything
about the framework but the id of task prototype they want
to use.

This division has several reasons. The first of them is
security. We can assume that number of task prototypes
creators will be much smaller than number of other users.
Therefore it might be relatively easy to make sure that cre-
ators of task prototypes are trustworthy. And then we can
assume that their code is probably trustworthy as well. An-
other reason for the division is quality of code. If there are
users who are focusing on creating code for the frame-
work there is high probability that the code will be effi-
cient, without bugs and there will be no task prototypes
for tasks that are not suitable for the framework. More-
over common users don’t need to know anything about the
framework.

4.3 Framework in a nutshell
Basic architecture of the framework is client-server. The
server consists of two main parts - ProgrammerServer
and VolunteerServer. ProgrammerServer is responsible
for communication with users of the framework. Volun-
teerServer is the main part of the framework. It is respon-
sible for communication with clients, processing tasks,
distributing works to clients and processing results.

The framework utilizes replication and majority voting in
order to ensure correctness and reliability of works results.
User can for each task specify the replication factor. In
each work object server holds information that indicates
to how many more clients the work should be distributed
in order to reach the replication factor. This information is
in attribute remaining.

In order to compute a task a user sends data and id of
task prototype to the server. Server insert the task to the
task queue. The server holds collection of works that are
currently being distributed to clients. If there is enough
place for more works server prepare another task from
the queue for distribution. Preparation of a task for dis-
tribution consists mainly of dividing task’s data. When a
client sends work request the server response with several
works. Works that are returned to the client have attribute
remaining greater then zero. After assigning a work to a
client the attribute is decremented. Number of works that
are returned to the client depends on strategy that is used.
Strategies implemented in the framework are described in
following section. When a client receives works it starts to
process them. The client doesn’t wait until all works are
done but each result is sent back to the server as soon as it
is available. This is shown in figure 3.

When the server received results from all works it merge
them to the result of the task. The task’s result is stored in
database. When the user send request for the result to the
server it responds with the result from the database.

When a client processes all assigned works it sends new
work request to the server.

Strategies for work distribution There are several strate-
gies in the framework for determining number of works
that should be returned to a client.

The most easy one is a strategy that returns fixed num-
ber of works.

Another strategy is based on fixed sum of works sizes.
The framework uses statistics to estimate maximum num-
ber of works so that sum of their sizes is less then config-
ured threshold.

The most complex strategy uses time elapsed from start
of a client session. According to [18] a distribution of ses-
sion duration follows Weibull distribution with negative
aging. That means that at the begging of a web page visit
the probability that user will leave the page is very high
and it decrease over time. Therefore this strategy increase
number of works that are sent to the client accordingly to
the session duration.

Modes of work distribution Work distribution can run
in two modes. In the first mode data with full work code
are sent to the client. In the second mode data along code
identifier are sent. In this mode client have to make an-
other request to the server in order to get the code. How-
ever, in this mode it is possible to cache the code in the
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(a) Dividing and distributing phase

(b) Receiving and merging phase

Figure 1: Visual example of the computation model of the framework

Figure 2: Base architecture of the framework.

Figure 3: Simplified process of distributing works to the
client and subsequent sending results back to the server.
During computation of a work heartbeats are sent to the
server.

browser and in intermediate network devices. Therefore
the amount of data on wires can be decreased. This mode
is efficient only if a client or a group of clients are per-
forming tasks of a single or a few task prototypes. In other
cases it might be inefficient because of more requests.

4.4 Computing node failure

In order to detect computing node failure the framework
holds in each session object time of last access. It is up-
dated with each request from the session. During compu-
tation a client code running in a session periodically sends
empty request to the server - a heartbeat - so the server is
informed the session is still alive as is shown in figure 3.

A server module DeadSessionCollector periodically
collects dead sessions. A session is considered to be dead
if time elapsed from the last access is higher than a con-
figured threshold. When a session die the framework in-
crements attribute remaining of all unprocessed works that
were assigned to the session. So the work will be assigned
again to some session.

4.5 Slow computing node

Because of different performance of web user devices, dif-
ferent connection speed and different utilization of the de-
vice by it’s user it may happen that computation of a work
would last on one client much longer than computation of
the same work on other client. Thus, when some client is
processing some work too long it may be efficient to assign
the work again to another client.

The framework’s module LongRunningSessionCollec-
tor periodically checks whether there is a slow client for
some work. A client is considered too slow for a work if

Framework for Distributed Computing on the Web 163



the time elapsed since the work was assigned to the client
is several times longer than average time of computation
of the work on other clients. If a client is marked as slow
for a work the framework increment attribute remaining of
the work.

4.6 Client side

At client side the framework is using Web Worker technol-
ogy [21]. A web browser create new thread for each Web
Worker object. Therefore experience of browsing a web
page should not be affected by the framework. The frame-
work creates several Web Worker objects in which works
are processed. When a client receive works it put them in
a queue. The Web Worker objects are taking objects from
the queue and processing them. As soon as a Web Worker
object computes a work the result is sent to the server. This
is shown in figure 4.

Figure 4: Illustration of processing works assigned to a
client on multiple Web Worker objects

For computation of a work the framework is able to
use new client-side web technologies asm.js [22] and We-
bAsembly [23] instead of JavaScript [24]. The creator of
task prototype can implement working function in C++
which is then at the server compiled into asm.js and We-
bAssembly modules.

4.7 Controlling of client utilization

There are two ways how the framework is able to control
stressing of client’s device. The first one is controlling the
number of Web Workers that are used. The second option
is throttling. JavaScript code can not control stressing of
CPU at particular time but it is possible to control stressing
from long-term view. For instance if x seconds is processor
fully stressed by the framework and then x seconds is idle
we can say that the framework stressed CPU by 50% dur-
ing 2x seconds. The configuration attribute throttleFactor
holds information how many times the duration of the last
computation the server has to wait before it could again as-
sign a work to a client. In other words it is inverted value
to the desired CPU usage.

4.8 Security

The framework contains several security mechanisms. The
server accepts user request only with valid API keys. List
of API keys is in configuration of the framework. If a re-
quest doesn’t contain valid API key the server responds
with HTTP code 403 forbidden.

The framework executes user code on server-side and
also on client-side. The framework must ensure that the
code will cause no harm to server or client’s device. There-
fore, user code is executed in a sandbox. At the server-side
VM2 module [25] is used. At the client-side a sandbox is
implemented as a white-list of allowed function and ob-
jects. Every other function or object is disallowed.

Communication between a client and the server is en-
crypted. This decrease probability that content of mes-
sages is changed by malicious third-party.

As was mentioned earlier in order to ensure correctness
an reliability of results majority voting is involved. A user
can specify replication factor but he or she should be aware
that probability that data are correct is never 100%.

Securing data is complicated topic. The purpose of web
browsers is to serve data to its user so the framework can
not hide data from the user of the browser it is running in.
Therefore the only way how to secure the data is comput-
ing on encrypted data. There are mathematical models that
enables it. Some of them are described in [26]. There is
no need to change the framework in order to compute on
encrypted data - it is responsibility of task prototypes im-
plementation. Computing on encrypted data can also en-
sure 100% probability that result is correct excluding bugs
in the task prototype.

5 Experiments

Experiments were performed on 60 computers in class-
rooms at FIT CTU. Configuration of computers is in table
1. Test task was naive algorithm for computing determi-
nant of a matrix. Maximum size of a matrix that was sent
to clients was 11× 11. If the matrix was bigger it was
recursively divided to matrices of size 11×11.

Classroom CPU Model size of RAM

T9-350
Intel® Core™ i5-6500
CPU @ 3.20GHz 16 GB

T9-351
Intel® Core™ i5-3470
CPU @ 3.20GHz 8 GB

T9-303
Intel® Core™ i5-3470
CPU @ 3.20GHz 8 GB

T9-349
Intel® Core™ i5-4570S
CPU @ 2.90GHz 8 GB

server Intel® Core™i5-2410M
CPU @ 2.30GHz 6 GB

Table 1: Configuration of test computers
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Tests were performed in the mode in which just iden-
tifier of a code is sent to the client. Replication factor
was set to 3. The framework was using all CPU cores
of the client devices. Test environment refreshed test web
page at a client after randomly chosen time from interval
[0,maxDuration] where maxDuration is parameter. Test
Settings of earlier mentioned parameters are in table 2.

Parameter Value
deadSessionCollector:

interval 2 sec
deadTime 10 sec

LongRunningSessionCollector:
interval 5 sec
factor 5

Other framework settings:
throttleFactor 0

heartBeatInterval 5 sec

test environment settings:
maxDuration 960 sec

Table 2: Test setting of mentioned parameters

The purpose of the first experiment was to test how
would change computation time of the task from user point
of view with increasing number of clients. In figure 5 we
can see that with increasing number of clients computa-
tion time is decreasing. During tests in classrooms T9-
350, T9-351 and T9-303 speeding up stops around number
30. That probably happened because computers in T9-350
were more powerful that others (shown in figure 7) so the
framework considered the others to be slow and started to
assign one work to more clients that was necessary. This
is shown in figure 6. Also there was a mistake in the con-
figuration. Interval of sending heartbeat was equal to the
time after which a session was considered as dead. After
some changes in configuration the computation becomes
again a little bit faster.

Figure 5: Influence of number of clients to computation
time from user point of view.

The second experiment tests how size of a matrix would
affect computation time from user point of view. It also
compares computation time of the task using framework
and computation time using local computation that was

Figure 6: Influence of number of clients to average number
of sessions to which one work was assigned

Figure 7: Statistics of a computation time of one matrix at
client-side. For each number of client on axis X mean and
mean ± standard deviation of computation time at client-
side is shown

implemented in C++ using OpenMP [27] in order to uti-
lize all CPU cores of a computer. Local computation was
executed on the server’s computer. In figure 8 we can see
that for small matrices the local computation was more ef-
ficient but for big matrices it was more efficient to use the
framework.

Figure 8: Influence of matrix size to computation time
from user point of view.

The third experiment tests influence of throttleFactor on
the computation time from user point of view. In figure
9 we can see that there is linear dependency. This test
prove that influence of throttleFactor is expected and pre-
dictable.
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Figure 9: Influence of attribute throttleFactor to computa-
tion time from user point of view.

The last experiments tests how computation time from
user point of view is changing when maximal session du-
ration is changing. In figure 10 we can see that with in-
creasing session duration computation time is decreasing
as it was expected.

Figure 10: Influence of maximal session duration (at-
tribute maxDuration of test environment) to computation
time from user point of view.

6 Future work

Experiments have shown that framework is useful and it
may be deployed. However there are still some limits and
drawbacks of the implementation that should be solved.
For instance database queries can be optimized or new
strategies for distributing works can be implemented.

The framework can be also extended in several ways.
For instance GUI and monitoring extension would be very
practical. There might be client, user and web sites ad-
ministration. Extensions of the framework may lead to
computing platform with market that would act similar as
application markets.

7 Motivation for joining computations

There can be several reasons for a web user to join the
framework but probably the most likely situation is this:

A web page could profit from involving it’s visitors to the
framework. So the web page could offer a discount of their
services to visitors that allow joining to the framework.

Another use case could be in a company that have a lot
of computers for it’s employees. In this case a proxy could
inject web pages with framework’s client-side code and so
create company’s big distributed computer with minimum
additional costs.

8 Conclusion

In this work a framework for distributed computation us-
ing web browsers is presented. It contains mechanisms
that solve computing node failure and reaction to a slow
computing node. It describes strategies for distributing
works within clients and modes in which the distribution
can be done. The work deals with controlling of client’s
device stressing. Security mechanisms are described as
well. Experiment results that are presented have shown
that the framework is useful and deployable. The future
of the framework may be a computational platform with
market of task prototypes and computation power.
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Combinatorics on words

The workshop Combinatorics on words (and related topics) is an informal continuation of the
successful and productive series of meetings Česko-Slovenská Mela, held annually at the end of
September from 2012 - 2015 in Telč.

The workshop is a meeting of researchers and students working primarily in the areas of

• Combinatorics on words,

• Automata and languages,

• Enumeration systems,

• Stringology and Arbology,

• Recursive relations,

• Data compression.

It is intended to be a meeting place for different working groups mostly from the Czech Republic
and Slovakia, but an invitation to participate was extended to colleagues outside these two countries,
therefore the language of the meeting is English. Presentations and papers for the workshop were
solicited. All papers submitted were reviewed by two independent reviewers. The format of the
workshop consists of sections where new results and work in progress are presented, as well as
sections (and that is the main focus of our meeting) where open problems and common projects are
discussed, proposed, and worked on.

The organizers of the workshop are grateful to the organizing and program committees of ITAT for
the chance to renew the series of conferences within the frame of ITAT and for all their help.

Tatiana Jajcayová, (Comenius University, Bratislava, Slovakia)
Karel Klouda (Czech Technical University, Prague)
Edita Pelantová (Czech Technical University, Prague)
Štepán Starosta (Czech Technical University, Prague)
Workshop organizers
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Palindromy pohledem kombinatoriky na slovech

Petr Ambrož

ČVUT

Abstract: Přednáška se zabývá kombinatorickými vlast-
nostmi palindromů, tj. slov stejných at’ je čteme zepředu
nebo zezadu. V poslední době bylo formulováno několik
různých domněnek o množině palindromů ve faktorových
jazycích. Některé z nich jsou motivovány aplikacemi
v jiných vědních oblastech, jako jsou fyzika pevných
látek nebo genetika. Podáme přehled známých částečných
výsledků o platnosti zmíněných domněnek a ukážeme je-
jich vzájemnou propojenost.

Petr Ambrož získal doktorát v Informatice na Univer-
sité Paris 7 a v matematickém inženýrství na Fakultě
jaderné a fyzikálně inženýrské Českého vysokého učení
technického v Praze, kde dnes působí na Katedře matem-
atiky. Zabývá se kombinatorikou na slovech a nestandard-
ními numeračními systémy a je organizátorem nejvýznam-
nějších konferencí v těchto oborech (WORDS 2011, Nu-
meration 2008, 2016) .
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Probabilistic Analysis of Graphlet Frequency Distribution in Sparse E-R
Random Graphs

Martin Nehéz

Institute of Information Engineering, Automation and Mathematics,
Faculty of Chemical and Food Technology

Slovak University of Technology in Bratislava
Slovak Republic

martin.nehez@stuba.sk
WWW home page: https://www.kirp.chtf.stuba.sk/index.php?menu=2& show_id=3& person_id=300011

Abstract: Frequency counting of graphlets (i.e. small
connected induced subgraphs) is a prominent experimen-
tal approach to network analysis which became favorable
in bioinformatics. In this paper, we use the probabilistic
method for graphlets counting. We show that it is possible
to enumerate the graphlets (or isolated graphlets) in sparse
Erdős-Rényi graph model analytically. Obtained frequen-
cies are exploited to estimate bounds on domination num-
ber in the above mentioned random graph model.

1 Introduction

Network science which is focused on modeling and analy-
sis of real-world networks became a significant research
area in last two decades. Instances of networks un-
der study come from many fields of human activities,
e.g. electrical engineering, transportation, social sci-
ence, biology, medicine, etc. Currently, a frequently used
algorithmic-experimental method for similarity detection
and comparison of protein-protein interaction networks
(shortly PPI networks) was invented in bioinformatics by
N. Pržulj et al. [16]. It is based on frequency analysis of
small connected induced subgraphs (called graphlets) oc-
curring in networks to be compared. Such an approach
was used to show e.g., that yeast PPI networks are struc-
turally closer to geometric random graphs than to scale-
free or Erdős-Rényi random graphs [16].

Frequency counting of graphlets is a non-trivial algo-
rithmic problem which is intensively studied both from
theoretical and application point of view. One of the most
powerful softwares used for this purpose is currently the
Orbit Counting Algorithm - ORCA [8, 9]. Roughly speak-
ing, ORCA writes numbers of all graphlets (with 2 − 5
nodes) which occurred in a given input network on out-
put. This part of the graphlet-based analysis is the most
difficult since doing it without a computer program is un-
realistic even for relatively small networks. Due to high
computational complexity of the graphlet enumeration the
number of their nodes is restricted to at most 4 in some
current softwares.

In this paper, we show that the problem of frequency
counting of graphlets can be solved analytically in Erdős-
Rényi random graph model by probabilistic methods.

Some previous results regarding random graph theory
[1, 3, 10, 11, 17] are relied on this purpose. Our re-
sult is significant especially from the complexity point of
view because it might lead, in some cases, to elimination
of high requirements on computational resources needed
for graphlet frequency analysis. It means that instead of
computer-based graphlet frequency enumeration in Erdős-
Rényi random graphs one may use analytical formulas.

The organization of the paper is as follows. Sect. 2
contains definitions and preliminary facts. The threshold
functions for presence of graphlets in random graphs are
derived in Sect. 3. Average counts of graphlets are ex-
pressed in the same section as well. Average counts of
isolated graphlets and corresponding estimations in ran-
dom graphs with edge probability p = c/n are determined
in Sect. 4. Application of these results to estimation of
the domination number in sparse random graphs is out-
lined in Sect. 5. Possible direction for future research are
discussed in the last section.

2 Definitions and Preliminaries

2.1 Fundamentals

The asymptotic notation such as o,O,Θ is used in the
usual way [10], nevertheless, the most important notions
are listed below.

O(g(n)) = { f (n) | ∃c,n0 > 0 ∀n ≥ n0 | f (n)| ≤ c|g(n)| }

Ω(g(n)) = { f (n) | ∃c,n0 > 0 ∀n ≥ n0 | f (n)| ≥ c|g(n)| }
o(g(n))= { f (n) | ∀ε > 0 ∃n0 > 0 ∀n ≥ n0 | f (n)| ≤ ε|g(n)|}

f (n) = Θ(g(n))) ⇔ f (n) = O(g(n))∧ f (n) = Ω(g(n))

Moreover, for two sequences (or equivalently functions)
a = (an)

∞
n=0 and b = (bn)

∞
n=0, we will write an ≪ bn if

an ≥ 0 and an = o(bn).
Throughout this paper, all graphs are simple, undirected

and without weights. Standard notions of the graph the-
ory are used without definitions or further comments. We
address [6, 7] for references however, the usage of some
symbols is mentioned bellow. Let G = (V,E) be a graph
with a nonempty finite set of vertices V (G) (or nodes) and
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Figure 1: Graphlets g0,g1, . . . ,g9.

a finite set of edges E(G). Usually |V (G)| = n, where
|.| stands for the cardinality of a given set. For a vertex
v ∈ V (G), its degree (the number of adjacent vertices of v)
is denoted by deg(v). The maximum (minimum) degree
of a graph G is denoted by ∆ (δ ). Let G = (V,E) be a
graph and let S ⊆ V (G), an induced subgraph G[S] is the
graph whose vertex set is S and the edge set of G[S] con-
sists of all edges whose endpoints are both in S. A graph
is said to be connected if there is a path joining every pair
of its vertices. A disconnected graph is not connected. A
component is a maximal connected subgraph. It is also re-
ferred to as connected component or isolated component.
Note that each disconnected graph consists of at least two
different components.

Let G = (V,E) be a graph, a graphlet is a connected
induced subgraph of G with at most 5 vertices. Two
graphlets are same if there exists an isomorphism such that
it maps one graphlet to the other one. (Two different oc-
currences of the same graphlet are usually referred to as
its copies.) In this paper, only graphlets with at most 4
vertices are considered. Their ordering (and indexing) is
shown in Fig. 1. It means that the empty graph (a single
vertex) is denoted by g0, etc. The last graphlet in Fig. 1
(i.e. g9) is the clique K4.

2.2 Random Graphs

The Erdős-Rényi random graph model (shortly E-R
model) [3] can be introduced as follows.

Let n be a positive integer and let p ∈ IR be a constant
such that 0 < p < 1. Consider that for n labeled vertices of
V (G), each unordered pair of vertices introduces one slot
available for an edge. Clearly, the total number of slots
is

(n
2

)
. Each edge exists in G independently and with the

probability p, thus Pr[{u,v} ∈ E(G)] = p, for all u,v ∈
V (G).

Given n as above, let (Ω, IF,Pr) be a probability space
where the sample space Ω consists of all (labeled) graphs
G of order n and let IF ⊆ 2Ω be a set of events. If G has
|E(G)| edges, 0 ≤ |E(G)| ≤

(n
2

)
, then the probability of

obtaining G as a result of random edge generation process
is given by:

Pr[G] = p|E(G)|(1− p)(
n
2)−|E(G)| . (1)

The probability space (Ω, IF,Pr) is denoted by G(n, p) or
Gn,p and called the probability space of all random graphs
of order n or E-R random graph model.

A statement about a random graph from G(n, p) is said
to hold asymptotically almost surely (a.a.s.) if it holds
with probability approaching 1 as n → ∞. A graph G with
n vertices is said to be dense if it has Θ(n2) edges (i.e.,
asymptotically equal to n2) and G is said to be sparse if it
has o(n2) edges (i.e., asymptotically less than n2).

If one considers p to be a non-zero constant, then ran-
dom graphs have pn(n − 1)/2 = Θ(n2) edges, hence they
are dense a.a.s. On the other hand, there are such choices
of p that random graphs are sparse. E.g. if p = p(n) is
a decreasing function on n such as p = n−ε for any con-
stant ε > 0 then random graphs have Θ(n2−ε) edges and
they are sparse a.a.s. In particular, if p = c/n = Θ(n−1) for
any constant c > 0, then random graphs have a linear num-
ber of edges (observe that ε = 1, hence random graphs are
sparse a.a.s.) and, in terms of edge set cardinality, they are
similar to real-world networks. On the other hand, some
structural properties of sparse random graphs are usually
far from real-world networks [2, 16]. Many works deal
with structural properties of real networks and quite re-
alistic models are currently represented by e.g. scale-free
or random geometric networks [2, 8, 16].

2.3 Monotonicity and Threshold Functions

In physics, a phase transition is the transformation of a
thermodynamic system from one phase to another. Dur-
ing such a transformation, some physical properties of the
system change discontinuously. An example is freezing
(or boiling) water or the emergence of superconductivity
in certain metals when cooled below the critical temper-
ature. In all phase transitions, there exists a value of a
certain quantity (often temperature) in which the physical
properties in question change.1 Such a value is said to be
a critical point.

Similar behavior was also observed in random graphs
(for the first time in [3]). The critical points in thermody-
namics have their counterparts in random graphs: they are
thresholds functions.

1The character of such a change is similar to a jump discontinuity
function.
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Let Kn be a clique with n > 0 vertices. Let 2Kn denote
the power set of all spanning subgraphs of Kn. Let G1,G2
be spanning subgraphs of Kn and let G1 ⊆ G2 denote that
E(G1) ⊆ E(G2). Let Q ⊆ 2Kn be a family of subsets and
note that Q contains spanning subgraphs of Kn. A family
of graphs Q is said to be increasing if G1 ⊆ G2 and G1 ∈ Q
imply that G2 ∈ Q. A family of graphs Q′ is decreasing if
2Kn \Q′ is increasing. A family which is either increasing
or decreasing is called monotone. A family of graphs G
is said to be closed under isomorphism if for all G ∈ G
and H ∼= G implies that H ∈ G . If a family of graphs from
2Kn is closed under isomorphism, it can be identified with
a graph property.

Threshold functions are usually defined for monotone
properties. In this paper, we need to introduce them only
for increasing properties. For further details see [10]. Let
Q be an increasing property of graphs from 2Kn . Let
p = p(n) be a function. A function p̂ = p̂(n) is called a
threshold function for Q iff the following condition holds:

Pr[ G(n, p) has Q ] →
{

0 if p ≪ p̂ ,
1 if p ≫ p̂ .

Threshold functions play a crucial role in examina-
tion of the phase transition phenomena in random graphs
[3, 10, 11, 15]. A typical property is the connectivity of
random graphs and more specifically, size of connected
components. The threshold function for the existence of a
giant component is p̂ = 1/n. As stated in [15], Sect. 4, a
random graph contains a.a.s. the largest component with
Θ(n2/3) vertices in its critical phase, i.e. if p = 1/n. The
subcritical phase is for p = c/n where 0 < c < 1. It repre-
sents such a state that all components are trees or unicyclic
and the largest component is of size Θ(logn) a.a.s. Other-
wise, if p = c/n where c > 1, then there is a unique giant
component of order Θ(n) a.a.s. in the supercritical phase.
The rest of the random graph consists of "small" trees and
as c increases, the giant component grows by absorbing
the trees.

3 Graphlets

Let Xgi be the random variable on G(n, p) denoting the
number of copies of graphlet gi in a random graph for i =
0, . . . ,9. In this paper, we consider 10 graphlets with at
most 4 vertices (see Fig. 1) that is why i = 0, . . . ,9.

Lemma 1 ([10]). For i = 0, . . . ,9, let ni (mi) denote the
number of vertices (edges) of gi. The expectation of the
random variable Xgi is given by

IE(Xgi) =
ni!

aut(gi)

(
n
ni

)
pmi(1− p)(

ni
2)−mi , (2)

where aut(gi) denotes the number of automorphisms of gi.

Vertices (i.e. graphlets g0) represent a trivial case, thus
we will consider only random variables Xgi for i > 0 in this

section. We shall examine the phase transition behavior of
graphlets at first. The occurrence of a given graphlet is not
a monotone property [10]. Nevertheless, such a property
has two threshold functions, one in sparse random graphs
and the second in very dense random graphs [10]. We are
interested only in the first case since almost all real net-
works are sparse.

For a given graph G, let τ(G) denote the ratio of the
number of edges to the number of vertices in the densest
subgraph of G, i.e.

τ(G) = max
{ |E(H)|

|V (H)| ; H ⊆ G, |V (H)| > 0
}

.

The following statement determines threshold functions
for graphlets.

Theorem 1 ([10]). For an arbitrary graphlet g with at
least one edge, it holds

lim
n→∞

Pr[ g occurs in G(n, p) ] =

{
0 if p ≪ n−1/τ(g) ,

1 if p ≫ n−1/τ(g) .

As a consequence, we obtain Tab. 1 in which the thre-
sholds functions for all nontrivial graphlets are listed. De-
termination of threshold functions is straightforward be-
cause none of graphlets (for i = 1, . . . ,9) contains a denser
subgraph than itself. Clearly, τ(g1) = 1/2 and τ(g2) =
τ(P3) = 2/3. By the same argument, τ(g3) = τ(△) =
3/3 = 1, etc.

Table 1: Threshold functions of nontrivial graphlets.

Graphlet Description Threshold
gi function
g1 Edge n−2

g2 Path P3 n−3/2

g3 Triangle △ n−1

g4 Path P4 n−4/3

g5 3-star n−4/3

g6 Cycle C4 n−1

g7 △+edge n−1

g8 Chordal-C4 n−4/5

g9 Clique K4 n−2/3

If we consider sparse random graphs with p = c/n, then
it is possible to deduce from Tab. 1 which graphlets occur
more or less frequently. We can see that the presence of
trees (i.e. graphlets g1,g2,g4 and g5) is the most probable
of all graphlets in G(n,c/n). On the other hand, dense
graphlets (such as the clique g9) rarely occur in G(n,c/n).

The expected number (or "average counts") of graphlets
can be derived from Lemma 1. The probabilities of
graphlets and corresponding expectations of the random
variable Xgi are listed in Tab. 2. The numbers of automor-
phisms aut(gi) for these small graphs are well-known (see
[19] for the details).
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Table 2: Graphlets, numbers of their automorphisms,
probabilities of graphlets and values of IE(Xgi).

Graphlet aut(gi) Probability IE(Xgi)
gi of gi
g1 2 p

(n
2

)
p

g2 2 p2(1− p) 3!
2

(n
3

)
p2(1− p)

g3 6 p3 3!
6

(n
3

)
p3

g4 2 p3(1− p)3 4!
2

(n
4

)
p3(1− p)3

g5 6 p3(1− p)3 4!
6

(n
4

)
p3(1− p)3

g6 8 p4(1− p)2 4!
8

(n
4

)
p4(1− p)2

g7 2 p4(1− p)2 4!
2

(n
4

)
p4(1− p)2

g8 4 p5(1− p) 4!
4

(n
4

)
p5(1− p)

g9 24 p6 4!
24

(n
4

)
p6

4 Isolated Graphlets

Given a graph G = (V,E), a graphlet is said to be an iso-
lated graphlet if it is a component in G. Let Ygi be the
random variable on G(n, p) denoting the number of copies
of isolated graphlet gi in a random graph for i = 0, . . . ,9.
It will be seen later (in Tab. 3) that it is meaningful to take
into account the isolated graphlet g0 as well.

Lemma 2 ([10]). For i = 0, . . . ,9, let ni (mi) denote the
number of vertices (edges) of gi. The expectation of the
random variable Ygi is given by

IE(Ygi) = IE(Xgi) · (1− p)(n−ni)ni . (3)

In order to express an asymptotic estimation for "a-
verage counts" of isolated graphlets in random graphs, the
following lemma is necessary.

Lemma 3. Let α,β ,c be constants (i.e. α ,β ,c ≪ n) such
that α,c > 0 and let p = c/n. It holds

(1− p)αn+β ∼ e−αc as n → ∞ .

Proof. By assumptions of Lemma,

(1− p)αn+β =
(

1− c
n

)αn
·
(

1− c
n

)β
.

Thus

(1− p)αn+β =

(
1+

1
− n

c

)−αnc
−c

·
(

1− c
n

)β
∼ e−αc

since

lim
n→∞

(
1+

1
− n

c

)− n
c

= e

and

lim
n→∞

(
1− c

n

)β
= 1 .

By Lemma 2 and 3, we derive the following statement.
It determines the asymptotic estimation for expected num-
ber of isolated graphlets in random graphs with p = c/n.

Lemma 4. Let c > 1 be constant. There exists a function
ψc(n) = O(n−1) such that for each gi (with ni vertices and
mi edges) in G(n,c/n) it holds

IE(Ygi) ∼





ncni−1e−cni/aut(gi) if mi = ni −1,

cnie−cni/aut(gi) if mi = ni,

ψc(n) if mi ≥ ni +1.

This lemma allows for asymptotic estimation of ex-
pected numbers of isolated graphlets in random graphs
G(n,c/n). Corresponding estimations are listed in Tab.
3. One may observe that the frequency of isolated trees
(i.e. graphlets g0,g1,g2,g4,g5) growth linearly with n, the
frequency of isolated graphlets g3,g6,g7 (i.e. trees with
one additional edge) is constant with respect to n and the
frequency of other isolated graphlets (g8 and g9) is neg-
ligible. The intuition behind this result is, similarly as in
the previous section, that the contribution of sparse iso-
lated graphlets is more significant (even in magnitude)
than of denser ones. Unless as in the previous section,
the frequency distribution of isolated vertices g0 can be
expressed by the asymptotic formula which depends on n
and c. (Note that the count of graphlets g0 is trivially n.)

Table 3: Asymptotic estimations of expected number for
isolated graphlets in G(n,c/n) as n is large enough.

Gra- IE(Ygi) Estimation of
phlet IE(Ygi) for

gi p = c/n
g0 n(1− p)n−1 ne−c

g1
(n

2

)
p(1− p)2(n−2) 1

2 nce−2c

g2
3!
2

(n
3

)
p2(1− p)3(n−3)+1 1

2 nc2e−3c

g3
3!
6

(n
3

)
p3(1− p)3(n−3) 1

6 c3e−3c

g4
4!
2

(n
4

)
p3(1− p)4(n−4)+3 1

2 nc3e−4c

g5
4!
6

(n
4

)
p3(1− p)4(n−4)+3 1

6 nc3e−4c

g6
4!
8

(n
4

)
p4(1− p)4(n−4)+2 1

8 c4e−4c

g7
4!
2

(n
4

)
p4(1− p)4(n−4)+2 1

2 c4e−4c

g8
4!
4

(n
4

)
p5(1− p)4(n−4)+1 1

4 n−1c5e−4c

g9
4!
24

(n
4

)
p6(1− p)4(n−4) 1

24 n−2c6e−4c

5 Domination Number in Sparse Random
Graphs

A dominating set of a graph G = (V,E) is a set D ⊆ V (G)
such that every vertex not in D is adjacent to at least one
vertex of D. The domination number, denoted by γ(G), is
the minimum cardinality of a dominating set of G.
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Results regarding domination problems and domination
number are surveyed in [7]. Due to significant applica-
tions in social, engineering and PPI networks, the area
of domination became recently attractive and fast growing
[5, 12, 13, 14, 18].

It was shown in [18] that the domination number of ran-
dom graphs for a constant p may attain one of only two
possible values. Such a property is called the two-point
concentration. The two-point concentration result was re-
cently extended for random graphs G(n, p) with p ≫ ln2 n√

n
(in this case, p = p(n) is assumed to be a function). How-
ever, it does not hold if p = O(logn/n) [5]. As mentioned
in [5], the detailed analysis of the domination number be-
havior for random graphs with p ≪ 1√

n is still an interest-
ing open problem.

In order to pursuit this problem, we suggest to use a
method based on isolated graphlet counting. Recall that a
random graph consists of a single giant component and
small isolated trees a.a.s. in its critical and supercriti-
cal phase if p = Θ(n−1). Roughly speaking, our idea re-
sides in exact counting of domination numbers for isolated
trees and its estimation for the giant component. Resulting
bounds could be obtained by a combination of all partic-
ular estimations. Our preliminary results exploiting the
early version of this idea have been published in [14].

6 Concluding Remarks

One possible extension of this work may involve analy-
sis for graphlets with 5 vertices. Although the idea is the
same as for smaller graphlets, detailed calculations need
an additional effort because there are 21 graphlets with 5
vertices.

Comparing actual networks to random graphs might be
a meaningful goal for future research. A resulting know-
ledge might be helpful to better understanding of real-
world networks structure.

As regards the problem of the domination number esti-
mation, the author is currently working on more accurate
formulas of results published in [14]. The corresponding
analysis is based on the idea which was explained in the
previous section.
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Abstract: Let A be a finite alphabet, and let S be
a set of of 2-dimensional bounded prohibited pat-
terns over A . We consider the set MA ,S of ma-
trices over A that avoid the patterns from S , and
attempt to derive (closed or linear recurrence) for-
mulas for the numbers of m×n matrices in MA ,S .
We argue that different sets of prohibited patterns
require different types of formulas, with some for-
mulas recurrent in just one of the parameters m,n,
some satisfying a two-dimensional linear recur-
rence relation (depending of both m and n), and
some satisfying neither of the two types. We con-
sider characterization of classes that admit a two-
dimensional linear recurrence relation, as well as
classes that do not allow for such relation. In addi-
tion, given A and S , we address the question of
the existence of a constant a such that the number
of m×n matrices in MA ,S is asymptotically equal
to |A |amn.

We report on preliminary results for a specific class
of boolean matrices with the prohibited set consist-
ing of thirty-two 3× 3 matrices for which compu-
tational results suggest the non-existence of a two-
dimensional linear recurrence relation.

1 Introduction and preliminaries

Many classes of objects are defined via prohibit-
ing specified sub-objects. In our paper, we deal
with classes of matrices over finite alphabets that
do not contain patterns from a finite set of local
prohibited patterns. Such matrices can be viewed
as matrices recognizable via a bounded window
automaton with a finite memory that can only view
a bounded area of the matrix at a time and cannot
see (or remember) the matrix in its entirety (while
it is allowed to slide through the entire matrix
window by window, verifying each window sepa-
rately). The motivation behind considering these
classes of matrices lies in extending the theory
of ‘one-dimensional’ languages of strings avoid-
ing specified substrings to two dimensional ar-
rays. One-dimensional languages that avoid (con-
nected) substrings from a finite set of prohibited

substrings have been studied for several decades
and their enumeration is well-known to lead to ho-
mogeneous linear recurrence relations (see. e.g.,
[3, 4]), We show that a similar, although more
complicated, situation holds in the case of two-
dimensional arrays. We stress that when talking
of submatrices, we mean connected blocks.

Let A be a finite alphabet, and let S be a set of
k× ` matrices over A , k, `≥ 1. Let MA ,S denote
the set matrices over A that do not contain (avoid)
sub-matrices from S , i.e., the set of matrices
A =‖ai, j ‖m.n, ai, j ∈A , for 1≤ i≤ m, 1≤ j ≤ m,
having the property that none of the k× ` subma-
trices of A belong to S (thus, k and ` are the di-
mensions of the viewing window of the automaton
recognizing A; it accepts A if and only if it never
finds a matrix from S in its viewing window).

We illustrate this concept with a specific class of
matrices with prohibited patterns that will be used
throughout our paper.

Example 1. Let A = {0,1}, and consider the set
of boolean matrices over A not admitting 3× 3
crosses of zeroes or ones, i.e., not admitting sub-
matrices of the form

∗ 0 ∗
0 0 0
∗ 0 ∗

∗ 1 ∗
1 1 1
∗ 1 ∗

where the stars stand for arbitrary elements from
A (to avoid using stars, one could think of the set
of the 32 prohibited matrices obtained by making
all the possible choices). We will call the matri-
ces from this class noise matrices, and note that
they are often considered to be examples of chaotic,
structure-less matrices.

Given an alphabet A and a set S of prohibited k×
` submatrices over A , let NA ,S (m,n) denote the
number of m×n matrices in MA ,S . Then clearly
NA ,S (m,n) = |A |mn, for all 1 ≤ m ≤ k and 1 ≤
n≤ `, with at least one parameter smaller than the
upper bound, while

0≤ NA ,S (m,n)≤ |A |mn (1)
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in general.

In what follows, we are interested in deriving for-
mulas for NA ,S (m,n) for various alphabets A and
sets of prohibited sub-matrices S .

Example 2. Considering A = {0,1} again, taking
empty S1 yields MA ,S1 consisting of all boolean
matrices and NA ,S1(m,n) = 2mn, for all m and n.

Taking S2 to consist of the single 1×1 matrix with
a1,1 = 1 implies that MA ,S2 consists of just the
m× n zero-matrices and NA ,S2(m,n) = 1, for all
m and n.

Finally, taking S3 to consist of the 2× 2 all-ones
matrix ai, j = 1, for 1≤ i, j≤ 2, yields MA ,S3 con-
sisting of all 1×1, 1×2, 2×1 matrices, and m×n
matrices that do not contain a 2× 2 sub-matrix of
all ones, for m,n≥ 2. Thus,

NA ,S3(1,1) = 2,

NA ,S3(1,2) = NA ,S3(2,1) = 22 = 4,

NA ,S3(2,2) = 24−1 = 15,

and the Inclusion-Exclusion Principle yields that
NA ,S3(2,3) = 26−22−22 +1 = 57.

One of the main conjectures concerning the asymp-
totic behavior of the numbers NA ,S (m,n) states
the following:

Conjecture 1. Let A be a finite alphabet, and let
S be a set of prohibited k×` submatrices over A .
Then there exists a constant 0≤ a≤ 1 such that

lim
m→∞,n→∞

NA ,S (m,n)
|A |amn = 1.

If the a from the above conjecture exists for a spe-
cific pair A and S , we say that a is the critical ex-
ponent for the pair. The sets S1 and S2 defined in
Example 2 constitute extremal cases with the criti-
cal exponents a1 = 1 and a2 = 0, respectively.

The paper [1] contains the following information
about the asymptotic behavior of the enumeration
function of the noise matrices.

Theorem 1 ([1]). Let A and S be those defined in
Example 1. For every m≥ 3, there exists a constant
0≤ am ≤ 1 such that

lim
n→∞

NA ,S (m,n)
|A |ammn = 1.

Furthermore, there exist two constants 0 < b1 <
b2 < 1 such that

2b1mn < NA ,S (m,n)< 2b2mn,

for all m,n≥ 3.

While computer experimentation appears to sup-
port Conjecture 1, in principle, it cannot be used
to prove the claim for any specific pair A and S .
However, it usually fairly quickly provides for es-
timates for the value of a. In particular, finding
the numbers NA ,S (m,n) for a large range of pairs

m,n allows one to calculate
log|A |(NA ,S (m,n))

mn for
each such pair. The actual values for large pairs
often match for a considerable number of decimal
places. For example, calculations concerning the
enumeration of noise matrices reported in [6] yield
that the corresponding a (if it exists!) lies in the
range:

0.9068≤ a≤ 0.947564.

2 One-dimensional linear recurrence
relations

Let A and S be a finite alphabet and a set of k×`
prohibited matrices over A . In this section, we
prove that for any given m ≥ k there exists a lin-
ear recurrence formula tying together the numbers
NA ,S (m,n), n ≥ 1. We use a generalization of a
technique used in [1] for noise matrices.

Example 3. To illustrate the basic idea of this ap-
proach, suppose we extend a 3× n matrix ending
in a specific triple of columns by adding a spe-
cific new column which results in a 3× (n+1) ma-
trix ending in a new triple of columns (but sharing
two columns with the original triple). We may en-
counter two different situations:

. . .
0 1 1
1 1 1
0 0 1

+
0
0
1

= . . .
1 1 0
1 1 0
0 1 1

or

. . .
0 1 1
1 1 1
0 0 1

+
0
1
1

= . . .
1 1 0
1 1 1
0 1 1

When considering the noise matrices defined in
Example 1, these two situations differ as follows.
Any noise matrix ending in the first triple remains
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a noise matrix after adding the specified column,
while the matrix formed from a noise matrix by
adding the second specified column ceases being
a noise matrix.

With regard to the above example, it is important
to point out that the entire situation only depends
of the last three columns, and the actual number of
columns of the matrices is irrelevant with regard to
the above claims.

In view of these observations, let A be a finite al-
phabet and S be a set of k× ` prohibited matrices
over A , and let us fix the number m ≥ k of rows.
Let {M1,M2, . . . ,M|A |m`} be the set of all m× `
matrices over A (listed in an arbitrary but fixed or-
der). For each n ≥ `, divide the m× n matrices in
MA ,S with regard to their last ` columns, and let
αn

i denote the number of m×n matrices in MA ,S

ending in the matrix Mi, 1 ≤ i ≤ |A |m`. Denote
α(n) = (αn

1 ,α
n
2 , . . . ,α

n
|A |m`), and note that

α(n) ·1T =
|A |m`

∑
i=1

αn
i = NA ,S (m,n), (2)

(where 1T stands for the column of all ones).

As observed above, if we expand an m× n matrix
ending in Mi by adding a column, we obtain an
m× (n+ 1) matrix ending in M j having the prop-
erty that the first `− 1 columns of M j match the
last `− 1 columns of Mi. If this is the case, we
will say that M j is a successor of Mi. Moreover,
if n ≥ `, the question whether an m× n matrix in
MA ,S ending in Mi remains in MA ,S after a col-
umn is added to it so that it ends in M j depends of
Mi and M j only and it is independent of the num-
ber of columns n. Therefore, for 1 ≤ i, j ≤ |A |m`,
let ai, j = 1 if M j is a successor of Mi having the
property that if an m× n matrix ending in Mi be-
longs to MA ,S then so does the m×(n+1) matrix
ending in M j (constructed from the smaller matrix
by adding a column). Let ai, j = 0 otherwise, and
denote A=‖ai, j ‖. Since every m× (n+1) matrix
in MA ,S is obtained from a specific m×n matrix
in MA ,S , it follows that

α(n+1) = α(n)A, (3)

for all n≥ `.

Suppose now that the square matrix A is a root of
a monic polynomial p(x) = a0+a1x+a2x2+ . . .+
as−1xs−1 + xs in Z[x], i.e.,

a0I+a1A+a2A2 + . . .+as−1As−1 +As =O,

where I stands for the identity matrix and O for the
all-zeroes matrix. Thus,

As =−a0I−a1A−a2A2− . . .−as−1As−1, (4)

and after multiplying by α(n) on the left and by 1T

on the right we obtain

α(n)As1T =

−a0α(n)1T −a1α(n)A1T −a2α(n)A21T −
. . .−as−1α(n)As−11T .

Applying equations (2) and (3) finally yields

NA ,S (m,n+ s) =

−a0NA ,S (m,n)− . . .−as−1NA ,S (m,n+ s−1),
(5)

which is a linear recurrence relation.

The above arguments allow us to prove the follow-
ing generalization of Theorem 2 to all sets of ma-
trices over finite alphabets with prohibited bounded
patterns.

Theorem 2 ([1]). Let A be a finite alphabet and
S be a set of k× ` prohibited matrices over A .
For every m ≥ k, there exists a linear recurrence
relation such that

NA ,S (m,n+ s) =

−a0NA ,S (m,n)− . . .−as−1NA ,S (m,n+ s−1),

as well as a constant 0≤ cm ≤ 1 such that

lim
n→∞

NA ,S (m,n)
|A |cmmn = 1.

Proof. Let A and S be as stated, and suppose
that m ≥ k. The matrix A defined in the dis-
cussion preceding the statement of our theorem is
an |A |m` × |A |m` boolean matrix which (by the
Cayley-Hamilton theorem) is the root of its char-
acteristic polynomial charA(x), which belongs to
Z[x], and is either monic when |A |m` is even or
can be made monic by multiplying by −1 when
|A |m` is odd. This yields a linear recurrence rela-
tion of order |A |m` for the numbers NA ,S (m,n),
n ≥ `. Since A is a boolean (i.e., non-negative)
matrix, using the Perron-Frobenius theorem yields
that its spectral radius ρ(A) is its eigenvalue of the
largest modulus. Consequently, ρ(A) determines
the magnitude of any sequence satisfying the re-
currence relation determined by charA(x) [2, 5],
therefore NA ,S (m,n) = θ(ρ(A)n), and the second
claim of our theorem follows.
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3 One-dimensional linear recurrence
relations of smallest order

Even though we have proved the existence of an
one-dimensional linear recurrence relation for each
A ,S , and m ≥ k, the orders |A |m` of these re-
lations are rather large. The key problem when
using such relations lies in the need to find the
first |A |m` elements of the corresponding sequence
by brute force. Thus, in order to start using the
above described recurrence relation for the num-
bers NA ,S (3,n) in the case of noise matrices (for
which the prohibited matrices are of dimension
3×3), one first needs to find the numbers

NA ,S (3,3),NA ,S (3,4), . . . ,NA ,S (3,29),

which turns out to be a computationally demanding
task simply because of the sheer size of the search
spaces and the corresponding frequency numbers.
For example, NA ,S (3,55000)≈ 20.970956·3·55000 ≈
2160207, and 640 MB of memory space were needed
to store the first 55,000 members of the sequence
NA ,S (3,n) [6]. (Clearly, in order to obtain the cor-
rect recurrence relation, one needs to calculate and
store the exact numbers.)

Finding recurrence relations of smaller degrees is
therefore of utter importance. The first obvious
choice for reducing the degree of the obtained re-
currence relation is to use the minimal polynomial
for A over C instead of its characteristic polyno-
mial. However, while calculating the character-
istic polynomial for A is a computationally de-
manding but simple determinant calculation, find-
ing the minimal polynomial for A requires finding
the roots for charA(x) or its irreducible divisors.
Moreover, the minimal polynomial over C most
likely does not belong to Z[x], making the exact
calculation of the coefficients of the corresponding
recurrence relation impossible. While this prob-
lem can be remedied by considering the minimal
polynomial over Q (which does belong to Z[x]), in
general, this would be of higher degree than the
minimal polynomial over C, and still hard to find.

In [6], the third author under the supervision of
the second author of this article considered the
noise matrices and chose a much simpler computa-
tional approach. Using essentially brute force, he
found the numbers of noise matrices NA ,S (3,n)
for 1 ≤ n ≤ 55000. Having the numbers from this
list, he created a list consisting of the numbers
log2(N(3,n))

3n , looking for a pattern. An easy inspec-

tion reveals that log2(N(3,1500))
3·1500 ≈ 0.970992, while

log2(N(3,55000))
3·55000 ≈ 0.970956; the critical exponent

for m = 3 becomes exact up to the first four dec-
imal digits fairly quickly.

Similarly, calculating the numbers NA ,S (4,n) for
1≤ n≤ 35000 determined the critical exponent for
m = 4 equal to 0.959452; the numbers NA ,S (5,n)
for 1≤ n≤ 50000 determined the critical exponent
for m = 5 equal to 0.952307; and finally calculat-
ing the numbers NA ,S (6,n) for 1≤ n≤ 25000 de-
termined the critical exponent for m = 6 equal to
0.9475645.

As for the recurrence relation of minimal degree,
having the actual values of the corresponding se-
quence allows one to find the minimal degree ex-
perimentally. Specifically, let k ≥ 2, and suppose
an equivalence relation of degree k exists. If that
were the case, the solution a0,a1,a2, . . . ,ak−1 of
the k× k system of linear equations

a0NA ,S (m, `)+ . . .+ak−1NA ,S (m, `+ k−1)
= NA ,S (m, `+ k)

a0NA ,S (m, `+1)+ . . .+ak−1NA ,S (m, `+ k)

= NA ,S (m, `+ k+1)
. . .

a0NA ,S (m, `+ k−1)+ . . .+ak−1NA ,S (m, `+2k−2)
= NA ,S (m, `+2k−1)

would have to satisfy all the ‘latter’ systems, i≥ 1,

a0NA ,S (m, `+ i)+ . . .+ak−1NA ,S (m, `+ k−1+ i)

= NA ,S (m, `+ k+ i)

a0NA ,S (m, `+1+ i)+ . . .+ak−1NA ,S (m, `+ k+ i)

= NA ,S (m, `+ k+1+ i)

. . .

a0NA ,S (m, `+ k−1+ i)+ . . .+ak−1NA ,S (m, `+2k−2+ i)

= NA ,S (m, `+2k−1+ i).

This can be experimentally tested starting from
k = 2, and looking for the first k that satisfies these
requirements (which will necessary be the smallest
degree of a linear recurrence relation for the con-
sidered sequence).

Relying on [6] again reveals the following. The
minimal degree of a linear recurrence relation for
NA ,S (3,n) is 2, the minimal degree of a lin-
ear recurrence relation for NA ,S (4,n) is 4, the
minimal degree of a linear recurrence relation for
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NA ,S (5,n) is 8, and the minimal degree of a linear
recurrence relation for NA ,S (6,n) is 20.

In particular,

NA ,S (3,n+2) = 4NA ,S (3,n)+7NA ,S (3,n+1),

for all n≥ 3.

4 Two-dimensional linear recurrence
relations

The results obtained for the noise matrices men-
tioned in the previous section suggest that the de-
gree of the minimal linear recurrence relation in-
creases with increasing number of rows. This is,
however, not a universal fact concerning all ma-
trices with prohibited bounded patterns. For ex-
ample, all the numbers NA ,S2(m,n) for the ma-
trices from Example 2 are equal to 1, and hence
satisfy the recurrence relation NA ,S2(m,n+ 1) =
NA ,S2(m,n). Nevertheless, we feel that the fol-
lowing conjecture might turn out to be true.

Conjecture 2. Let A be a finite alphabet and S
be a set of k× ` prohibited matrices over A with
k, `≥ 2. Then the minimal degree of a linear recur-
rence relation for the sequence

NA ,S (m,n),NA ,S (m,n+1),NA ,S (m,n+2), . . .

m≥ k, increases with increasing m.

In view of Conjecture 2, instead of looking for one-
dimensional linear recurrence relations, we pro-
pose to search for two-dimensional recurrence re-
lations.

Specifically, let rm,n be a two dimensional sequence
of reals (i.e., a function from N×N to R). We
say that a two-dimensional sequence rm,n satis-
fies a two-dimensional linear recurrence relation
provided there exist coefficients ai, j, 0 ≤ i ≤ t,
0≤ j ≤ s, with at,s = 0, such that

rm+t,n+s =

a0,0rm,n +a0,1rm,n+1 + . . .+a0,srm,n+s +

a1,0rm+1,n +a1,1rm+1,n+1 + . . .+a1,srm+1,n+s +

. . .+

at,0rm+t,n +at,1rm+t,n+1 + . . .+at,srm+t,n+s,

for all m,n ∈ N.

Our preliminary results suggest the following two
conjectures.

Conjecture 3. Let A be a finite alphabet and S
be a set of k×` prohibited matrices over A with at
least one of the numbers k, ` equal to 1. Then the
two-dimensional sequence NA ,S (m,n), m,n ≥ 1,
satisfies a two-dimensional recurrence relation.

Conjecture 4. Let A be a finite alphabet and
S be a set of k× ` prohibited matrices over A
with k, ` ≥ 2. Then the two-dimensional sequence
NA ,S (m,n), m,n ≥ 1, does not satisfy a two-
dimensional recurrence relation.
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Abstract: While analyzing and testing some of the well
known string matching algorithms, we came across rather
interesting phenomenon in tests results for the Rabin-Karp
algorithm. Testing which moduli work best in the algo-
rithm, we realized that on some texts some moduli perform
much worse then others. This caught our attention, and we
continued testing. In this paper, we summarize tests using
different moduli on the same text, tests run on different
English texts (fiction, scientific, law, newspaper), and tests
run on different languages and alphabets (English, Slovak,
French, German and Russian). We include analysis of the
obtained results and state some hypotheses.

1 The Rabin-Karp algorithm

We start with a brief review of the Rabin-Karp algorithm
and its computational complexity. This string match-
ing algorithm is based on the use of elementary number-
theoretic notions such as the equivalence of two numbers
modulo a third number. Rabin and Karp [5] proposed the
algorithm to improve performance of string matching al-
gorithms in practice. This algorithm generalizes to other
algorithms for related problems, such as two dimensional
pattern matching.

To simplify the explanations, it will be convenient to
assume for a moment that characters are decimal digits,
so we interpret the characters of strings as both digits and
also graphical symbols. Thus, a string of length k can be
represented as a decimal number. For instatnce, a string
s = “12345” of length 5 corresponds to a decimal number
12 345. In general case, we assume to have an alphabet Σ
which consists of characters that are digits from the num-
ber system over the base b = |Σ|.

Let us have a pattern P[1...m] and text T [1...n]. The
decimal value of pattern P will be denoted as p. Similarly,
the decimal value of every substring of a text T of length
m starting at a position s will be denoted as ts. We say that
pattern P occurs in text T if and only if one can find at least
one ts that has the same decimal value as p, i.e. ts = p and
T [s+1...s+m] = P[1...m], s = 0,1, . . . ,n−m. In that case
we call s a valid shift.

We can compute decimal value of p in time Θ(m) by
using the Horner’s Rule:

p = P[m]+10(P[m−1]+10(P[m−2]+10(P[m−3]+ . . .

+10(P[2]+10P[1])...)

Figure 1: Computation of the value for a window based on a previous
window in a constant time. The first window has a value “232”. We drop
the high-order digit that is “2” and multiply the rest of the window by
10. Then we add the low-order digit that is “8” and we get new value
that is “328”. The value of the first window is 11 and the value of the
new window is 3, because all computations are performed with out hash
function that is modulo 13.

Similarly, again by the Horner’s Rule, the value t0 can
be computed in Θ(m).

For every s, the value ts+1 can be then computed from
the previous value ts:

ts+1 = 10(ts−10m−1T [s+1])+T [s+m+1].

For example, to compute the value t1 from t0 for our text
T = “12345” from the previous paragraph and pattern P of
length m = 3, we use the value t0 which is 123. In this
computation s = 0. A character at the position T[s+1] is
“1”, and its numerical value is 1, a character at position
T[s+m+1] is “4” and its value is 4. The computation is as
follows:

t1 = 10(t0−103−1T [0+1])+T [0+3+1]

t1 = 10(123−102T [1])+T [4]

t1 = 10(123−100)+4

t1 = 234

We see that by computing ts − 10m−1T [s + 1], we re-
move the highest order digit from value ts. By subsequent
multiplication of the remainder of the value by 10, we shift
the number to the left. 10 is used because we work with
the decimal system. In the general case, where base b is
|Σ|, we would have to shift by b. By adding T [s+m+ 1]
we add the low-order digit and we get the final value of
ts+1. (Figure 1)

If the constant 10m−1 is precomputed, then for each
s = 1,2, . . . ,n−m, the computation of the value ts is done
in constant time. Thus the computation of all the remain-
ing values t1, t2, t3, . . ., tn−m is done in Θ(n−m). That
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means, that by comparing value of p with every value of
ts, we can get all valid shifts in time Θ(m)+Θ(n−m+1).

A problem may occur, when value p and values ts
are too large. Some mathematical operations with large
numbers may take a long time, and the assumption that
they take only constant time may be unreasonable. One
possible remedy for this is, what Rabin-Karp algorithm
does: instead of comparing the original values, it com-
putes values p and ts modulo some suitable modulus q, and
then compare these new modulated numbers. The modu-
lated numbers are not bigger than q− 1. Computation of
p (mod q) takes again time Θ(m) and computation of all
ts (mod q) values together takes Θ(n−m+1).

The modulus q is usually chosen to be a prime such that
the value b ·q fits within a computer word. (b is the base,
the number of characters in the alphabet Σ). According to
this, the previous equation for computing ts + 1 changes
to:

ts+1 ≡ (b(ts−T [s+1]h)+T [S+m+1]) (mod q),

where
h≡ dm−1 (mod q)

It is clear that if p 6≡ ts (mod q) then P does not start
at position s in T . So if this happens, we know that s is not
a valid shift. On the other hand, it is possible that p ≡ ts
(mod q), and still the pattern P does not start at s. That
means that to complete this algorithm, we must not only
compare the modulated values and find a match, but also
test further to see if the substring T [s+ 1...s+m] is the
same as the pattern P. This additional but indispensable
comparison takes another Θ(m) time. The simple graphi-
cal example of the Rabin-Karp algorithm and modulation
of the values of ts is shown in Figure 2.

Figure 2: Example of the Rabin-Karp string matching with alphabet Σ
in which every character is a decimal digit. a) an example of a hashed
pattern P = 315 that is located in text T . Part b) demonstrates hashing of
every possible substring of T with the length of P. Two substrings that
have the same hash value as the pattern are found and they are denoted
as valid shifts. Only the substrings with the valid shift are compared
further with the pattern by characters. For this case we have found one
occurrence of pattern P in text T at position 6.

In our version of the Rabin-Karp algorithm the pre-
processing time takes Θ(n). The processing time takes
Θ((n−m+ 1)m) in the worst case, and only Θ(n+ 1) in
the best case of running. The worst case occurs when all
characters of pattern P and all characters of text T are the
same unique symbol. For example, if we have a pattern
P=“aaa” and a text T=“aaaaaaaaa”, then algorithm consid-
ers every possible shift as valid and behaves as the naive
string matching algorithm.

2 Implementation

In this section we sketch how we implemented the Rabin-
Karp algorithm. The particulars of the implementation can
become interesting when discussing the test results in the
last section of the paper.

We have chosen Java as the programming language.
Java is an object-oriented language, and its biggest ad-
vantage is its platform independence, which means that
the Java code can be run without modifying at any plat-
form that supports Java. As a development tool we chose
Eclipse Java Oxygen with a WindowBuilder component.
WindowBuilder is designed to create Java GUI applica-
tions in an easy way.

2.1 Implementation of the Main Application

We study and test Rabin-Karp algorithm in a context of
other string matching algorithms. To organize the testing
of the implemented algorithms, we needed to create the
main application with Graphical User Interface. This ap-
plication is build to work with all the studied algorithms
and to manage the input texts, patterns and all of the out-
put results. The main components that we need in our ap-
plication:

• Input pattern - text input field, where the user can
write or paste the pattern that he wants to find in the
text Input text

• Input text - text input field, where the user can write
or paste the text where he wants to find all the occur-
rences of the pattern from the Input pattern

• Load text from file - button, that allows the user to
load text from a file to the Input text

• Algorithm - selector, where the user can choose
which algorithm he wants to test

• Modulo - number input field, where the user can
choose the modulo that will be used in the Rabin-
Karp algorithm

• Output text - output text field, where the text is
rewritten from the Input text, but with highlighted
occurrences of the pattern from Input pattern
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Figure 3: Class diagram of the main application generated by The
ObjectAid UML Explorer for Eclipse

• Additional console logs - check field, if it is checked
it means that in the Console there will be written
some additional logs for the given algorithm along-
side with the proccessing and preprocessing time

• Console - after running an algorithm, in the console
there is shown it’s processing and preprocessing time
and when the Additional console logs is checked
there are some additional logs for every algorithm

• Run - button that runs the program, where with a se-
lected Algorithm, search in Input text for an Input
pattern

A class diagram is shown in Figure 3.

The application consists of the following classes that
work as follows:

Main is the main class that runs the application. Its pur-
pose is to initialize the contents of the frame of GUI win-
dow. When users run the application, the Main class gets
the value of the input text, the input pattern, the input mod-
ulo and the selected algorithm. The class passes all this
values to class StringMatching and calls the function run
of the class StringMatching. After the run is completed,
the class fills the output text and console with the results
of running.

TextHolder is the class that stores the text and the pat-
tern that the application got on input. It also generates the
alphabet and the base based on the given text and pattern.

OpenFile is the class that allows the user to load a text
from a file with a JFileChooser.

Algorithm is an interface for implemented algorithms.
Every algorithm needs to have implemented functions get-
TimeOfPreprocessing, getTimeOfProcessing, getOccur-
rences, getOtherConsoleLogs and run(text, pattern, alpha-
bet, base, modulo).

NaiveMatching, RabinKarpMatching, FiniteAu-
tomataMatching, OptimalizedFiniteAutomataMatch-
ing, KnuthMorrisPrattMatching are the classes
where the implemented algorithms that we used are.

StringMatching is the class that gets the selected algo-
rithm, input text, input pattern and modulo. First, it pro-
cesses the text and the pattern with TextHolder and gets
the alphabet and the base generated from the text. Then, it
creates a new instance of the selected algorithm and calls
it’s function run.

The review of the implemented application and it’s GUI
is shown in Figure 4, where a simple running of the pro-
gram with the naive string matching algorithm with pattern
“the” and text of the book “The Project Gutenberg EBook
of The Adventures of Sherlock Holmes by Sir Arthur Co-
nan Doyle” is demonstrated.

Figure 4: The main application, where the user can test the imple-
mented algorithms.

2.2 The Rabin-Karp algorithm implementation

For the Rabin-Karp string matching procedure, after it re-
ceives the input text, the pattern, the value of d that rep-
resents the radix− d notation that is uses in its matching
and modulo, we need to initialize the value of the high-
order digit position of an m-digit window. This is shown
in Listing 1 on line 1. After that the preprocessing of this
algorithm follows. We need to compute the value of p and
the value of the first substring t0 of the text with length of
the pattern. Implementation of this is shown in Listing 1
on lines 3− 6, where the pattern_hash is our value of p
and sub_text_hash represents the value of t0. As a default,
these variables were preset to value 0.
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Listing 1: Calculation of Hashed Values of Value h, p and t0
1 i n t h = ( i n t ) Math . pow ( base , p a t t e r n _ l e n g t h −1) % modulo ;
2
3 f o r ( i n t i =0 ; i < p a t t e r n _ l e n g t h ; i ++) {
4 p a t t e r n _ h a s h = ( base∗p a t t e r n _ h a s h + p a t t e r n . c ha rA t ( i ) ) % modulo ;
5 s u b _ t e x t _ h a s h = ( base∗s u b _ t e x t _ h a s h + t e x t . c h a r A t ( i ) ) % modulo ;
6 }

How the processing is implemented can seen in List-
ing 2. It starts by iterating through all possible shifts s
in the text. On line 3 there is a check whether value p
matches value of ts at shift s where the loop is executed.
If so, then the character by character comparison between
pattern P and substring of text T [s+1...s+m] follows. If
these two strings are equal, we add shift to the array of
all of the occurrences, where we store all shifts in which
we have found a positive match. The check on line 9 will
be true on every ts, except the last one tn−m. That is be-
cause the main loop will execute one more time and in
that case we need to compute the value of upcoming ts+1.
This computation is implemented on line 10. In the case
that the value of ts+1 is smaller that 0, we add q to this
value on lines 13−15.

Listing 2: Processing of the Rabin-Karp String Matching Algorithm
1 f o r ( i n t s =0; s <( t e x t _ l e n g t h − p a t t e r n _ l e n g t h ) ; s ++) {
2
3 i f ( p a t t e r n _ h a s h == s u b _ t e x t _ h a s h ) {
4 S t r i n g t e x t _ s u b s t r i n g = t e x t . s u b s t r i n g ( s , ( s + p a t t e r n _ l e n g t h ) ) ;
5 i f ( O b j e c t s . e q u a l s ( p a t t e r n , t e x t _ s u b s t r i n g ) )
6 o c c u r r e n c e s . add ( s ) ;
7 }
8
9 i f ( s < ( t e x t _ l e n g t h − p a t t e r n _ l e n g t h ) ) {

10 s u b _ t e x t _ h a s h = ( base∗( s u b _ t e x t _ h a s h − t e x t . ch a r A t ( s )∗h ) +
11 t e x t . c ha rA t ( s+ p a t t e r n _ l e n g t h ) ) % modulo ;
12
13 i f ( s u b _ t e x t _ h a s h < 0)
14 s u b _ t e x t _ h a s h = ( s u b _ t e x t _ h a s h + modulo ) ;
15 }
16 }

3 Testing moduli in the Rabin-Karp
algorithm

While testing a performance of the implemented string
matching algorithms, we were interested whether a choice
of the modulus q in the Rabin-Karp algorithm affects the
performance of the algorithm. Recall that for the given
base b = |Σ|, the modulus q is usually chosen to be a prime
number such that the value b · q fits within a computer
word. In this section we summarize results of our testing
of moduli in the Rabin-Karp algorithm.

We had some preconceived ideas how the test results
should look like. These expectations were met while test-
ing some of the texts, for an example see Figure 5. The
sample text in Figure 5 is an English text. It is an artificial
text in the sense that it was generated in an online random
text generator, with even some further random changes and
additions. The text is 400 000 characters long.

A suprise came when we tested the Rabin-Karp algo-
rithm on The adventures of Sherlock Holmes by Sir Arthur
Conan Doyle. The text was obtained from The Project
Gutenberg. Release Date: March, 1999 [EBook #1661]
[Most recently updated: November 29, 2002], Edition: 12,
Language: English, Character set encoding: ASCII.

Figure 5: The Rabin-Karp algorithm on an English text generated by
an online random text generator. Three different colors represent three
different lengths of a searched pattern P.

The text was again about 500 000 characters long, and
we tested with different patterns and different lengths of
patterns. As we see in Figure 6, modulus q= 13 performed
significantly worse than the other moduli.

Figure 6: The Rabin-Karp algorithm on English fiction: The adven-
tures of Sherlock Holmes by Sir Arthur Conan Doyle.

Figure 7: The Rabin-Karp algorithm on English fiction: The adven-
tures of Sherlock Holmes by Sir Arthur Conan Doyle.

This caught our attention. We tested the same text for
the second time, now with the moduli ordered in the de-
scending order (see Figure 7) to make sure that a possi-
ble error is not caused in the program (language Java can
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sometimes slow down the performance of the program be-
cause of the Garbage Collector). Since we got the two
graphs that are exactly mirror images of each other, we
see that the garbage collecting in Java is not the reason for
the unexpected behavior.

Our first hypothesis was that the natural language has
different characteristics than randomly generated texts. So
we continue testing on many different types of English
texts and patterns. In Figure 8, we see the results of the
testing on a law text The Common Law, by Oliver Wendell
Holmes, Jr., and in Figure 9 on a scientific text from the
book Ancient And Modern Physics by Thomas E. Will-
son. (Both these text were again obtained from the Project
Gutenberg.) As we see the charts for all these texts are
different. To definitely show that our first hypothesis does
not hold, in Figure 10 is yet another randomly generated
English text that has q = 13 behaving as it is in the fiction
in Figure 6.

Figure 8: The Rabin-Karp algorithm on an English law text: The Com-
mon Law, by Oliver Wendell Holmes, Jr.

Figure 9: The Rabin-Karp algorithm on an English scientific text: An-
cient And Modern Physics by Thomas E. Willson

Figure 10: The Rabin-Karp algorithm on another ran-
domly generated English text.

Our another guess was that the performance depending
on moduli may somehow be related to the language or
to the alphabet of the text. Therefore we tested on other
languages, including German (Figure 11), and other lan-
guages using other alphabets, including Russian (Figures
12 and 13.) We see that we can get all types of behavior.

Figure 11: The Rabin-Karp algorithm on a randomly gen-
erated German text.

Figure 12: The Rabin-Karp algorithm on the first Russian
text (randomly generated).
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Figure 13: The Rabin-Karp algorithm on the second Rus-
sian text (randomly generated).

We were also interested what is happening in Slovak
language. Below you see the results of three tests. The
first one, Figure 14, is on a randomly generated Slovak
text, the second one, Figure 15, is on the original Slovak
fiction, Adam Šangala by Ladislav Nádaši-Jégé, and the
third one, Figure 16, is on the Slovak translation of French
Molier’s Lakomec (L’Avare).

Figure 14: The Rabin-Karp algorithm on a randomly gen-
erated Slovak text.

Figure 15: The Rabin-Karp algorithm on the original Slo-
vak fiction, Adam Šangala by Ladislav Nádaši-Jégé

Figure 16: The Rabin-Karp algorithm on the Slovak trans-
lation of Molier’s Lakomec (L’Avare).

Here it seems that q = 13 is again behaving worse that
other moduli. (Why?) Just to make a comparison, we also
include the results of the testing on the original French
text. As we see below, Figure 17, modulus q = 13 is not
different from others, while q = 7 and in some extend its
multiples are now the moduli with the worst performance.

Figure 17: The Rabin-Karp algorithm on the French text.

We were hoping that by systematically running tests on
different types of texts, on different languages and alpha-
bets, with different patterns to search for, we would be able
to understand the relationship between the computational
time and the modulus for Rabin-Karp algorithm. At this
moment we see that this tests are not sufficient to explain
this relationship, and that other, more involved (probably
statistical) methods would be needed to completely under-
stand the phenomenon.
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Kuchař, J., 161
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